Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The multifaceted role of CD4+ T cells in CD8+ T cell memory

Key Points

  • Following immunization, CD4+ T cells promote the induction of a robust primary CD8+ T cell response through numerous mechanisms, including licensing of dendritic cells (DCs) and promoting the interaction between DCs and CD8+ T cells.

  • CD4+ T cells regulate the secondary responsiveness of CD8+ T cells during immunization through suppression of TNF-related apoptosis-inducing ligand (TRAIL) through a process dependent on licensing of DCs to produce interleukin-15 (IL-15) and autocrine secretion of IL-2 by CD8+ T cells.

  • Following infection, CD4+ T cell help is necessary for the induction of a memory CD8+ T cell pool capable of mediating protective immunity but is largely dispensable for a robust primary response.

  • Regulatory T (TReg) cells act during the resolution phase of infection to protect CD8+ T cells from inflammatory signals and promote the survival of a CD8+ T cell pool capable of robustly expanding upon secondary infection.

  • CD4+ T cell help promotes the induction of tissue-resident memory CD8+ T cells during mucosal infection through guidance of CD8+ T cells into a microenvironment where they can become exposed to the signals necessary for their continued maintenance within the tissue.

  • During chronic infection, effector CD4+ T cells support the maintenance of functional CD8+ T cells through secretion of IL-21, whereas TReg cells dampen the CD8+ T cell response through suppression of DCs.

Abstract

Following infection, T cells differentiate into a heterogeneous population of effector T cells that can mediate pathogen clearance. A subset of these effector T cells possesses the ability to survive long term and mature into memory T cells that can provide long-term immunity. Understanding the signals that regulate the development of memory T cells is crucial to efforts to design vaccines capable of eliciting T cell-based immunity. CD4+ T cells are essential in the formation of protective memory CD8+ T cells following infection or immunization. However, until recently, the mechanisms by which CD4+ T cells act to support memory CD8+ T cell development following infection were unclear. Here, we discuss recent studies that provide insight into the multifaceted role of CD4+ T cells in the regulation of memory CD8+ T cell differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CD4+ T cell help to CD8+ T cells during immunization.
Figure 2: TReg cells promote memory CD8+ T cell maturation during viral infection.
Figure 3: CD4+ T cell help to CD8+ T cell during mucosal infection.
Figure 4: Temporal model of CD4+ T cell help during infection.

Similar content being viewed by others

References

  1. Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 54–60 (1996).

    CAS  PubMed  Google Scholar 

  2. La Gruta, N. L. & Turner, S. J. T cell mediated immunity to influenza: mechanisms of viral control. Trends Immunol. 35, 396–402 (2014).

    CAS  PubMed  Google Scholar 

  3. Korber, B. T., Letvin, N. L. & Haynes, B. F. T-cell vaccine strategies for human immunodeficiency virus, the virus with a thousand faces. J. Virol. 83, 8300–8314 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kaech, S. M. & Ahmed, R. Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naïve cells. Nat. Immunol. 2, 415–422 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kaech, S. M. & Cui, W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat. Rev. Immunol. 12, 749–761 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Stary, G. et al. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells. Science 348, aaa8205 (2015).

    PubMed  PubMed Central  Google Scholar 

  7. Sathaliyawala, T. et al. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 38, 187–197 (2013).

    CAS  PubMed  Google Scholar 

  8. Schenkel, J. M., Fraser, K. A., Vezys, V. & Masopust, D. Sensing and alarm function of resident memory CD8+ T cells. Nat. Immunol. 14, 509–513 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Shin, H. & Iwasaki, A. A vaccine strategy that protects against genital herpes by establishing local memory T cells. Nature 491, 463–467 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu, T. et al. Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J. Leukoc. Biol. 95, 215–224 (2014).

    PubMed  PubMed Central  Google Scholar 

  11. Schenkel, J. M. et al. T cell memory. Resident memory CD8 T cells trigger protective innate and adaptive immune responses. Science 346, 98–101 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ariotti, S. et al. T cell memory. Skin-resident memory CD8+ T cells trigger a state of tissue-wide pathogen alert. Science 346, 101–105 (2014).

    CAS  PubMed  Google Scholar 

  13. Mueller, S. N. & Mackay, L. K. Tissue-resident memory T cells: local specialists in immune defence. Nat. Rev. Immunol. http://dx.doi.org/10.1038/nri.2015.3 (2016).

  14. Janssen, E. M. et al. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421, 852–856 (2003).

    CAS  PubMed  Google Scholar 

  15. Shedlock, D. J. & Shen, H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300, 337–339 (2003).

    CAS  PubMed  Google Scholar 

  16. Sun, J. C. & Bevan, M. J. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300, 339–342 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bourgeois, C., Rocha, B. & Tanchot, C. A role for CD40 expression on CD8+ T cells in the generation of CD8+ T cell memory. Science 297, 2060–2063 (2002).

    CAS  PubMed  Google Scholar 

  18. Riberdy, J. M., Christensen, J. P., Branum, K. & Doherty, P. C. Diminished primary and secondary influenza virus-specific CD8+ T-cell responses in CD4-depleted Ig−/− mice. J. Virol. 74, 9762–9765 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Belz, G. T., Wodarz, D., Diaz, G., Nowak, M. A. & Doherty, P. C. Compromised influenza virus-specific CD8+-T-cell memory in CD4+-T-cell-deficient mice. J. Virol. 76, 12388–12393 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Herrath, von, M. G., Yokoyama, M., Dockter, J., Oldstone, M. B. & Whitton, J. L. CD4-deficient mice have reduced levels of memory cytotoxic T lymphocytes after immunization and show diminished resistance to subsequent virus challenge. J. Virol. 70, 1072–1079 (1996).

    Google Scholar 

  21. Bennett, S. R. et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 393, 478–480 (1998).

    CAS  PubMed  Google Scholar 

  22. Schoenberger, S. P., Toes, R. E., van der Voort, E. I., Offringa, R. & Melief, C. J. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 393, 480–483 (1998).

    CAS  PubMed  Google Scholar 

  23. Bennett, S. R., Carbone, F. R., Karamalis, F., Miller, J. F. & Heath, W. R. Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J. Exp. Med. 186, 65–70 (1997). References 22 and 23 are the first reports to show that CD4+ T cell help during the primary response is mediated through CD40 signalling on the antigen-presenting cell.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ridge, J. P., Di Rosa, F. & Matzinger, P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393, 474–478 (1998).

    CAS  PubMed  Google Scholar 

  25. Hervas-Stubbs, S., Olivier, A., Boisgerault, F., Thieblemont, N. & Leclerc, C. TLR3 ligand stimulates fully functional memory CD8+ T cells in the absence of CD4+ T-cell help. Blood 109, 5318–5326 (2007).

    CAS  PubMed  Google Scholar 

  26. Wilson, E. B. & Livingstone, A. M. Cutting edge: CD4+ T cell-derived IL-2 is essential for help-dependent primary CD8+ T cell responses. J. Immunol. 181, 7445–7448 (2008).

    CAS  PubMed  Google Scholar 

  27. Sokke Umeshappa, C. et al. CD154 and IL-2 signaling of CD4+ T cells play a critical role in multiple phases of CD8+ CTL responses following adenovirus vaccination. PLoS ONE 7, e47004 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Oh, S. et al. IL-15 as a mediator of CD4+ help for CD8+ T cell longevity and avoidance of TRAIL-mediated apoptosis. Proc. Natl Acad. Sci. USA 105, 5201–5206 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zloza, A. et al. NKG2D signaling on CD8+ T cells represses T-bet and rescues CD4-unhelped CD8+ T cell memory recall but not effector responses. Nat. Med. 18, 422–428 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sacks, J. A. & Bevan, M. J. TRAIL deficiency does not rescue impaired CD8+ T cell memory generated in the absence of CD4+ T cell help. J. Immunol. 180, 4570–4576 (2008).

    CAS  PubMed  Google Scholar 

  31. Sun, J. C. & Bevan, M. J. Cutting edge: long-lived CD8 memory and protective immunity in the absence of CD40 expression on CD8 T cells. J. Immunol. 172, 3385–3389 (2004).

    CAS  PubMed  Google Scholar 

  32. Lee, B. O., Hartson, L. & Randall, T. D. CD40-deficient, influenza-specific CD8 memory T cells develop and function normally in a CD40-sufficient environment. J. Exp. Med. 198, 1759–1764 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Castellino, F. et al. Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature 440, 890–895 (2006). This paper provides evidence for the guidance of CD8+ T cells to the site of productive CD4+ T cell–DC interaction through the production of chemokines.

    CAS  PubMed  Google Scholar 

  34. Kumamoto, Y., Mattei, L. M., Sellers, S., Payne, G. W. & Iwasaki, A. CD4+ T cells support cytotoxic T lymphocyte priming by controlling lymph node input. Proc. Natl Acad. Sci. USA 108, 8749–8754 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hor, J. L. et al. Spatiotemporally distinct interactions with dendritic cell subsets facilitates CD4+ and CD8+ T cell activation to localized viral infection. Immunity 43, 554–565 (2015).

    CAS  PubMed  Google Scholar 

  36. Eickhoff, S. et al. Robust anti-viral Immunity requires multiple distinct T cell-dendritic cell interactions. Cell 162, 1322–1337 (2015). Together, references 35 and 36 reveal that several DC subsets are involved in T cell activation and identify XCR1+ DCs as the platform by which CD4+ T cell help is provided to CD8+ T cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Castellino, F. & Germain, R. N. Chemokine-guided CD4+ T cell help enhances generation of IL-6RαhighIL-7Rαhigh prememory CD8+ T cells. J. Immunol. 178, 778–787 (2007).

    CAS  PubMed  Google Scholar 

  38. Azadniv, M., Bowers, W. J., Topham, D. J. & Crispe, I. N. CD4+ T cell effects on CD8+ T cell location defined using bioluminescence. PLoS ONE 6, e16222 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Janssen, E. M. et al. CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature 434, 88–93 (2005).

    CAS  PubMed  Google Scholar 

  40. Hamilton, S. E., Wolkers, M. C., Schoenberger, S. P. & Jameson, S. C. The generation of protective memory-like CD8+ T cells during homeostatic proliferation requires CD4+ T cells. Nat. Immunol. 7, 475–481 (2006).

    CAS  PubMed  Google Scholar 

  41. Williams, M. A., Tyznik, A. J. & Bevan, M. J. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature 441, 890–893 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bachmann, M. F., Wolint, P., Walton, S., Schwarz, K. & Oxenius, A. Differential role of IL-2R signaling for CD8+ T cell responses in acute and chronic viral infections. Eur. J. Immunol. 37, 1502–1512 (2007).

    CAS  PubMed  Google Scholar 

  43. Wiesel, M. et al. Th cells act via two synergistic pathways to promote antiviral CD8+ T cell responses. J. Immunol. 185, 5188–5197 (2010).

    CAS  PubMed  Google Scholar 

  44. Wolkers, M. C. et al. Nab2 regulates secondary CD8+ T-cell responses through control of TRAIL expression. Blood 119, 798–804 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Feau, S., Arens, R., Togher, S. & Schoenberger, S. P. Autocrine IL-2 is required for secondary population expansion of CD8+ memory T cells. Nat. Immunol. 12, 908–913 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Obar, J. J. et al. CD4+ T cell regulation of CD25 expression controls development of short-lived effector CD8+ T cells in primary and secondary responses. Proc. Natl Acad. Sci. USA 107, 193–198 (2010).

    CAS  PubMed  Google Scholar 

  47. de Goër de Herve, M. G., Jaafoura, S., Vallée, M. & Taoufik, Y. FoxP3+ regulatory CD4 T cells control the generation of functional CD8 memory. Nat. Commun. 3, 986 (2012).

    PubMed  Google Scholar 

  48. McNally, A., Hill, G. R., Sparwasser, T., Thomas, R. & Steptoe, R. J. CD4+CD25+ regulatory T cells control CD8+ T-cell effector differentiation by modulating IL-2 homeostasis. Proc. Natl Acad. Sci. USA 108, 7529–7534 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Laidlaw, B. J. et al. Production of IL-10 by CD4+ regulatory T cells during the resolution of infection promotes the maturation of memory CD8+ T cells. Nat. Immunol. 16, 871–879 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kalia, V., Penny, L. A., Yuzefpolskiy, Y., Baumann, F. M. & Sarkar, S. Quiescence of memory CD8+ T cells is mediated by regulatory T cells through inhibitory receptor CTLA-4. Immunity 42, 1116–1129 (2015). References 49 and 50 show that T Reg cells can promote CD8+ T cell memory maturation through the suppression of inflammation during the resolution phase of infection.

    CAS  PubMed  Google Scholar 

  51. Kalia, V. et al. Prolonged interleukin-2Rα expression on virus-specific CD8+ T cells favors terminal-effector differentiation in vivo. Immunity 32, 91–103 (2010).

    CAS  PubMed  Google Scholar 

  52. Pipkin, M. E. et al. Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity 32, 79–90 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Misra, N., Bayry, J., Lacroix-Desmazes, S., Kazatchkine, M. D. & Kaveri, S. V. Cutting edge: human CD4+CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells. J. Immunol. 172, 4676–4680 (2004).

    CAS  PubMed  Google Scholar 

  54. Onishi, Y., Fehervari, Z., Yamaguchi, T. & Sakaguchi, S. Foxp3+ natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation. Proc. Natl Acad. Sci. USA 105, 10113–10118 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Tang, Q. et al. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat. Immunol. 7, 83–92 (2006).

    CAS  PubMed  Google Scholar 

  56. Tadokoro, C. E. et al. Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. J. Exp. Med. 203, 505–511 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Morlacchi, S. et al. Regulatory T cells target chemokine secretion by dendritic cells independently of their capacity to regulate T cell proliferation. J. Immunol. 186, 6807–6814 (2011).

    CAS  PubMed  Google Scholar 

  58. Dal Secco, V. et al. Tunable chemokine production by antigen presenting dendritic cells in response to changes in regulatory T cell frequency in mouse reactive lymph nodes. PLoS ONE 4, e7696 (2009).

    PubMed  PubMed Central  Google Scholar 

  59. Pace, L. et al. Regulatory T cells increase the avidity of primary CD8+ T cell responses and promote memory. Science 338, 532–536 (2012). This was the first study to describe a role for T Reg cells in promoting CD8+ T cell memory.

    CAS  PubMed  Google Scholar 

  60. Wiesel, M. & Oxenius, A. From crucial to negligible: Functional CD8+T-cell responses and their dependence on CD4+T-cell help. Eur. J. Immunol. 42, 1080–1088 (2012).

    CAS  PubMed  Google Scholar 

  61. Tripp, R. A., Sarawar, S. R. & Doherty, P. C. Characteristics of the influenza virus-specific CD8+ T cell response in mice homozygous for disruption of the H-2lAb gene. J. Immunol. 155, 2955–2959 (1995).

    CAS  PubMed  Google Scholar 

  62. Novy, P., Quigley, M., Huang, X. & Yang, Y. CD4 T cells are required for CD8 T cell survival during both primary and memory recall responses. J. Immunol. 179, 8243–8251 (2007).

    CAS  PubMed  Google Scholar 

  63. Marzo, A. L. et al. Fully functional memory CD8 T cells in the absence of CD4 T cells. J. Immunol. 173, 969–975 (2004).

    CAS  PubMed  Google Scholar 

  64. Hamilton, S. E., Tvinnereim, A. R. & Harty, J. T. Listeria monocytogenes infection overcomes the requirement for CD40 ligand in exogenous antigen presentation to CD8+ T cells. J. Immunol. 167, 5603–5609 (2001).

    CAS  PubMed  Google Scholar 

  65. Lauvau, G. et al. Priming of memory but not effector CD8 T cells by a killed bacterial vaccine. Science 294, 1735–1739 (2001).

    CAS  PubMed  Google Scholar 

  66. Shedlock, D. J. et al. Role of CD4 T cell help and costimulation in CD8 T cell responses during Listeria monocytogenes infection. J. Immunol. 170, 2053–2063 (2003).

    CAS  PubMed  Google Scholar 

  67. Wiesel, M. et al. Type-I IFN drives the differentiation of short-lived effector CD8+ T cells in vivo. Eur. J. Immunol. 42, 320–329 (2012).

    CAS  PubMed  Google Scholar 

  68. Leist, T. P., Cobbold, S. P., Waldmann, H., Aguet, M. & Zinkernagel, R. M. Functional analysis of T lymphocyte subsets in antiviral host defense. J. Immunol. 138, 2278–2281 (1987).

    CAS  PubMed  Google Scholar 

  69. Buller, R. M., Holmes, K. L., Hügin, A., Frederickson, T. N. & Morse, H. C. Induction of cytotoxic T-cell responses in vivo in the absence of CD4 helper cells. Nature 328, 77–79 (1987).

    CAS  PubMed  Google Scholar 

  70. Sun, J. C., Williams, M. A. & Bevan, M. J. CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat. Immunol. 5, 927–933 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bachmann, M. F., Hunziker, L., Zinkernagel, R. M., Storni, T. & Kopf, M. Maintenance of memory CTL responses by T helper cells and CD40-CD40 ligand: antibodies provide the key. Eur. J. Immunol. 34, 317–326 (2004).

    CAS  PubMed  Google Scholar 

  72. Intlekofer, A. M. et al. Requirement for T-bet in the aberrant differentiation of unhelped memory CD8+ T cells. J. Exp. Med. 204, 2015–2021 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Joshi, N. S. et al. Inflammation directs memory precursor and short-lived effector CD8+ T cell fates via the graded expression of T-bet transcription factor. Immunity 27, 281–295 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Northrop, J. K., Thomas, R. M., Wells, A. D. & Shen, H. Epigenetic remodeling of the IL-2 and IFN-γ loci in memory CD8 T cells is influenced by CD4 T cells. J. Immunol. 177, 1062–1069 (2006).

    CAS  PubMed  Google Scholar 

  75. Northrop, J. K., Wells, A. D. & Shen, H. Cutting edge: chromatin remodeling as a molecular basis for the enhanced functionality of memory CD8 T cells. J. Immunol. 181, 865–868 (2008).

    CAS  PubMed  Google Scholar 

  76. Brooks, D. G., Walsh, K. B., Elsaesser, H. & Oldstone, M. B. A. IL-10 directly suppresses CD4 but not CD8 T cell effector and memory responses following acute viral infection. Proc. Natl Acad. Sci. USA 107, 3018–3023 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Cui, W., Liu, Y., Weinstein, J. S., Craft, J. & Kaech, S. M. An interleukin-21-interleukin-10-STAT3 pathway is critical for functional maturation of memory CD8+ T cells. Immunity 35, 792–805 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Foulds, K. E., Rotte, M. J. & Seder, R. A. IL-10 is required for optimal CD8 T cell memory following Listeria monocytogenes infection. J. Immunol. 177, 2565–2574 (2006).

    CAS  PubMed  Google Scholar 

  79. Parish, I. A. et al. Chronic viral infection promotes sustained Th1-derived immunoregulatory IL-10 via BLIMP-1. J. Clin. Invest. 124, 3455–3468 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Brooks, D. G. et al. Interleukin-10 determines viral clearance or persistence in vivo. Nat. Med. 12, 1301–1309 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Suvas, S., Azkur, A. K., Kim, B. S., Kumaraguru, U. & Rouse, B. T. CD4+CD25+ regulatory T cells control the severity of viral immunoinflammatory lesions. J. Immunol. 172, 4123–4132 (2004).

    CAS  PubMed  Google Scholar 

  82. Kursar, M. et al. Regulatory CD4+CD25+ T cells restrict memory CD8+ T cell responses. J. Exp. Med. 196, 1585–1592 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ballesteros-Tato, A., León, B., Lund, F. E. & Randall, T. D. CD4+ T helper cells use CD154-CD40 interactions to counteract T reg cell-mediated suppression of CD8+ T cell responses to influenza. J. Exp. Med. 210, 1591–1601 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Srivastava, S., Koch, M. A., Pepper, M. & Campbell, D. J. Type I interferons directly inhibit regulatory T cells to allow optimal antiviral T cell responses during acute LCMV infection. J. Exp. Med. 211, 961–974 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Cheng, G. et al. IL-2 receptor signaling is essential for the development of Klrg1+ terminally differentiated T regulatory cells. J. Immunol. 189, 1780–1791 (2012).

    CAS  PubMed  Google Scholar 

  86. Steinman, R. M., Pack, M. & Inaba, K. Dendritic cells in the T-cell areas of lymphoid organs. Immunol. Rev. 156, 25–37 (1997).

    CAS  PubMed  Google Scholar 

  87. Jung, Y. W., Rutishauser, R. L., Joshi, N. S., Haberman, A. M. & Kaech, S. M. Differential localization of effector and memory CD8 T cell subsets in lymphoid organs during acute viral infection. J. Immunol. 185, 5315–5325 (2010).

    CAS  PubMed  Google Scholar 

  88. Stelekati, E. et al. Bystander chronic infection negatively impacts development of CD8+ T cell memory. Immunity 40, 801–813 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Schenkel, J. M. & Masopust, D. Tissue-resident memory T cells. Immunity 41, 886–897 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Nakanishi, Y., Lu, B., Gerard, C. & Iwasaki, A. CD8+ T lymphocyte mobilization to virus-infected tissue requires CD4+ T-cell help. Nature 462, 510–513 (2009). This paper describes a role for CD4+ T cells in facilitating the entry of CD8+ T cells into mucosal tissue through the production of IFNγ.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Jiang, X. et al. Skin infection generates non-migratory memory CD8+ TRM cells providing global skin immunity. Nature 483, 227–231 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Glennie, N. D. et al. Skin-resident memory CD4+ T cells enhance protection against Leishmania major infection. J. Exp. Med. 212, 1405–1414 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Laidlaw, B. J. et al. CD4+ T cell help guides formation of CD103+ lung-resident memory CD8+ T cells during influenza viral infection. Immunity 41, 633–645 (2014). This paper shows that CD4+ T cells promote the induction of lung T RM cells through guidance of CD8+ T cells within the lung microenvironment and through suppression of T-bet.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Graham, J. B., Da Costa, A. & Lund, J. M. Regulatory T cells shape the resident memory T cell response to virus infection in the tissues. J. Immunol. 192, 683–690 (2014).

    CAS  PubMed  Google Scholar 

  95. Zajac, A. J. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188, 2205–2213 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Snyder, C. M. et al. CD4+ T cell help has an epitope-dependent impact on CD8+ T cell memory inflation during murine cytomegalovirus infection. J. Immunol. 183, 3932–3941 (2009).

    CAS  PubMed  Google Scholar 

  97. Kemball, C. C. et al. The antiviral CD8+ T cell response is differentially dependent on CD4+ T cell help over the course of persistent infection. J. Immunol. 179, 1113–1121 (2007).

    CAS  PubMed  Google Scholar 

  98. Cardin, R. D., Brooks, J. W., Sarawar, S. R. & Doherty, P. C. Progressive loss of CD8+ T cell-mediated control of a γ-herpesvirus in the absence of CD4+ T cells. J. Exp. Med. 184, 863–871 (1996).

    CAS  PubMed  Google Scholar 

  99. Hunziker, L., Klenerman, P., Zinkernagel, R. M. & Ehl, S. Exhaustion of cytotoxic T cells during adoptive immunotherapy of virus carrier mice can be prevented by B cells or CD4+ T cells. Eur. J. Immunol. 32, 374–382 (2002).

    CAS  PubMed  Google Scholar 

  100. Yi, J. S., Du, M. & Zajac, A. J. A vital role for interleukin-21 in the control of a chronic viral infection. Science 324, 1572–1576 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Elsaesser, H., Sauer, K. & Brooks, D. G. IL-21 is required to control chronic viral infection. Science 324, 1569–1572 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Fröhlich, A. et al. IL-21R on T cells is critical for sustained functionality and control of chronic viral infection. Science 324, 1576–1580 (2009). Collectively, references 100–102 are the first reports to show that IL-21 is crucial for maintaining CD8+ T cell functionality and mediating viral control during chronic infection.

    PubMed  Google Scholar 

  103. Xin, G. et al. A critical role of IL-21-Induced BATF in sustaining CD8-T-cell-mediated chronic viral control. Cell Rep. 13, 1118–1124 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Chevalier, M. F. et al. HIV-1-specific interleukin-21+ CD4+ T cell responses contribute to durable viral control through the modulation of HIV-specific CD8+ T cell function. J. Virol. 85, 733–741 (2011).

    CAS  PubMed  Google Scholar 

  105. Williams, L. D. et al. Interleukin-21-producing HIV-1-specific CD8 T cells are preferentially seen in elite controllers. J. Virol. 85, 2316–2324 (2011).

    CAS  PubMed  Google Scholar 

  106. Aubert, R. D. et al. Antigen-specific CD4 T-cell help rescues exhausted CD8 T cells during chronic viral infection. Proc. Natl Acad. Sci. USA 108, 21182–21187 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Mueller, S. N. & Ahmed, R. High antigen levels are the cause of T cell exhaustion during chronic viral infection. Proc. Natl Acad. Sci. USA 106, 8623–8628 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Hale, J. S. et al. Distinct memory CD4+ T cells with commitment to T follicular helper- and T helper 1-cell lineages are generated after acute viral infection. Immunity 38, 805–817 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Fahey, L. M. et al. Viral persistence redirects CD4 T cell differentiation toward T follicular helper cells. J. Exp. Med. 208, 987–999 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Harker, J. A., Lewis, G. M., Mack, L. & Zuniga, E. I. Late interleukin-6 escalates T follicular helper cell responses and controls a chronic viral infection. Science 334, 825–829 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Linterman, M. A. et al. IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses. J. Exp. Med. 207, 353–363 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Zotos, D. et al. IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. J. Exp. Med. 207, 365–378 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Rasheed, M. A. U. et al. Interleukin-21 is a critical cytokine for the generation of virus-specific long-lived plasma cells. J. Virol. 87, 7737–7746 (2013).

    PubMed  PubMed Central  Google Scholar 

  114. Blattman, J. N. et al. Therapeutic use of IL-2 to enhance antiviral T-cell responses in vivo. Nat. Med. 9, 540–547 (2003).

    CAS  PubMed  Google Scholar 

  115. West, E. E. et al. PD-L1 blockade synergizes with IL-2 therapy in reinvigorating exhausted T cells. J. Clin. Invest. 123, 2604–2615 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Penaloza-Macmaster, P. et al. Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection. J. Exp. Med. 211, 1905–1918 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kamphorst, A. O. & Ahmed, R. CD4 T-cell immunotherapy for chronic viral infections and cancer. Immunotherapy 5, 975–987 (2013).

    CAS  PubMed  Google Scholar 

  118. Antony, P. A. et al. CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J. Immunol. 174, 2591–2601 (2005).

    CAS  PubMed  Google Scholar 

  119. Bauer, C. A. et al. Dynamic Treg interactions with intratumoral APCs promote local CTL dysfunction. J. Clin. Invest. 124, 2425–2440 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Joshi, N. S. et al. Regulatory T Cells in tumor-associated tertiary lymphoid structures suppress anti-tumor T cell responses. Immunity 43, 579–590 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Bos, R. & Sherman, L. A. CD4+ T-cell help in the tumor milieu is required for recruitment and cytolytic function of CD8+ T lymphocytes. Cancer Res. 70, 8368–8377 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Wong, S. B. J., Bos, R. & Sherman, L. A. Tumor-specific CD4+ T cells render the tumor environment permissive for infiltration by low-avidity CD8+ T cells. J. Immunol. 180, 3122–3131 (2008).

    CAS  PubMed  Google Scholar 

  123. Ho, P.-C. et al. Immune-based antitumor effects of BRAF inhibitors rely on signaling by CD40L and IFNγ. Cancer Res. 74, 3205–3217 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Chang, C.-H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Ho, P.-C. et al. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162, 1217–1228 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Vignali, D. A. A., Collison, L. W. & Workman, C. J. How regulatory T cells work. Nat. Rev. Immunol. 8, 523–532 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Ghorashian, S. et al. CD8 T cell tolerance to a tumor-associated self-antigen is reversed by CD4 T cells engineered to express the same T cell receptor. J. Immunol. 194, 1080–1089 (2015).

    CAS  PubMed  Google Scholar 

  128. Tran, E. et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344, 641–645 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Zanetti, M. Tapping CD4 T cells for cancer immunotherapy: the choice of personalized genomics. J. Immunol. 194, 2049–2056 (2015).

    CAS  PubMed  Google Scholar 

  130. Swain, S. L., McKinstry, K. K. & Strutt, T. M. Expanding roles for CD4+ T cells in immunity to viruses. Nat. Rev. Immunol. 12, 136–148 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Pearce, E. L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Chang, C.-H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. O'Sullivan, D. et al. Memory CD8+ T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 41, 75–88 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Cui, G. et al. IL-7-induced glycerol transport and TAG synthesis promotes memory CD8. Cell 161, 750–761 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Wakim, L. M., Smith, J., Caminschi, I., Lahoud, M. H. & Villadangos, J. A. Antibody-targeted vaccination to lung dendritic cells generates tissue-resident memory CD8 T cells that are highly protective against influenza virus infection. Mucosal Immunol. 8, 1060–1071 (2015).

    CAS  PubMed  Google Scholar 

  136. Stelekati, E. & Wherry, E. J. Chronic bystander infections and immunity to unrelated antigens. Cell Host Microbe 12, 458–469 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Ma, C. S. et al. Functional STAT3 deficiency compromises the generation of human T follicular helper cells. Blood 119, 3997–4008 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Ray, J. P. et al. Transcription factor STAT3 and type I interferons are corepressive insulators for differentiation of follicular helper and T helper 1 cells. Immunity 40, 367–377 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Eto, D. et al. IL-21 and IL-6 are critical for different aspects of B cell immunity and redundantly induce optimal follicular helper CD4 T cell (Tfh) differentiation. PLoS ONE 6, e17739 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Choi, Y. S. et al. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 34, 932–946 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Shulman, Z. et al. Dynamic signaling by T follicular helper cells during germinal center B cell selection. Science 345, 1058–1062 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Liston, A. & Gray, D. H. D. Homeostatic control of regulatory T cell diversity. Nat. Rev. Immunol. 14, 154–165 (2014).

    CAS  PubMed  Google Scholar 

  143. Burzyn, D. et al. A special population of regulatory T cells potentiates muscle repair. Cell 155, 1282–1295 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Arpaia, N. et al. A distinct function of regulatory T cells in tissue protection. Cell 162, 1078–1089 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all members of the Kaech and Craft laboratories for discussions and critical reading of the manuscript. They are supported by the US National Institutes of Health (RO1AI066232 and R01AI074699 to S.M.K.; R01AR40072, P30AR053495 and R21AR063942 to J.E.C.; T32AI07019 and F31AG07777 to B.J.L.) and the Howard Hughes Medical Institute (S.M.K. and B.J.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Laidlaw.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Cross-presentation

The ability of certain antigen-presenting cells (primarily dendritic cells) to redirect exogenous antigens to the MHC class I pathway, allowing for the stimulation of naive CD8+ T cells by these cells. This process is important for the induction of immune responses against most tumours and viruses that do not typically infect antigen-presenting cells.

'Helpless' CD8+ T cells

CD8+ T cells that have undergone activation and differentiation in the absence of CD4+ T cell-dependent stimulation ('help').

Activation-induced cell death

A process by which fully activated T cells undergo programmed cell death following binding of the T cell receptor by antigen or mitogen. Cell death occurs through the engagement of death receptors (such as FAS or the tumour-necrosis factor family receptors) or the production of reactive oxygen species.

Functional exhaustion

A state of non-responsiveness of T cells resulting from chronic exposure to high levels of antigen marked by high expression of inhibitory receptors. Exhausted cells are impaired in their ability to proliferate and secrete cytokines, compromising their ability to control pathogen load.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laidlaw, B., Craft, J. & Kaech, S. The multifaceted role of CD4+ T cells in CD8+ T cell memory. Nat Rev Immunol 16, 102–111 (2016). https://doi.org/10.1038/nri.2015.10

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri.2015.10

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing