Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular subtypes in cancers of the gastrointestinal tract

Key Points

  • The advent of affordable genomic and transcriptomic methods has enabled the identification of distinct molecular entities in nearly all gastrointestinal cancers

  • These molecular subtypes capture complex phenotypic variation in a limited number of definable brackets with biological and clinical pertinence

  • Molecular subtypes are highly interconnected across various gastrointestinal cancers and many of these subtypes can be identified regardless of organ of origin

  • In colorectal cancers, consensus subtypes have been defined and these could serve as a platform for similar efforts across other gastrointestinal cancers

Abstract

Malignancies of the gastrointestinal tract are among the most common human cancers. The distinct tissues of origin give rise to a diverse set of diseases, such as colorectal cancer, pancreatic carcinoma and gastric cancers, with each associating with specific clinical features. Genomic and transcriptomic analyses have further defined the heterogeneity that occurs within these cancers by identifying so-called molecular subtypes. These subtypes are characterized by specific genetic aberrations and expression signatures that suggest important biological differences. Although at first sight this subdivision of organ-specific cancers might increase the complexity of classification, closer analysis suggests that the subtypes detected in the various malignancies are recurring. For example, nearly all gastrointestinal cancers appear to present with subtypes that are either characterized by a mesenchymal gene expression signatures, extensive immune infiltration or metabolic dysregulation. Additionally, in each of the gastrointestinal malignancies, a 'canonical' subtype is recognized that retains characteristic features of the epithelial tissue of origin. These common themes can enhance our collective understanding of these malignancies, and could perhaps be therapeutically exploited. In this Review, the identification of subtypes in the various gastrointestinal cancer types are discussed along with how they could be incorporated into clinical practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Complexity of gastrointestinal cancer classification.
Figure 2: Two hypothetical scenarios for the origin of molecular subtypes.

Similar content being viewed by others

References

  1. Vermeulen, L. & Snippert, H. J. Stem cell dynamics in homeostasis and cancer of the intestine. Nat. Rev. 14, 468–480 (2014).

    CAS  Google Scholar 

  2. Rahib, L. et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 74, 2913–2921 (2014).

    CAS  PubMed  Google Scholar 

  3. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2016. CA Cancer J. Clin. 66, 7–30 (2016).

    PubMed  Google Scholar 

  4. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

  5. Bailey, P. et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531, 47–52 (2016).

    CAS  PubMed  Google Scholar 

  6. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 513, 202–209 (2014).

  7. Mima, K. et al. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol. 1, 653–661 (2015).

    PubMed  PubMed Central  Google Scholar 

  8. Tahara, T. et al. Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res. 74, 1311–1318 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Banales, J. M. et al. Expert consensus document: cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat. Rev. Gastroenterol. Hepatol. 13, 261–280 (2016).

    PubMed  Google Scholar 

  10. Zucman-Rossi, J., Villanueva, A., Nault, J. C. & Llovet, J. M. Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology 149, 1226–1239.e4 (2015).

    CAS  PubMed  Google Scholar 

  11. Fearon, E. R. Molecular genetics of colorectal cancer. Annu. Rev. Pathol. 6, 479–507 (2011).

    CAS  PubMed  Google Scholar 

  12. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    CAS  PubMed  Google Scholar 

  13. Wood, L. D. et al. The genomic landscapes of human breast and colorectal cancers. Science 318, 1108–1113 (2007).

    CAS  PubMed  Google Scholar 

  14. Punt, C. J., Koopman, M. & Vermeulen, L. From tumour heterogeneity to advances in precision treatment of colorectal cancer. Nat. Rev. Clin. Oncol. http://dx.doi.org/10.1038/nrclinonc.2016.171 (2016).

  15. Peeters, M. et al. Analysis of KRAS/NRAS mutations in a phase III study of panitumumab with FOLFIRI compared with FOLFIRI alone as second-line treatment for metastatic colorectal cancer. Clin. Cancer Res. 21, 5469–5479 (2015).

    CAS  PubMed  Google Scholar 

  16. Van Cutsem, E. et al. Fluorouracil, leucovorin, and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer. J. Clin. Oncol. 33, 692–700 (2015).

    CAS  PubMed  Google Scholar 

  17. Flaherty, K. T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sargent, D. J. et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J. Clin. Oncol. 28, 3219–3226 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Dotan, E. & Cohen, S. J. Challenges in the management of stage II colon cancer. Semin. Oncol. 38, 511–520 (2011).

    PubMed  PubMed Central  Google Scholar 

  20. DeVita, V. T. J., Lawrence, T. S. & Rosenberg, S. A. (eds) DeVita, Hellman, and Rosenberg's Cancer: Principles & Practice of Oncology 9th edn (Lippincott Williams and Wilkins, 2011).

  21. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006).

    CAS  PubMed  Google Scholar 

  22. Mlecnik, B. et al. Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity 44, 698–711 (2016).

    CAS  PubMed  Google Scholar 

  23. Galon, J. et al. The immune score as a new possible approach for the classification of cancer. J. Transl Med. 10, 1 (2012).

    PubMed  PubMed Central  Google Scholar 

  24. Jorissen, R. N. et al. Metastasis-associated gene expression changes predict poor outcomes in patients with Dukes stage B and C colorectal cancer. Clin. Cancer Res. 15, 7642–7651 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. You, Y. N., Rustin, R. B. & Sullivan, J. D. Oncotype DX® colon cancer assay for prediction of recurrence risk in patients with stage II and III colon cancer: a review of the evidence. Surg. Oncol. 24, 61–66 (2015).

    PubMed  Google Scholar 

  26. Tan, I. B. & Tan, P. Genetics: an 18-gene signature (ColoPrint®) for colon cancer prognosis. Nat. Rev. Clin. Oncol. 8, 131–133 (2011).

    CAS  PubMed  Google Scholar 

  27. Wang, X., Markowetz, F., De Sousa, E. M. F., Medema, J. P. & Vermeulen, L. Dissecting cancer heterogeneity — an unsupervised classification approach. Int. J. Biochem. Cell Biol. 45, 2574–2579 (2013).

    CAS  PubMed  Google Scholar 

  28. Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Linnekamp, J. F., Wang, X., Medema, J. P. & Vermeulen, L. Colorectal cancer heterogeneity and targeted therapy: a case for molecular disease subtypes. Cancer Res. 75, 245–249 (2015).

    CAS  PubMed  Google Scholar 

  30. Budinska, E. et al. Gene expression patterns unveil a new level of molecular heterogeneity in colorectal cancer. J. Pathol. 231, 63–76 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. De Sousa, E. M. F. et al. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat. Med. 19, 614–618 (2013).

    Google Scholar 

  32. Marisa, L. et al. Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med. 10, e1001453 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sadanandam, A. et al. A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat. Med. 19, 619–625 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Schlicker, A. et al. Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines. BMC Med. Genomics 5, 66 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Fessler, E. et al. TGFbeta signaling directs serrated adenomas to the mesenchymal colorectal cancer subtype. EMBO Mol. Med. 8, 745–760 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang, B. et al. Proteogenomic characterization of human colon and rectal cancer. Nature 513, 382–387 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ghaneh, P., Costello, E. & Neoptolemos, J. P. Biology and management of pancreatic cancer. Gut 56, 1134–1152 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hruban, R. H. & Fukushima, N. Pancreatic adenocarcinoma: update on the surgical pathology of carcinomas of ductal origin and PanINs. Mod. Pathol. 20 (Suppl. 1), S61–S70 (2007).

    PubMed  Google Scholar 

  39. Roy, N. & Hebrok, M. Regulation of cellular identity in cancer. Dev. Cell 35, 674–684 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Biankin, A. V. et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491, 399–405 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801–1806 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Smit, V. T. et al. KRAS codon 12 mutations occur very frequently in pancreatic adenocarcinomas. Nucleic Acids Res. 16, 7773–7782 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Waddell, N. et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518, 495–501 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Collins, M. A. et al. Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. J. Clin. Invest. 122, 639–653 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hingorani, S. R. et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7, 469–483 (2005).

    CAS  PubMed  Google Scholar 

  46. Yachida, S. et al. Clinical significance of the genetic landscape of pancreatic cancer and implications for identification of potential long-term survivors. Clin. Cancer Res. 18, 6339–6347 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Donahue, T. R. et al. Integrative survival-based molecular profiling of human pancreatic cancer. Clin. Cancer Res. 18, 1352–1363 (2012).

    CAS  PubMed  Google Scholar 

  48. Haider, S. et al. A multi-gene signature predicts outcome in patients with pancreatic ductal adenocarcinoma. Genome Med. 6, 105 (2014).

    PubMed  PubMed Central  Google Scholar 

  49. Kirby, M. K. et al. RNA sequencing of pancreatic adenocarcinoma tumors yields novel expression patterns associated with long-term survival and reveals a role for ANGPTL4. Mol. Oncol. 10, 1169–1182 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Stratford, J. K. et al. A six-gene signature predicts survival of patients with localized pancreatic ductal adenocarcinoma. PLoS Med. 7, e1000307 (2010).

    PubMed  PubMed Central  Google Scholar 

  51. Collisson, E. A. et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat. Med. 17, 500–503 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Moffitt, R. A. et al. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat. Genet. 47, 1168–1178 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Janky, R. et al. Prognostic relevance of molecular subtypes and master regulators in pancreatic ductal adenocarcinoma. BMC Cancer 16, 632 (2016).

    PubMed  PubMed Central  Google Scholar 

  54. Kim, S. et al. Identifying molecular subtypes related to clinicopathologic factors in pancreatic cancer. Biomed. Eng. Online 13 (Suppl. 2), S5 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Namkung, J. et al. Molecular subtypes of pancreatic cancer based on miRNA expression profiles have independent prognostic value. J. Gastroenterol. Hepatol. 31, 1160–1167 (2015).

    Google Scholar 

  56. Tang, S. et al. Stratification of digestive cancers with different pathological features and survival outcomes by microRNA expression. Sci. Rep. 6, 24466 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Humphrey, E. S. et al. Resolution of novel pancreatic ductal adenocarcinoma subtypes by global phosphotyrosine profiling. Mol. Cell. Proteomics 15, 2671–2685 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Daemen, A. et al. Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors. Proc. Natl Acad. Sci. USA 112, E4410–E4417 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Witkiewicz, A. K. et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat. Commun. 6, 6744 (2015).

    CAS  PubMed  Google Scholar 

  60. Herszenyi, L. & Tulassay, Z. Epidemiology of gastrointestinal and liver tumors. Eur. Rev. Med. Pharmacol. Sci. 14, 249–258 (2010).

    PubMed  Google Scholar 

  61. Ohashi, S. et al. Recent advances from basic and clinical studies of esophageal squamous cell carcinoma. Gastroenterology 149, 1700–1715 (2015).

    PubMed  Google Scholar 

  62. Reid, B. J., Paulson, T. G. & Li, X. Genetic insights in Barrett's esophagus and esophageal adenocarcinoma. Gastroenterology 149, 1142–1152.e3 (2015).

    CAS  PubMed  Google Scholar 

  63. Gao, Y. B. et al. Genetic landscape of esophageal squamous cell carcinoma. Nat. Genet. 46, 1097–1102 (2014).

    CAS  PubMed  Google Scholar 

  64. Lin, D. C. et al. Genomic and molecular characterization of esophageal squamous cell carcinoma. Nat. Genet. 46, 467–473 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Song, Y. et al. Identification of genomic alterations in oesophageal squamous cell cancer. Nature 509, 91–95 (2014).

    CAS  PubMed  Google Scholar 

  66. Dulak, A. M. et al. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat. Genet. 45, 478–486 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Weaver, J. M. et al. Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis. Nat. Genet. 46, 837–843 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Bass, A. J. et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat. Genet. 41, 1238–1242 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Su, H. et al. Global gene expression profiling and validation in esophageal squamous cell carcinoma and its association with clinical phenotypes. Clin. Cancer Res. 17, 2955–2966 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sawada, G. et al. An integrative analysis to identify driver genes in esophageal squamous cell carcinoma. PLoS ONE 10, e0139808 (2015).

    PubMed  PubMed Central  Google Scholar 

  71. Bain, G. H. et al. Tumour expression of leptin is associated with chemotherapy resistance and therapy-independent prognosis in gastro-oesophageal adenocarcinomas. Br. J. Cancer 113, 1641 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Secrier, M. et al. Mutational signatures in esophageal adenocarcinoma define etiologically distinct subgroups with therapeutic relevance. Nat. Genet. 48, 1131–1141 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. The Cancer Genome Atlas Research Network. Integrated genomic characterization of oesophageal carcinoma. Nature 541, 169–175 (2017).

  74. Higashi, H. et al. Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proc. Natl Acad. Sci. USA 99, 14428–14433 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lauren, P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. an attempt at a histo-clinical classification. Acta Pathol. Microbiol. Scand. 64, 31–49 (1965).

    CAS  PubMed  Google Scholar 

  76. Kakiuchi, M. et al. Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nat. Genet. 46, 583–587 (2014).

    CAS  PubMed  Google Scholar 

  77. Wang, K. et al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat. Genet. 43, 1219–1223 (2011).

    CAS  PubMed  Google Scholar 

  78. Wang, K. et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat. Genet. 46, 573–582 (2014).

    CAS  PubMed  Google Scholar 

  79. Zang, Z. J. et al. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat. Genet. 44, 570–574 (2012).

    CAS  PubMed  Google Scholar 

  80. Deng, N. et al. A comprehensive survey of genomic alterations in gastric cancer reveals systematic patterns of molecular exclusivity and co-occurrence among distinct therapeutic targets. Gut 61, 673–684 (2012).

    CAS  PubMed  Google Scholar 

  81. Pearson, A. et al. High-level clonal FGFR amplification and response to FGFR inhibition in a translational clinical trial. Cancer Discov. 6, 838–851 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Bang, Y. J. et al. A randomized, open-label phase II study of AZD4547 (AZD) versus Paclitaxel (P) in previously treated patients with advanced gastric cancer (AGC) with Fibroblast Growth Factor Receptor 2 (FGR2) polysomy or gene amplification (amp): SHINE study [abstract]. J. Clin. Oncol 33 (Suppl.), a4014 (2015).

    Google Scholar 

  83. Boussioutas, A. et al. Distinctive patterns of gene expression in premalignant gastric mucosa and gastric cancer. Cancer Res. 63, 2569–2577 (2003).

    CAS  PubMed  Google Scholar 

  84. Tan, I. B. et al. Intrinsic subtypes of gastric cancer, based on gene expression pattern, predict survival and respond differently to chemotherapy. Gastroenterology 141, 476–485.e11 (2011).

    PubMed  Google Scholar 

  85. Lei, Z. et al. Identification of molecular subtypes of gastric cancer with different responses to PI3-kinase inhibitors and 5-fluorouracil. Gastroenterology 145, 554–565 (2013).

    CAS  PubMed  Google Scholar 

  86. US National Library of Medicine. ClinicalTrials.gov http://www.clinicaltrials.gov/ct2/show/NCT01100801 (2016).

  87. Cristescu, R. et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat. Med. 21, 449–456 (2015).

    CAS  PubMed  Google Scholar 

  88. Wu, Y. et al. Comprehensive genomic meta-analysis identifies intra-tumoural stroma as a predictor of survival in patients with gastric cancer. Gut 62, 1100–1111 (2013).

    CAS  PubMed  Google Scholar 

  89. Lin, S. J. et al. Signatures of tumour immunity distinguish Asian and non-Asian gastric adenocarcinomas. Gut 64, 1721–1731 (2015).

    CAS  PubMed  Google Scholar 

  90. Oberg, K., Knigge, U., Kwekkeboom, D. & Perren, A. Neuroendocrine gastro-entero-pancreatic tumors: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 23 (Suppl. 7), vii124–vii130 (2012).

    PubMed  Google Scholar 

  91. Raymond, E. et al. Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. N. Engl. J. Med. 364, 501–513 (2011).

    CAS  PubMed  Google Scholar 

  92. Yao, J. C. et al. Everolimus for advanced pancreatic neuroendocrine tumors. N. Engl. J. Med. 364, 514–523 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Hauck, L., Bitzer, M., Malek, N. & Plentz, R. R. Subgroup analysis of patients with G2 gastroenteropancreatic neuroendocrine tumors. Scand. J. Gastroenterol. 51, 55–59 (2016).

    CAS  PubMed  Google Scholar 

  94. Ramage, J. K. et al. Guidelines for the management of gastroenteropancreatic neuroendocrine (including carcinoid) tumours (NETs). Gut 61, 6–32 (2012).

    CAS  PubMed  Google Scholar 

  95. Raymond, E., Garcia-Carbonero, R., Wiedenmann, B., Grande, E. & Pavel, M. Systemic therapeutic strategies for GEP-NETS: what can we expect in the future? Cancer Metastasis Rev. 33, 367–372 (2014).

    CAS  PubMed  Google Scholar 

  96. Reid, M. D., Balci, S., Saka, B. & Adsay, N. V. Neuroendocrine tumors of the pancreas: current concepts and controversies. Endocr. Pathol. 25, 65–79 (2014).

    CAS  PubMed  Google Scholar 

  97. Capdevila, J. et al. Molecular biology of neuroendocrine tumors: from pathways to biomarkers and targets. Cancer Metastasis Rev. 33, 345–351 (2014).

    CAS  PubMed  Google Scholar 

  98. Jiao, Y. et al. DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors. Science 331, 1199–1203 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Francis, J. M. et al. Somatic mutation of CDKN1B in small intestine neuroendocrine tumors. Nat. Genet. 45, 1483–1486 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Sadanandam, A. et al. A cross-species analysis in pancreatic neuroendocrine tumors reveals molecular subtypes with distinctive clinical, metastatic, developmental, and metabolic characteristics. Cancer Discov. 5, 1296–1313 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Cohen, R. L. & Settleman, J. From cancer genomics to precision oncology — tissue's still an issue. Cell 157, 1509–1514 (2014).

    CAS  PubMed  Google Scholar 

  102. Eason, K. & Sadanandam, A. Molecular or metabolic reprograming: what triggers tumor subtypes? Cancer Res. 76, 5195–5200 (2016).

    CAS  PubMed  Google Scholar 

  103. Roepman, P. et al. Colorectal cancer intrinsic subtypes predict chemotherapy benefit, deficient mismatch repair and epithelial-to-mesenchymal transition. Int. J. Cancer 134, 552–562 (2014).

    CAS  PubMed  Google Scholar 

  104. Trinh, A. et al. Practical and robust identification of molecular subtypes in colorectal cancer by immunohistochemistry. Clin. Cancer Res. 23, 387–398 (2017).

    CAS  PubMed  Google Scholar 

  105. Noll, E. M. et al. CYP3A5 mediates basal and acquired therapy resistance in different subtypes of pancreatic ductal adenocarcinoma. Nat. Med. 22, 278–287 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Best, M. G. et al. RNA-Seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell 28, 666–676 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from The Dutch Cancer Foundation (KWF; UVA2014-7245), the European Research Council (ERG-StG 638193) and The Netherlands Organisation for Health Research and Development (ZonMw; Vidi 016.156.308) to L.V, and KWF (UVA2012-6507) to M.F.B. A.S. acknowledges NHS funding to the National Institute for Health Research's Biomedical Research Centre at The Royal Marsden, London UK, and the Institute of Cancer Research. P.T. acknowledges funding from National Medical Research Council grants in Singapore (TCR/009-NUHS/2013 and NMRC/STaR/0026/2015).

Author information

Authors and Affiliations

Authors

Contributions

The authors made equal contributions to all aspects of this manuscript.

Corresponding author

Correspondence to Louis Vermeulen.

Ethics declarations

Competing interests

A.S. is entitled to a share of royalties received by the licensor for a patent entitled 'Colorectal cancer classification with differential prognosis and personalized therapeutic responses'; patent number PCT/IB2013/060416. M.F.B. has received research funding from Celgene, and A.S. from Bristol-Myers Squibb. P.T. holds patents covering gene expression classifiers for gastric cancer. These parties were not involved in drafting of the manuscript.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bijlsma, M., Sadanandam, A., Tan, P. et al. Molecular subtypes in cancers of the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 14, 333–342 (2017). https://doi.org/10.1038/nrgastro.2017.33

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2017.33

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer