Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

IBS and IBD — separate entities or on a spectrum?

Abstract

The acute phase of IBD with inflamed gut and often ulcerated mucosa is clearly different from the apparently normal mucosa characteristic of IBS. However, more detailed assessment has detected immune activation, increased gut permeability, increased mucosal serotonin availability, abnormalities of enteric nerve structure and function, and dysbiosis in gut microbiota in IBS — all features seen in IBD. Furthermore, as treatments for inflammation in IBD have become more effective it is now apparent that 1 in 3 patients with IBD in remission from inflammation still have persistent abnormalities of sensation, motility and gut microbiota, which might cause IBS-like symptoms. This Perspective explores the overlap between IBS and IBD and their treatments, proposing future directions for research in this stimulating area.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Serotonin signalling in the gut.
Figure 3: Mechanisms of symptoms in IBD and IBS.

Similar content being viewed by others

References

  1. Cooney, R. M., Warren, B. F., Altman, D. G., Abreu, M. T. & Travis, S. P. Outcome measurement in clinical trials for ulcerative colitis: towards standardisation. Trials 8, 17 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dignass, A. et al. Second European evidence-based consensus on the diagnosis and management of ulcerative colitis part 1: definitions and diagnosis. J. Crohns Colitis 6, 965–990 (2012).

    Article  PubMed  Google Scholar 

  3. Longstreth, G. F. et al. Functional bowel disorders. Gastroenterology 130, 1480–1491 (2006).

    Article  PubMed  Google Scholar 

  4. Shah, E., Rezaie, A., Riddle, M. & Pimentel, M. Psychological disorders in gastrointestinal disease: epiphenomenon, cause or consequence? Ann. Gastroenterol. 27, 224–230 (2014).

    PubMed  PubMed Central  Google Scholar 

  5. Halpin, S. J. & Ford, A. C. Prevalence of symptoms meeting criteria for irritable bowel syndrome in inflammatory bowel disease: systematic review and meta-analysis. Am. J. Gastroenterol. 107, 1474–1482 (2012).

    Article  PubMed  Google Scholar 

  6. Keohane, J. et al. Irritable bowel syndrome-type symptoms in patients with inflammatory bowel disease: a real association or reflection of occult inflammation? Am. J. Gastroenterol. 105, 1789–1794 (2010).

    Article  Google Scholar 

  7. Berrill, J. W., Green, J. T., Hood, K. & Campbell, A. K. Symptoms of irritable bowel syndrome in patients with inflammatory bowel disease: examining the role of sub-clinical inflammation and the impact on clinical assessment of disease activity. Aliment. Pharmacol. Ther. 38, 44–51 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Jonefjall, B. et al. Characterization of IBS-like symptoms in patients with ulcerative colitis in clinical remission. Neurogastroenterol. Motil. 25, 756–e578 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Bernstein, C. N. et al. A prospective population-based study of triggers of symptomatic flares in IBD. Am. J. Gastroenterol. 105, 1994–2002 (2010).

    Article  PubMed  Google Scholar 

  10. Bernstein, C. N. New insights into IBD epidemiology: are there any lessons for treatment? Dig. Dis. 28, 406–410 (2010).

    Article  PubMed  Google Scholar 

  11. Cremon, C. et al. Mucosal immune activation in irritable bowel syndrome: gender-dependence and association with digestive symptoms. Am. J. Gastroenterol. 104, 392–400 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Limsui, D. et al. Symptomatic overlap between irritable bowel syndrome and microscopic colitis. Inflamm. Bowel Dis. 13, 175–181 (2007).

    Article  PubMed  Google Scholar 

  13. Spiller, R. & Garsed, K. Postinfectious irritable bowel syndrome. Gastroenterology 136, 1979–1988 (2009).

    Article  PubMed  Google Scholar 

  14. Gotteland, M. et al. Local and systemic liberation of proinflammatory cytokines in ulcerative colitis. Dig. Dis. Sci. 44, 830–835 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Dinan, T. G. et al. Hypothalamic–pituitary–gut axis dysregulation in irritable bowel syndrome: plasma cytokines as a potential biomarker? Gastroenterology 130, 304–311 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Liebregts, T. et al. Immune activation in patients with irritable bowel syndrome. Gastroenterology 132, 913–920 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Matricon, J. et al. Review article: associations between immune activation, intestinal permeability and the irritable bowel syndrome. Aliment. Pharmacol. Ther. 36, 1009–1031 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Vivinus-Nebot, M. et al. Functional bowel symptoms in quiescent inflammatory bowel diseases: role of epithelial barrier disruption and low-grade inflammation. Gut 63, 744–752 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Klooker, T. K. et al. The mast cell stabiliser ketotifen decreases visceral hypersensitivity and improves intestinal symptoms in patients with irritable bowel syndrome. Gut 59, 1213–1221 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Tibble, J. A., Sigthorsson, G., Foster, R., Forgacs, I. & Bjarnason, I. Use of surrogate markers of inflammation and Rome criteria to distinguish organic from nonorganic intestinal disease. Gastroenterology 123, 450–460 (2002).

    Article  PubMed  Google Scholar 

  21. Langhorst, J. et al. Elevated human β-defensin-2 levels indicate an activation of the innate immune system in patients with irritable bowel syndrome. Am. J. Gastroenterol. 104, 404–410 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Spiller, R. C. et al. The Patient Health Questionnaire 12 Somatic Symptom scale as a predictor of symptom severity and consulting behaviour in patients with irritable bowel syndrome and symptomatic diverticular disease. Aliment. Pharmacol. Ther. 32, 811–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Koloski, N. A. et al. The brain–gut pathway in functional gastrointestinal disorders is bidirectional: a 12-year prospective population-based study. Gut 61, 1284–1290 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Nicholl, B. I. et al. Psychosocial risk markers for new onset irritable bowel syndrome — results of a large prospective population-based study. Pain 137, 147–155 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Larsson, M. B. et al. Brain responses to visceral stimuli reflect visceral sensitivity thresholds in patients with irritable bowel syndrome. Gastroenterology 142, 463–472 (2012).

    Article  PubMed  Google Scholar 

  26. Posserud, I. et al. A combined nutrient and lactulose challenge test allows symptom-based clustering of patients with irritable bowel syndrome. Am. J. Gastroenterol. 108, 786–795 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Yang, J. et al. Lactose intolerance in irritable bowel syndrome patients with diarrhoea: the roles of anxiety, activation of the innate mucosal immune system and visceral sensitivity. Aliment. Pharmacol. Ther. 39, 302–311 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Barreau, F., Salvador-Cartier, C., Houdeau, E., Bueno, L. & Fioramonti, J. Long term alterations of colonic nerve mast cell interactions induced by neonatal maternal deprivation in rats. Gut 57, 582–590 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Vicario, M. et al. Chronic psychosocial stress induces reversible mitochondrial damage and corticotropin-releasing factor receptor type-1 upregulation in the rat intestine and IBS-like gut dysfunction. Psychoneuroendocrinology 37, 65–77 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Levenstein, S. et al. Stress and exacerbation in ulcerative colitis: a prospective study of patients enrolled in remission. Am. J. Gastroenterol. 95, 1213–1220 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Brydon, L. et al. Psychological stress activates interleukin-1β gene expression in human mononuclear cells. Brain Behav. Immun. 19, 540–546 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Maes, M. et al. The effects of psychological stress on humans: increased production of pro-inflammatory cytokines and a TH1-like response in stress-induced anxiety. Cytokine 10, 313–318 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Lennon, E. M. et al. Early life stress triggers persistent colonic barrier dysfunction and exacerbates colitis in adult IL-10−/− mice. Inflamm. Bowel Dis. 19, 712–719 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Farhadi, A. et al. Heightened responses to stressors in patients with inflammatory bowel disease. Am. J. Gastroenterol. 100, 1796–1804 (2005).

    Article  PubMed  Google Scholar 

  35. Mawdsley, J. E., Macey, M. G., Feakins, R. M., Langmead, L. & Rampton, D. S. The effect of acute psychologic stress on systemic and rectal mucosal measures of inflammation in ulcerative colitis. Gastroenterology 131, 410–419 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Boye, B. et al. INSPIRE study: Does stress management improve the course of inflammatory bowel disease and disease-specific quality of life in distressed patients with ulcerative colitis or crohn's disease? A randomized controlled trial. Inflamm. Bowel Dis. 17, 1863–1873 (2011).

    Article  PubMed  Google Scholar 

  37. Ford, A. C., Talley, N. J., Schoenfeld, P. S., Quigley, E. M. & Moayyedi, P. Efficacy of antidepressants and psychological therapies in irritable bowel syndrome: systematic review and meta-analysis. Gut 58, 367–378 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Longstreth, G. F. et al. Characteristics of patients with irritable bowel syndrome recruited from three sources: implications for clinical trials. Aliment. Pharmacol. Ther. 15, 959–964 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Thabane, M., Kottachchi, D. T. & Marshall, J. K. Systematic review and meta-analysis: the incidence and prognosis of post-infectious irritable bowel syndrome. Aliment. Pharmacol. Ther. 26, 535–544 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Chaudhary, N. A. & Truelove, S. C. The irritable colon syndrome. A study of the clinical features, predisposing causes, and prognosis in 130 cases. Q. J. Med. 31, 307–322 (1962).

    CAS  PubMed  Google Scholar 

  41. Gwee, K. A. Irritable bowel syndrome: psychology, biology, and warfare between false dichotomies. Lancet 347, 1267 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Neal, K. R., Hebden, J. & Spiller, R. Prevalence of gastrointestinal symptoms six months after bacterial gastroenteritis and risk factors for development of the irritable bowel syndrome: postal survey of patients. BMJ 314, 779–782 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gwee, K. A. et al. The role of psychological and biological factors in postinfective gut dysfunction. Gut 44, 400–406 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dunlop, S. P., Jenkins, D. & Spiller, R. C. Distinctive clinical, psychological, and histological features of postinfective irritable bowel syndrome. Am. J. Gastroenterol. 98, 1578–1583 (2003).

    Article  PubMed  Google Scholar 

  45. Schwille-Kiuntke, J. et al. Postinfectious irritable bowel syndrome: follow-up of a patient cohort of confirmed cases of bacterial infection with Salmonella or Campylobacter. Neurogastroenterol. Motil. 23, e479–e488 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Neal, K. R., Barker, L. & Spiller, R. C. Prognosis in post-infective irritable bowel syndrome: a six year follow up study. Gut 51, 410–413 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Spiller, R. C. et al. Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome. Gut 47, 804–811 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Johansen, K. et al. Intestinal permeability assessed with polyethylene glycols in children with diarrhea due to rotavirus and common bacterial pathogens in a developing community. J. Pediatr. Gastroenterol. Nutr. 9, 307–313 (1989).

    Article  CAS  PubMed  Google Scholar 

  49. Marshall, J. K. et al. Intestinal permeability in patients with irritable bowel syndrome after a waterborne outbreak of acute gastroenteritis in Walkerton, Ontario. Aliment. Pharmacol. Ther. 20, 1317–1322 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Dunlop, S. P. et al. Abnormal intestinal permeability in subgroups of diarrhea-predominant irritable bowel syndromes. Am. J. Gastroenterol. 101, 1288–1294 (2006).

    Article  PubMed  Google Scholar 

  51. Vicario, M. et al. Chronological assessment of mast cell-mediated gut dysfunction and mucosal inflammation in a rat model of chronic psychosocial stress. Brain Behav. Immun. 24, 1166–1175 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Vanuytsel, T. et al. Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut 63, 1293–1299 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Soderholm, J. D. et al. Chronic stress induces mast cell-dependent bacterial adherence and initiates mucosal inflammation in rat intestine. Gastroenterology 123, 1099–1108 (2002).

    Article  PubMed  Google Scholar 

  54. Keita, A. V. et al. Vasoactive intestinal polypeptide regulates barrier function via mast cells in human intestinal follicle-associated epithelium and during stress in rats. Neurogastroenterol. Motil. 25, e406–e417 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Larauche, M. et al. Cortagine, a CRF1 agonist, induces stresslike alterations of colonic function and visceral hypersensitivity in rodents primarily through peripheral pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 297, G215–G227 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Khor, B., Gardet, A. & Xavier, R. J. Genetics and pathogenesis of inflammatory bowel disease. Nature 474, 307–317 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Buning, C. et al. Increased small intestinal permeability in ulcerative colitis: rather genetic than environmental and a risk factor for extensive disease? Inflamm. Bowel Dis. 18, 1932–1939 (2012).

    Article  PubMed  Google Scholar 

  58. Soderholm, J. D. et al. Different intestinal permeability patterns in relatives and spouses of patients with Crohn's disease: an inherited defect in mucosal defence? Gut 44, 96–100 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Garcia Rodriguez, L. A., Ruigomez, A. & Panes, J. Acute gastroenteritis is followed by an increased risk of inflammatory bowel disease. Gastroenterology 130, 1588–1594 (2006).

    Article  PubMed  Google Scholar 

  60. Gradel, K. O. et al. Increased short- and long-term risk of inflammatory bowel disease after salmonella or campylobacter gastroenteritis. Gastroenterology 137, 495–501 (2009).

    Article  PubMed  Google Scholar 

  61. Porter, C. K., Tribble, D. R., Aliaga, P. A., Halvorson, H. A. & Riddle, M. S. Infectious gastroenteritis and risk of developing inflammatory bowel disease. Gastroenterology 135, 781–786 (2008).

    Article  PubMed  Google Scholar 

  62. Burgmann, T. et al. The Manitoba Inflammatory Bowel Disease Cohort Study: prolonged symptoms before diagnosis — how much is irritable bowel syndrome? Clin. Gastroenterol. Hepatol. 4, 614–620 (2006).

    Article  PubMed  Google Scholar 

  63. Canavan, C., Card, T. & West, J. The incidence of other gastroenterological disease following diagnosis of irritable bowel syndrome in the UK: a cohort study. PLoS ONE 9, e106478 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mawe, G. M. & Hoffman, J. M. Serotonin signalling in the gut — functions, dysfunctions and therapeutic targets. Nat. Rev. Gastroenterol. Hepatol. 10, 473–486 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wheatcroft, J. et al. Enterochromaffin cell hyperplasia and decreased serotonin transporter in a mouse model of postinfectious bowel dysfunction. Neurogastroenterol. Motil. 17, 863–870 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Motomura, Y. et al. Enterochromaffin cell and 5-hydroxytryptamine responses to the same infectious agent differ in TH1 and TH2 dominant environments. Gut 57, 475–481 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Wang, H. et al. CD4+ T cell-mediated immunological control of enterochromaffin cell hyperplasia and 5-hydroxytryptamine production in enteric infection. Gut 56, 949–957 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dunlop, S. P., Jenkins, D., Neal, K. R. & Spiller, R. C. Relative importance of enterochromaffin cell hyperplasia, anxiety, and depression in postinfectious IBS. Gastroenterology 125, 1651–1659 (2003).

    Article  PubMed  Google Scholar 

  69. Cremon, C. et al. Intestinal serotonin release, sensory neuron activation, and abdominal pain in irritable bowel syndrome. Am. J. Gastroenterol. 106, 1290–1298 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Foley, S. et al. Impaired uptake of serotonin by platelets from patients with irritable bowel syndrome correlates with duodenal immune activation. Gastroenterology 140, 1434–1443 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Faure, C., Patey, N., Gauthier, C., Brooks, E. M. & Mawe, G. M. Serotonin signaling is altered in irritable bowel syndrome with diarrhea but not in functional dyspepsia in pediatric age patients. Gastroenterology 139, 249–258 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Brown, P. M. et al. The tryptophan hydroxylase inhibitor LX1031 shows clinical benefit in patients with nonconstipating irritable bowel syndrome. Gastroenterology 141, 507–516 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Garsed, K. et al. A randomised trial of ondansetron for the treatment of irritable bowel syndrome with diarrhoea. Gut 63, 1617–1625 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Andresen, V. et al. Effects of 5-hydroxytryptamine (serotonin) type 3 antagonists on symptom relief and constipation in nonconstipated irritable bowel syndrome: a systematic review and meta-analysis of randomized controlled trials. Clin. Gastroenterol. Hepatol. 6, 545–555 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dunlop, S. P. et al. Abnormalities of 5-hydroxytryptamine metabolism in irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 3, 349–357 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Atkinson, W., Lockhart, S., Whorwell, P. J., Keevil, B. & Houghton, L. A. Altered 5-hydroxytryptamine signaling in patients with constipation- and diarrhea-predominant irritable bowel syndrome. Gastroenterology 130, 34–43 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. El-Salhy, M., Gundersen, D., Hatlebakk, J. G. & Hausken, T. Chromogranin A cell density as a diagnostic marker for lymphocytic colitis. Dig. Dis. Sci. 57, 3154–3159 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Magro, F. et al. Impaired synthesis or cellular storage of norepinephrine, dopamine, and 5-hydroxytryptamine in human inflammatory bowel disease. Dig. Dis. Sci. 47, 216–224 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Massironi, S., Zilli, A., Cavalcoli, F., Conte, D. & Peracchi, M. Chromogranin A and other enteroendocrine markers in inflammatory bowel disease. Neuropeptides 58, 127–134 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Sciola, V. et al. Plasma chromogranin a in patients with inflammatory bowel disease. Inflamm. Bowel Dis. 15, 867–871 (2009).

    Article  PubMed  Google Scholar 

  81. Zissimopoulos, A. et al. Chromogranin A as a biomarker of disease activity and biologic therapy in inflammatory bowel disease: a prospective observational study. Scand. J. Gastroenterol. 49, 942–949 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Minderhoud, I. M., Oldenburg, B., Schipper, M. E., Ter Linde, J. J. & Samsom, M. Serotonin synthesis and uptake in symptomatic patients with Crohn's disease in remission. Clin. Gastroenterol. Hepatol. 5, 714–720 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Byers, M. R., Suzuki, H. & Maeda, T. Dental neuroplasticity, neuro-pulpal interactions, and nerve regeneration. Microsc. Res. Tech. 60, 503–515 (2003).

    Article  PubMed  Google Scholar 

  84. Simpson, J. et al. Prolonged elevation of galanin and tachykinin expression in mucosal and myenteric enteric nerves in trinitrobenzene sulphonic acid colitis. Neurogastroenterol. Motil. 20, 392–406 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Liebregts, T. et al. Effect of E. coli Nissle 1917 on post-inflammatory visceral sensory function in a rat model. Neurogastroenterol. Motil. 17, 410–414 (2009).

    Article  Google Scholar 

  86. Hughes, P. A. et al. Post-inflammatory colonic afferent sensitization: different subtypes, different pathways, and different time-courses. Gut 58, 1333–1341 (2005).

    Article  Google Scholar 

  87. Belkind-Gerson, J. et al. Colitis induces enteric neurogenesis through a 5-HT4-dependent mechanism. Inflamm. Bowel Dis. 21, 870–878 (2015).

    Article  PubMed  Google Scholar 

  88. Belai, A., Boulos, P. B., Robson, T. & Burnstock, G. Neurochemical coding in the small intestine of patients with Crohn's disease. Gut 40, 767–774 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Keranen, U. et al. Changes in substance P-immunoreactive innervation of human colon associated with ulcerative colitis. Dig. Dis. Sci. 40, 2250–2258 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Watanabe, T., Kubota, Y. & Muto, T. Substance P containing nerve fibers in ulcerative colitis. Int. J. Colorectal Dis. 13, 61–67 (1998).

    Article  CAS  PubMed  Google Scholar 

  91. de Fontgalland, D., Brookes, S. J., Gibbins, I., Sia, T. C. & Wattchow, D. A. The neurochemical changes in the innervation of human colonic mesenteric and submucosal blood vessels in ulcerative colitis and Crohn's disease. Neurogastroenterol. Motil. 26, 731–744 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Akbar, A. et al. Expression of the TRPV1 receptor differs in quiescent inflammatory bowel disease with or without abdominal pain. Gut 59, 767–774 (2010).

    Article  PubMed  Google Scholar 

  93. Akbar, A. et al. Increased capsaicin receptor TRPV1-expressing sensory fibres in irritable bowel syndrome and their correlation with abdominal pain. Gut 57, 923–929 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Rajilic-Stojanovic, M. et al. Intestinal microbiota and diet in IBS: causes, consequences, or epiphenomena? Am. J. Gastroenterol. 110, 278–287 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Vandeputte, D. et al. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut 65, 57–62 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Wright, E. K. et al. Recent advances in characterizing the gastrointestinal microbiome in Crohn's disease: a systematic review. Inflamm. Bowel Dis. 21, 1219–1228 (2015).

    Article  PubMed  Google Scholar 

  97. Jalanka-Tuovinen, J. et al. Faecal microbiota composition and host–microbe cross-talk following gastroenteritis and in postinfectious irritable bowel syndrome. Gut 63, 1737–1745 (2014).

    Article  PubMed  Google Scholar 

  98. Lopez-Siles, M. et al. Mucosa-associated Faecalibacterium prausnitzii and Escherichia coli co-abundance can distinguish irritable bowel syndrome and inflammatory bowel disease phenotypes. Int. J. Med. Microbiol. 304, 464–475 (2014).

    Article  PubMed  Google Scholar 

  99. Jeffery, I. B. et al. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 61, 997–1006 (2012).

    Article  PubMed  Google Scholar 

  100. Papa, E. et al. Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease. PLoS ONE 7, e39242 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Anderson, J. L. et al. Dietary intake of inulin-type fructans in active and inactive Crohn's disease and healthy controls: a case-control study. J. Crohns Colitis 9, 1024–1031 (2015).

    Article  PubMed  Google Scholar 

  102. Staudacher, H. M. et al. Fermentable carbohydrate restriction reduces luminal bifidobacteria and gastrointestinal symptoms in patients with irritable bowel syndrome. J. Nutr. 142, 1510–1518 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Benjamin, J. L. et al. Randomised, double-blind, placebo-controlled trial of fructo-oligosaccharides in active Crohn's disease. Gut 60, 923–929 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Czogalla, B. et al. A meta-analysis of immunogenetic Case–Control Association Studies in irritable bowel syndrome. Neurogastroenterol. Motil. 27, 717–727 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Zucchelli, M. et al. Association of TNFSF15 polymorphism with irritable bowel syndrome. Gut 60, 1671–1677 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Swan, C. et al. Identifying and testing candidate genetic polymorphisms in the irritable bowel syndrome (IBS): association with TNFSF15 and TNFα. Gut 62, 985–994 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Burisch, J. & Munkholm, P. The epidemiology of inflammatory bowel disease. Scand. J. Gastroenterol. 50, 942–951 (2015).

    Article  PubMed  Google Scholar 

  109. Ragnarsson, G. & Bodemar, G. Pain is temporally related to eating but not to defaecation in the irritable bowel syndrome (IBS). Patients' description of diarrhea, constipation and symptom variation during a prospective 6-week study. Eur. J. Gastroenterol. Hepatol. 10, 415–421 (1998).

    Article  CAS  PubMed  Google Scholar 

  110. Chey, W. L., Jin, H. O., Lee, M. H., Sun, S. W. & Lee, K. Y. Colonic motility abnormality in patients with irritable bowel syndrome exhibiting abdominal pain and diarrhea. Am. J. Gastroenterol. 96, 1499–1506 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Chang, L. et al. Perceptual responses in patients with inflammatory and functional bowel disease. Gut 47, 497–505 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mayer, E. A. et al. Differences in brain responses to visceral pain between patients with irritable bowel syndrome and ulcerative colitis. Pain 115, 398–409 (2005).

    Article  PubMed  Google Scholar 

  113. van Hoboken, E. A. et al. Symptoms in patients with ulcerative colitis in remission are associated with visceral hypersensitivity and mast cell activity. Scand. J. Gastroenterol. 46, 981–987 (2011).

    Article  PubMed  Google Scholar 

  114. Barbara, G. et al. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology 126, 693–702 (2004).

    Article  PubMed  Google Scholar 

  115. Faure, C. & Giguere, L. Functional gastrointestinal disorders and visceral hypersensitivity in children and adolescents suffering from Crohn's disease. Inflamm. Bowel Dis. 14, 1569–1574 (2008).

    Article  PubMed  Google Scholar 

  116. Rubio, A. et al. Brain responses to uncertainty about upcoming rectal discomfort in quiescent Crohn's disease — a fMRI study. Neurogastroenterol. Motil. http://dx.doi.org/10.1111/nmo.12844, (2016).

  117. Berman, S. M. et al. Reduced brainstem inhibition during anticipated pelvic visceral pain correlates with enhanced brain response to the visceral stimulus in women with irritable bowel syndrome. J. Neurosci. 28, 349–359 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hebden, J. M., Blackshaw, P. E., Perkins, A. C., Wilson, C. G. & Spiller, R. C. Limited exposure of the healthy distal colon to orally-dosed formulation is further exaggerated in active left-sided ulcerative colitis. Aliment. Pharmacol. Ther. 14, 155–161 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Lenicek, M. et al. Bile acid malabsorption in inflammatory bowel disease: assessment by serum markers. Inflamm. Bowel Dis. 17, 1322–1327 (2011).

    Article  PubMed  Google Scholar 

  120. Aziz, I. et al. High prevalence of idiopathic bile acid diarrhea among patients with diarrhea-predominant irritable bowel syndrome based on Rome III criteria. Clin. Gastroenterol. Hepatol. 13, 1650–1655 (2015).

    Article  PubMed  Google Scholar 

  121. Ahn, J. Y. et al. Colonic mucosal immune activity in irritable bowel syndrome: comparison with healthy controls and patients with ulcerative colitis. Dig. Dis. Sci. 59, 1001–1011 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Chen, F. et al. Inflammatory-mediated repression of the rat ileal sodium-dependent bile acid transporter by c-fos nuclear translocation. Gastroenterology 123, 2005–2016 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Hansen, M. B. & Witte, A. B. The role of serotonin in intestinal luminal sensing and secretion. Acta Physiol. (Oxf.) 193, 311–323 (2008).

    Article  CAS  Google Scholar 

  124. Tsukamoto, K. et al. Luminally released serotonin stimulates colonic motility and accelerates colonic transit in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R64–R69 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Lordal, M., Wallen, H., Hjemdahl, P., Beck, O. & Hellstrom, P. M. Concentration-dependent stimulation of intestinal phase III of migrating motor complex by circulating serotonin in humans. Clin. Sci. (Lond.) 94, 663–670 (1998).

    Article  CAS  Google Scholar 

  126. Kato, S. Role of serotonin 5-HT3 receptors in intestinal inflammation. Biol. Pharm. Bull. 36, 1406–1409 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Linden, D. R., Chen, J. X., Gershon, M. D., Sharkey, K. A. & Mawe, G. M. Serotonin availability is increased in mucosa of guinea pigs with TNBS-induced colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G207–G216 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Bischoff, S. C. et al. Role of serotonin in intestinal inflammation: knockout of serotonin reuptake transporter exacerbates 2,4,6-trinitrobenzene sulfonic acid colitis in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G685–G695 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Kato, S. et al. Dual role of serotonin in the pathogenesis of indomethacin-induced small intestinal ulceration: pro-ulcerogenic action via 5-HT3 receptors and anti-ulcerogenic action via 5-HT4 receptors. Pharmacol. Res. 66, 226–234 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Matsumoto, K. et al. Experimental colitis alters expression of 5-HT receptors and transient receptor potential vanilloid 1 leading to visceral hypersensitivity in mice. Lab. Invest. 92, 769–782 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Mousavizadeh, K., Rahimian, R., Fakhfouri, G., Aslani, F. S. & Ghafourifar, P. Anti-inflammatory effects of 5-HT receptor antagonist, tropisetron on experimental colitis in rats. Eur. J. Clin. Invest. 39, 375–383 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Lee, C. H. et al. Frozen versus fresh fecal microbiota transplantation and clinical resolution of diarrhea in patients with recurrent Clostridium difficile infection: a randomized clinical trial. JAMA 315, 142–149 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Colman, R. J. & Rubin, D. T. Fecal microbiota transplantation as therapy for inflammatory bowel disease: a systematic review and meta-analysis. J. Crohns Colitis 8, 1569–1581 (2014).

    Article  PubMed  Google Scholar 

  134. Tack, J. F. et al. Efficacy of ibodutant, a selective antagonist of neurokinin 2 receptors, in irritable bowel syndrome with diarrhoea (IBS-D): the results of a double-blind, randomised, placebo-controlled, parallel-group phase II study (the IRIS-2). Gastroenterology 144, S92–S93 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This Perspetive is a summary of independent research written by the authors who are funded by the National Institute for Health Research Biomedical Research Unit (NIHR). The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

Author information

Authors and Affiliations

Authors

Contributions

Both authors made equal contributions to all aspects of this manuscript.

Corresponding author

Correspondence to Robin Spiller.

Ethics declarations

Competing interests

R.S. has received research funding from Ironwood and Lesaffre and free drug for clinical trial from Falk Pharma and Norgine. He has also acted on Advisory Boards for Allergan, Almirall, Astellas, Danone and Yuhan. G.M. declares no competing interests.

Related links

FURTHER INFORMATION

GENIEUR

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiller, R., Major, G. IBS and IBD — separate entities or on a spectrum?. Nat Rev Gastroenterol Hepatol 13, 613–621 (2016). https://doi.org/10.1038/nrgastro.2016.141

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2016.141

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing