Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunology in the liver — from homeostasis to disease

Key Points

  • The liver is a central immunological organ with a high density of myeloid (such as Kupffer cells, neutrophils or macrophages) and lymphoid (such as natural killer cells, T cells or B cells) immune cells

  • As antigen-rich blood from the gastrointestinal tract and gut-derived endotoxins pass through the sinusoids, many mechanisms in homeostasis ensure suppression of innate and adaptive immune responses, resulting in tolerance

  • In conditions of hepatic diseases, conserved mechanisms such as molecular danger patterns (alarmins), Toll-like receptor signalling or inflammasome activation initiate inflammatory responses, resulting in the chemokine-mediated hepatic infiltration of circulating leukocytes

  • Kupffer cells and monocyte-derived macrophages adapt their phenotype to local signals and exert critical functions in perpetuating inflammation and wound healing, but can also mediate resolution of inflammation and fibrosis

  • Innate lymphocytes (for example, natural killer and natural killer T cells) are another source of immunoregulatory cytokines in diseased livers and furthermore contribute to eliminating activated myofibroblasts and infected, injured or malignant cells

  • The heterogeneous pool of hepatic T cells is activated towards immunity upon injury, resulting in immune-stimulatory cytokine secretion as well as direct cytopathic functions, especially in viral and autoimmune hepatitis

Abstract

The liver is a central immunological organ with a high exposure to circulating antigens and endotoxins from the gut microbiota, particularly enriched for innate immune cells (macrophages, innate lymphoid cells, mucosal-associated invariant T (MAIT) cells). In homeostasis, many mechanisms ensure suppression of immune responses, resulting in tolerance. Tolerance is also relevant for chronic persistence of hepatotropic viruses or allograft acceptance after liver transplantation. The liver can rapidly activate immunity in response to infections or tissue damage. Depending on the underlying liver disease, such as viral hepatitis, cholestasis or NASH, different triggers mediate immune-cell activation. Conserved mechanisms such as molecular danger patterns (alarmins), Toll-like receptor signalling or inflammasome activation initiate inflammatory responses in the liver. The inflammatory activation of hepatic stellate and Kupffer cells results in the chemokine-mediated infiltration of neutrophils, monocytes, natural killer (NK) and natural killer T (NKT) cells. The ultimate outcome of the intrahepatic immune response (for example, fibrosis or resolution) depends on the functional diversity of macrophages and dendritic cells, but also on the balance between pro-inflammatory and anti-inflammatory T-cell populations. As reviewed here, tremendous progress has helped to understand the fine-tuning of immune responses in the liver from homeostasis to disease, indicating promising targets for future therapies in acute and chronic liver diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immune mechanisms in liver homeostasis.
Figure 2: Molecular signals triggering inflammatory immune activation in the liver.
Figure 3: Neutrophils in liver inflammation.
Figure 4: Macrophages in liver inflammation.
Figure 5: Dendritic cells in liver inflammation.
Figure 6: Innate lymphoid cells in liver inflammation.
Figure 7: T cells in liver inflammation.

Similar content being viewed by others

References

  1. Bottcher, J. P., Knolle, P. A. & Stabenow, D. Mechanisms balancing tolerance and immunity in the liver. Dig. Dis. 29, 384–390 (2011).

    PubMed  Google Scholar 

  2. Racanelli, V. & Rehermann, B. The liver as an immunological organ. Hepatology 43, S54–S62 (2006).

    CAS  PubMed  Google Scholar 

  3. Orlando, G., Soker, S. & Wood, K. Operational tolerance after liver transplantation. J. Hepatol. 50, 1247–1257 (2009).

    PubMed  Google Scholar 

  4. Knolle, P. A. & Thimme, R. Hepatic immune regulation and its involvement in viral hepatitis infection. Gastroenterology 146, 1193–1207 (2014).

    CAS  PubMed  Google Scholar 

  5. Crispe, I. N. The liver as a lymphoid organ. Annu. Rev. Immunol. 27, 147–163 (2009).

    CAS  PubMed  Google Scholar 

  6. Matsumura, T., Ito, A., Takii, T., Hayashi, H. & Onozaki, K. Endotoxin and cytokine regulation of toll-like receptor (TLR) 2 and TLR4 gene expression in murine liver and hepatocytes. J. Interferon Cytokine Res. 20, 915–921 (2000).

    CAS  PubMed  Google Scholar 

  7. Seki, E. et al. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat. Med. 13, 1324–1332 (2007).

    CAS  PubMed  Google Scholar 

  8. Thomson, A. W. & Knolle, P. A. Antigen-presenting cell function in the tolerogenic liver environment. Nat. Rev. Immunol. 10, 753–766 (2010).

    CAS  PubMed  Google Scholar 

  9. Brunt, E. M. et al. Pathology of the liver sinusoids. Histopathology 64, 907–920 (2014).

    PubMed  Google Scholar 

  10. Zimmermann, H. W., Trautwein, C. & Tacke, F. Functional role of monocytes and macrophages for the inflammatory response in acute liver injury. Front. Physiol. 3, 56 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Eckert, C., Klein, N., Kornek, M. & Lukacs-Kornek, V. The complex myeloid network of the liver with diverse functional capacity at steady state and in inflammation. Front. Immunol. 6, 179 (2015).

    PubMed  PubMed Central  Google Scholar 

  12. Gao, B., Radaeva, S. & Park, O. Liver natural killer and natural killer T cells: immunobiology and emerging roles in liver diseases. J. Leukoc. Biol. 86, 513–528 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tacke, F. & Zimmermann, H. W. Macrophage heterogeneity in liver injury and fibrosis. J. Hepatol. 60, 1090–1096 (2014).

    CAS  PubMed  Google Scholar 

  14. Varol, C., Yona, S. & Jung, S. Origins and tissue-context-dependent fates of blood monocytes. Immunol. Cell Biol. 87, 30–38 (2009).

    PubMed  Google Scholar 

  15. Gomez Perdiguero, E. et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518, 547–551 (2015).

    PubMed  Google Scholar 

  16. Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79–91 (2013).

    CAS  PubMed  Google Scholar 

  17. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).

    CAS  PubMed  Google Scholar 

  18. Antoniades, C. G. et al. Source and characterization of hepatic macrophages in acetaminophen-induced acute liver failure in humans. Hepatology 56, 735–746 (2012).

    CAS  PubMed  Google Scholar 

  19. Miller, J. C. et al. Deciphering the transcriptional network of the dendritic cell lineage. Nat. Immunol. 13, 888–899 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ginhoux, F. et al. The origin and development of nonlymphoid tissue CD103+ DCs. J. Exp. Med. 206, 3115–3130 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Bamboat, Z. M. et al. Human liver dendritic cells promote T cell hyporesponsiveness. J. Immunol. 182, 1901–1911 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Heymann, F. et al. Liver inflammation abrogates immunological tolerance induced by Kupffer cells. Hepatology 62, 279–291 (2015).

    CAS  PubMed  Google Scholar 

  23. Helmy, K. Y. et al. CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124, 915–927 (2006).

    CAS  PubMed  Google Scholar 

  24. Knolle, P. et al. Human Kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS) challenge. J. Hepatol. 22, 226–229 (1995).

    CAS  PubMed  Google Scholar 

  25. Jenne, C. N. & Kubes, P. Immune surveillance by the liver. Nat. Immunol. 14, 996–1006 (2013).

    CAS  PubMed  Google Scholar 

  26. Rutella, S. et al. Hepatocyte growth factor favors monocyte differentiation into regulatory interleukin (IL)-10++IL-12low/neg accessory cells with dendritic-cell features. Blood 108, 218–227 (2006).

    CAS  PubMed  Google Scholar 

  27. Li, G., Kim, Y. J. & Broxmeyer, H. E. Macrophage colony-stimulating factor drives cord blood monocyte differentiation into IL-10highIL-12absent dendritic cells with tolerogenic potential. J. Immunol. 174, 4706–4717 (2005).

    CAS  PubMed  Google Scholar 

  28. Wysocka, M., Montaner, L. J. & Karp, C. L. Flt3 ligand treatment reverses endotoxin tolerance-related immunoparalysis. J. Immunol. 174, 7398–7402 (2005).

    CAS  PubMed  Google Scholar 

  29. Kedarisetty, C. K. et al. Combination of granulocyte colony-stimulating factor and erythropoietin improves outcomes of patients with decompensated cirrhosis. Gastroenterology 148, 1362–1370.e7 (2015).

    CAS  PubMed  Google Scholar 

  30. Frumento, G. et al. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J. Exp. Med. 196, 459–468 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Jurgens, B., Hainz, U., Fuchs, D., Felzmann, T. & Heitger, A. Interferon-γ-triggered indoleamine 2,3-dioxygenase competence in human monocyte-derived dendritic cells induces regulatory activity in allogeneic T cells. Blood 114, 3235–3243 (2009).

    PubMed  Google Scholar 

  32. Klugewitz, K., Adams, D. H., Emoto, M., Eulenburg, K. & Hamann, A. The composition of intrahepatic lymphocytes: shaped by selective recruitment? Trends Immunol. 25, 590–594 (2004).

    CAS  PubMed  Google Scholar 

  33. Zimmermann, H. W. et al. Frequency and phenotype of human circulating and intrahepatic natural killer cell subsets is differentially regulated according to stage of chronic liver disease. Digestion 88, 1–16 (2013).

    PubMed  Google Scholar 

  34. Tu, Z. et al. TLR-dependent cross talk between human Kupffer cells and NK cells. J. Exp. Med. 205, 233–244 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Peng, H. & Tian, Z. Re-examining the origin and function of liver-resident NK cells. Trends Immunol. 36, 293–299 (2015).

    CAS  PubMed  Google Scholar 

  36. Constantinides, M. G., McDonald, B. D., Verhoef, P. A. & Bendelac, A. A committed precursor to innate lymphoid cells. Nature 508, 397–401 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Marquardt, N. et al. Cutting edge: identification and characterization of human intrahepatic CD49a+ NK cells. J. Immunol. 194, 2467–2471 (2015).

    CAS  PubMed  Google Scholar 

  38. Geissmann, F. et al. Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol. 3, e113 (2005).

    PubMed  PubMed Central  Google Scholar 

  39. Wehr, A. et al. Chemokine receptor CXCR6-dependent hepatic NK T Cell accumulation promotes inflammation and liver fibrosis. J. Immunol. 190, 5226–5236 (2013).

    CAS  PubMed  Google Scholar 

  40. Trobonjaca, Z., Leithäuser, F., Möller, P., Schirmbeck, R. & Reimann, J. Activating immunity in the liver. I. Liver dendritic cells (but not hepatocytes) are potent activators of IFN-γ release by liver NKT cells. J. Immunol. 167, 1413–1422 (2001).

    CAS  PubMed  Google Scholar 

  41. Schmieg, J., Yang, G., Franck, R. W., Van Rooijen, N. & Tsuji, M. Glycolipid presentation to natural killer T cells differs in an organ-dependent fashion. Proc. Natl Acad. Sci. USA 102, 1127–1132 (2005).

    CAS  PubMed  Google Scholar 

  42. Kenna, T. et al. NKT cells from normal and tumor-bearing human livers are phenotypically and functionally distinct from murine NKT cells. J. Immunol. 171, 1775–1779 (2003).

    CAS  PubMed  Google Scholar 

  43. Le Bourhis, L. et al. Antimicrobial activity of mucosal-associated invariant T cells. Nat. Immunol. 11, 701–708 (2010).

    CAS  PubMed  Google Scholar 

  44. Tang, X.-Z. et al. IL-7 licenses activation of human liver intrasinusoidal mucosal-associated invariant T cells. J. Immunol. 190, 3142–3152 (2013).

    CAS  PubMed  Google Scholar 

  45. von Oppen, N. et al. Systemic antigen cross-presented by liver sinusoidal endothelial cells induces liver-specific CD8 T-cell retention and tolerization. Hepatology 49, 1664–1672 (2009).

    CAS  PubMed  Google Scholar 

  46. Tuncer, C., Oo, Y. H., Murphy, N., Adams, D. H. & Lalor, P. F. The regulation of T-cell recruitment to the human liver during acute liver failure. Liver Int. 33, 852–863 (2013).

    CAS  PubMed  Google Scholar 

  47. Crispe, I. N. Hepatic T cells and liver tolerance. Nat. Rev. Immunol. 3, 51–62 (2003).

    CAS  PubMed  Google Scholar 

  48. Schildberg, F. A. et al. Murine hepatic stellate cells veto CD8 T cell activation by a CD54-dependent mechanism. Hepatology 54, 262–272 (2011).

    CAS  PubMed  Google Scholar 

  49. Winau, F. et al. Ito cells are liver-resident antigen-presenting cells for activating T cell responses. Immunity 26, 117–129 (2007).

    CAS  PubMed  Google Scholar 

  50. Weiskirchen, R. & Tacke, F. Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology. Hepatobiliary Surg. Nutr. 3, 344–363 (2014).

    PubMed  PubMed Central  Google Scholar 

  51. Charles, R. et al. Human hepatic stellate cells inhibit T-cell response through B7-H1 pathway. Transplantation 96, 17–24 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. You, Q., Cheng, L., Kedl, R. M. & Ju, C. Mechanism of T cell tolerance induction by murine hepatic Kupffer cells. Hepatology 48, 978 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yan, M. L., Wang, Y. D., Tian, Y. F., Lai, Z. D. & Yan, L. N. Inhibition of allogeneic T-cell response by Kupffer cells expressing indoleamine 2,3-dioxygenase. World J. Gastroenterol. 16, 636–640 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Knolle, P. A. et al. Induction of cytokine production in naive CD4+ T cells by antigen-presenting murine liver sinusoidal endothelial cells but failure to induce differentiation toward Th1 cells. Gastroenterology 116, 1428–1440 (1999).

    CAS  PubMed  Google Scholar 

  55. Carambia, A. et al. Inhibition of inflammatory CD4 T cell activity by murine liver sinusoidal endothelial cells. J. Hepatol. 58, 112–118 (2013).

    CAS  PubMed  Google Scholar 

  56. Kruse, N. et al. Priming of CD4+ T cells by liver sinusoidal endothelial cells induces CD25low forkhead box protein 3 regulatory T cells suppressing autoimmune hepatitis. Hepatology 50, 1904–1913 (2009).

    CAS  PubMed  Google Scholar 

  57. Dunham, R. M. et al. Hepatic stellate cells preferentially induce Foxp3+ regulatory T cells by production of retinoic acid. J. Immunol. 190, 2009–2016 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Morita, M. et al. PD-1/B7-H1 interaction contribute to the spontaneous acceptance of mouse liver allograft. Am. J. Transplant. 10, 40–46 (2010).

    CAS  PubMed  Google Scholar 

  59. Limmer, A. et al. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nat. Med. 6, 1348–1354 (2000).

    CAS  PubMed  Google Scholar 

  60. Limmer, A. et al. Cross-presentation of oral antigens by liver sinusoidal endothelial cells leads to CD8 T cell tolerance. Eur. J. Immunol. 35, 2970–2981 (2005).

    CAS  PubMed  Google Scholar 

  61. Diehl, L. et al. Tolerogenic maturation of liver sinusoidal endothelial cells promotes B7-homolog 1-dependent CD8+ T cell tolerance. Hepatology 47, 296–305 (2008).

    CAS  PubMed  Google Scholar 

  62. Holz, L. E. et al. Intrahepatic murine CD8 T-cell activation associates with a distinct phenotype leading to Bim-dependent death. Gastroenterology 135, 989–997 (2008).

    PubMed  PubMed Central  Google Scholar 

  63. Lopes, A. R. et al. Bim-mediated deletion of antigen-specific CD8 T cells in patients unable to control HBV infection. J. Clin. Invest. 118, 1835–1845 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Benseler, V. et al. Hepatocyte entry leads to degradation of autoreactive CD8 T cells. Proc. Natl Acad. Sci. USA 108, 16735–16740 (2011).

    CAS  PubMed  Google Scholar 

  65. Chan, J. K. et al. Alarmins: awaiting a clinical response. J. Clin. Invest. 122, 2711–2719 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Arshad, M. I., Piquet-Pellorce, C. & Samson, M. IL-33 and HMGB1 alarmins: sensors of cellular death and their involvement in liver pathology. Liver Int. 32, 1200–1210 (2012).

    CAS  PubMed  Google Scholar 

  67. Schaap, F. G., Trauner, M. & Jansen, P. L. Bile acid receptors as targets for drug development. Nat. Rev. Gastroenterol. Hepatol. 11, 55–67 (2014).

    CAS  PubMed  Google Scholar 

  68. Allen, K., Jaeschke, H. & Copple, B. L. Bile acids induce inflammatory genes in hepatocytes: a novel mechanism of inflammation during obstructive cholestasis. Am. J. Pathol. 178, 175–186 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Bieghs, V. et al. The cholesterol derivative 27-hydroxycholesterol reduces steatohepatitis in mice. Gastroenterology 144, 167–178.e1 (2013).

    CAS  PubMed  Google Scholar 

  70. Teratani, T. et al. A high-cholesterol diet exacerbates liver fibrosis in mice via accumulation of free cholesterol in hepatic stellate cells. Gastroenterology 142, 152–164.e10 (2012).

    CAS  PubMed  Google Scholar 

  71. Tian, J. et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat. Immunol. 8, 487–496 (2007).

    CAS  PubMed  Google Scholar 

  72. Huebener, P. et al. The HMGB1/RAGE axis triggers neutrophil-mediated injury amplification following necrosis. J. Clin. Invest. 125, 539–550 (2015).

    PubMed  Google Scholar 

  73. Tsung, A. et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J. Exp. Med. 201, 1135–1143 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Krumm, B., Xiang, Y. & Deng, J. Structural biology of the IL-1 superfamily: key cytokines in the regulation of immune and inflammatory responses. Protein Sci. 23, 526–538 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Volarevic, V. et al. Protective role of IL-33/ST2 axis in Con A-induced hepatitis. J. Hepatol. 56, 26–33 (2012).

    CAS  PubMed  Google Scholar 

  76. McHedlidze, T. et al. Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity 39, 357–371 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Erhardt, A. & Tiegs, G. IL-33 — a cytokine which balances on a knife's edge? J. Hepatol. 56, 7–10 (2012).

    CAS  PubMed  Google Scholar 

  78. Guo, H., Callaway, J. B. & Ting, J. P. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 21, 677–687 (2015).

    PubMed  PubMed Central  Google Scholar 

  79. Martinon, F., Mayor, A. & Tschopp, J. The inflammasomes: guardians of the body. Annu. Rev. Immunol. 27, 229–265 (2009).

    CAS  PubMed  Google Scholar 

  80. Kubes, P. & Mehal, W. Z. Sterile inflammation in the liver. Gastroenterology 143, 1158–1172 (2012).

    CAS  PubMed  Google Scholar 

  81. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002).

    CAS  PubMed  Google Scholar 

  82. Vandanmagsar, B. et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 17, 179–188 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kamo, N. et al. ASC/caspase-1/IL-1β signaling triggers inflammatory responses by promoting HMGB1 induction in liver ischemia/reperfusion injury. Hepatology 58, 351–362 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Huang, H. et al. Histones activate the NLRP3 inflammasome in Kupffer cells during sterile inflammatory liver injury. J. Immunol. 191, 2665–2679 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. McDonald, B. et al. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330, 362–366 (2010).

    CAS  PubMed  Google Scholar 

  86. Amaral, S. S. et al. Altered responsiveness to extracellular ATP enhances acetaminophen hepatotoxicity. Cell Commun. Signal. 11, 10 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Wree, A. et al. NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation, and fibrosis in mice. Hepatology 59, 898–910 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Toki, Y. et al. Extracellular ATP induces P2X7 receptor activation in mouse Kupffer cells, leading to release of IL-1β, HMGB1, and PGE2, decreased MHC class I expression and necrotic cell death. Biochem. Biophys. Res. Commun. 458, 771–776 (2015).

    CAS  PubMed  Google Scholar 

  89. Hoque, R., Farooq, A., Ghani, A., Gorelick, F. & Mehal, W. Z. Lactate reduces liver and pancreatic injury in Toll-like receptor- and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity. Gastroenterology 146, 1763–1774 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Petrasek, J., Csak, T. & Szabo, G. Toll-like receptors in liver disease. Adv. Clin. Chem. 59, 155–201 (2013).

    CAS  PubMed  Google Scholar 

  91. Qin, N. et al. Alterations of the human gut microbiome in liver cirrhosis. Nature 513, 59–64 (2014).

    CAS  PubMed  Google Scholar 

  92. Mencin, A., Kluwe, J. & Schwabe, R. F. Toll-like receptors as targets in chronic liver diseases. Gut 58, 704 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wiegard, C. et al. Murine liver antigen presenting cells control suppressor activity of CD4+CD25+ regulatory T cells. Hepatology 42, 193–199 (2005).

    CAS  PubMed  Google Scholar 

  94. Paik, Y.-H. et al. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology 37, 1043–1055 (2003).

    CAS  PubMed  Google Scholar 

  95. John, B. & Crispe, I. N. TLR-4 regulates CD8+ T cell trapping in the liver. J. Immunol. 175, 1643–1650 (2005).

    CAS  PubMed  Google Scholar 

  96. Nace, G. W. et al. Cellular-specific role of toll-like receptor 4 in hepatic ischemia-reperfusion injury in mice. Hepatology 58, 374–387 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Rivera, C. A. et al. Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J. Hepatol. 47, 571–579 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Inokuchi, S. et al. Toll-like receptor 4 mediates alcohol-induced steatohepatitis through bone marrow-derived and endogenous liver cells in mice. Alcohol. Clin. Exp. Res. 35, 1509–1518 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Kesar, V. & Odin, J. A. Toll-like receptors and liver disease. Liver Int. 34, 184–196 (2014).

    CAS  PubMed  Google Scholar 

  100. Funk, E., Kottilil, S., Gilliam, B. & Talwani, R. Tickling the TLR7 to cure viral hepatitis. J. Transl. Med. 12, 129 (2014).

    PubMed  PubMed Central  Google Scholar 

  101. Lanford, R. E. et al. GS-9620, an oral agonist of Toll-like receptor-7, induces prolonged suppression of hepatitis B virus in chronically infected chimpanzees. Gastroenterology 144, 1508–1517.e10 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. US National Library of Science. Safety and efficacy of GS-9620 for the treatment of chronic hepatitis B virus in virally-suppressed subjects. ClinicalTrials.gov [online], (2014).

  103. Imaeda, A. B. et al. Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. J. Clin. Invest. 119, 305–314 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Bamboat, Z. M. et al. Conventional DCs reduce liver ischemia/reperfusion injury in mice via IL-10 secretion. J. Clin. Invest. 120, 559–569 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Rensen, S. S. et al. Activation of the complement system in human nonalcoholic fatty liver disease. Hepatology 50, 1809–1817 (2009).

    CAS  PubMed  Google Scholar 

  106. Segers, F. M. et al. Complement alternative pathway activation in human nonalcoholic steatohepatitis. PLoS ONE 9, e110053 (2014).

    PubMed  PubMed Central  Google Scholar 

  107. Shen, H., French, B. A., Liu, H., Tillman, B. C. & French, S. W. Increased activity of the complement system in the liver of patients with alcoholic hepatitis. Exp. Mol. Pathol. 97, 338–344 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Pritchard, M. T. et al. Differential contributions of C3, C5, and decay-accelerating factor to ethanol-induced fatty liver in mice. Gastroenterology 132, 1117–1126 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Bykov, I., Junnikkala, S., Pekna, M., Lindros, K. O. & Meri, S. Complement C3 contributes to ethanol-induced liver steatosis in mice. Ann. Med. 38, 280–286 (2006).

    CAS  PubMed  Google Scholar 

  110. Cohen, J. I., Roychowdhury, S., McMullen, M. R., Stavitsky, A. B. & Nagy, L. E. Complement and alcoholic liver disease: role of C1q in the pathogenesis of ethanol-induced liver injury in mice. Gastroenterology 139, 664–674.e1 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Xu, R., Huang, H., Zhang, Z. & Wang, F. S. The role of neutrophils in the development of liver diseases. Cell. Mol. Immunol. 11, 224–231 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ramadori, G., Moriconi, F., Malik, I. & Dudas, J. Physiology and pathophysiology of liver inflammation, damage and repair. J. Physiol. Pharmacol. 59, S107–S117 (2008).

    Google Scholar 

  113. Marra, F. & Tacke, F. Roles for chemokines in liver disease. Gastroenterology 147, 577–594.e1 (2014).

    CAS  PubMed  Google Scholar 

  114. Moles, A. et al. A TLR2/S100A9/CXCL-2 signaling network is necessary for neutrophil recruitment in acute and chronic liver injury in the mouse. J. Hepatol. 60, 782 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Marques, P. E. et al. Chemokines and mitochondrial products activate neutrophils to amplify organ injury during mouse acute liver failure. Hepatology 56, 1971–1982 (2012).

    CAS  PubMed  Google Scholar 

  116. Kolaczkowska, E. et al. Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature. Nat. Commun. 6, 6673 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. McDonald, B., Urrutia, R., Yipp, B. G., Jenne, C. N. & Kubes, P. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe 12, 324–333 (2012).

    CAS  PubMed  Google Scholar 

  118. Jenne, C. N. et al. Neutrophils recruited to sites of infection protect from virus challenge by releasing neutrophil extracellular traps. Cell Host Microbe 13, 169–180 (2013).

    CAS  PubMed  Google Scholar 

  119. Jaeschke, H., Farhood, A. & Smith, C. W. Neutrophils contribute to ischemia/reperfusion injury in rat liver in vivo. FASEB J. 4, 3355–3359 (1990).

    CAS  PubMed  Google Scholar 

  120. Farhood, A. et al. Intercellular adhesion molecule 1 (ICAM-1) expression and its role in neutrophil-induced ischemia-reperfusion injury in rat liver. J. Leukoc. Biol. 57, 368–374 (1995).

    CAS  PubMed  Google Scholar 

  121. Honda, M. et al. Intravital imaging of neutrophil recruitment in hepatic ischemia-reperfusion injury in mice. Transplantation 95, 551–558 (2013).

    PubMed  Google Scholar 

  122. Jaeschke, H. Neutrophil-mediated tissue injury in alcoholic hepatitis. Alcohol 27, 23–27 (2002).

    CAS  PubMed  Google Scholar 

  123. Liang, W. et al. Metabolically induced liver inflammation leads to NASH and differs from LPS- or IL-1β-induced chronic inflammation. Lab. Invest. 94, 491–502 (2014).

    CAS  PubMed  Google Scholar 

  124. O'Brien, K. M. et al. IL-17A synergistically enhances bile acid-induced inflammation during obstructive cholestasis. Am. J. Pathol. 183, 1498–1507 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Davies, L. C., Jenkins, S. J., Allen, J. E. & Taylor, P. R. Tissue-resident macrophages. Nat. Immunol. 14, 986 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Lavin, Y. et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159, 1312–1326 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Hutchinson, J. A. et al. Cutting edge: Immunological consequences and trafficking of human regulatory macrophages administered to renal transplant recipients. J. Immunol. 187, 2072–2078 (2011).

    CAS  PubMed  Google Scholar 

  129. Xue, J. et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40, 274–288 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Ramachandran, P. et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc. Natl Acad. Sci. USA 109, E3186–E3195 (2012).

    CAS  PubMed  Google Scholar 

  132. Karlmark, K. R. et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 50, 261–274 (2009).

    CAS  PubMed  Google Scholar 

  133. Dal-Secco, D. et al. A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury. J. Exp. Med. 212, 447–456 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Zigmond, E. et al. Infiltrating monocyte-derived macrophages and resident kupffer cells display different ontogeny and functions in acute liver injury. J. Immunol. 193, 344–353 (2014).

    CAS  PubMed  Google Scholar 

  135. Dragomir, A.-C. D., Sun, R., Choi, H., Laskin, J. D. & Laskin, D. L. Role of galectin-3 in classical and alternative macrophage activation in the liver following acetaminophen intoxication. J. Immunol. 189, 5934–5941 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Krenkel, O., Mossanen, J. C. & Tacke, F. Immune mechanisms in acetaminophen-induced acute liver failure. Hepatobiliary Surg. Nutr. 3, 331–343 (2014).

    PubMed  PubMed Central  Google Scholar 

  137. Ju, C. et al. Protective role of Kupffer cells in acetaminophen-induced hepatic injury in mice. Chem. Res. Toxicol. 15, 1504–1513 (2002).

    CAS  PubMed  Google Scholar 

  138. Stutchfield, B. M. et al. CSF1 restores innate immunity following liver injury in mice and serum levels indicate outcomes of patients with acute liver failure. Gastroenterology http://dx.doi.org/10.1053/j.gastro.2015.08.053 (2015).

  139. Sun, Z. et al. Hepatic allograft-derived Kupffer cells regulate T cell response in rats. Liver Transpl. 9, 489–497 (2003).

    PubMed  Google Scholar 

  140. Xie, X. et al. Kupffer cells promote acute rejection via induction of Th17 differentiation in rat liver allografts. Transplant. Proc. 42, 3784–3792 (2010).

    CAS  PubMed  Google Scholar 

  141. Kim, H. Y., Kim, S. J. & Lee, S. M. Activation of NLRP3 and AIM2 inflammasomes in Kupffer cells in hepatic ischemia/reperfusion. FEBS J. 282, 259–270 (2015).

    CAS  PubMed  Google Scholar 

  142. Ohkubo, H. et al. VEGFR1-positive macrophages facilitate liver repair and sinusoidal reconstruction after hepatic ischemia/reperfusion injury. PLoS ONE 9, e105533 (2014).

    PubMed  PubMed Central  Google Scholar 

  143. Ellett, J. D. et al. Murine Kupffer cells are protective in total hepatic ischemia/reperfusion injury with bowel congestion through IL-10. J. Immunol. 184, 5849–5858 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. McNelis, J. C. & Olefsky, J. M. Macrophages, immunity, and metabolic disease. Immunity 41, 36–48 (2014).

    CAS  PubMed  Google Scholar 

  145. Wan, J. et al. M2 Kupffer cells promote M1 Kupffer cell apoptosis: a protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology 59, 130–142 (2014).

    CAS  PubMed  Google Scholar 

  146. Tomita, K. et al. Tumour necrosis factor α signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice. Gut 55, 415 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Leroux, A. et al. Toxic lipids stored by Kupffer cells correlates with their pro-inflammatory phenotype at an early stage of steatohepatitis. J. Hepatol. 57, 141–149 (2012).

    CAS  PubMed  Google Scholar 

  148. Csak, T. et al. Both bone marrow-derived and non-bone marrow-derived cells contribute to AIM2 and NLRP3 inflammasome activation in a MyD88-dependent manner in dietary steatohepatitis. Liver Int. 34, 1402–1413 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Miura, K. et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1β in mice. Gastroenterology 139, 323–334.e7 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Miura, K., Yang, L., van Rooijen, N., Ohnishi, H. & Seki, E. Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am. J. Physiol. Gastrointest. Liver Physiol. 302, G1310–G1321 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Baeck, C. et al. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut 61, 416–426 (2012).

    CAS  PubMed  Google Scholar 

  152. Boltjes, A., Movita, D., Boonstra, A. & Woltman, A. M. The role of Kupffer cells in hepatitis B and hepatitis C virus infections. J. Hepatol. 61, 660–671 (2014).

    CAS  PubMed  Google Scholar 

  153. Movita, D. et al. Inflammatory monocytes recruited to the liver within 24 hours after virus-induced inflammation resemble Kupffer cells but are functionally distinct. J. Virol. 89, 4809–4817 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Gehring, A. J. et al. Mobilizing monocytes to cross-present circulating viral antigen in chronic infection. J. Clin. Invest. 123, 3766–3776 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Huang, L. R. et al. Intrahepatic myeloid-cell aggregates enable local proliferation of CD8+ T cells and successful immunotherapy against chronic viral liver infection. Nat. Immunol. 14, 574–583 (2013).

    CAS  PubMed  Google Scholar 

  156. Tu, Z. et al. Hepatitis C virus core protein subverts the antiviral activities of human Kupffer cells. Gastroenterology 138, 305–314 (2010).

    CAS  PubMed  Google Scholar 

  157. Fletcher, N. F. et al. Activated macrophages promote hepatitis C virus entry in a tumor necrosis factor-dependent manner. Hepatology 59, 1320–1330 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Negash, A. A. et al. IL-1β production through the NLRP3 inflammasome by hepatic macrophages links hepatitis C virus infection with liver inflammation and disease. PLoS Pathog. 9, e1003330 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Pallett, L. J. et al. Metabolic regulation of hepatitis B immunopathology by myeloid-derived suppressor cells. Nat. Med. 21, 591–600 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Hammerich, L. & Tacke, F. Emerging roles of myeloid derived suppressor cells in hepatic inflammation and fibrosis. World J. Gastrointest. Pathophysiol. 6, 43–50 (2015).

    PubMed  PubMed Central  Google Scholar 

  161. Hammerich, L. et al. Cyclic adenosine monophosphate-responsive element modulator alpha overexpression impairs function of hepatic myeloid-derived suppressor cells and aggravates immune-mediated hepatitis in mice. Hepatology 61, 990–1002 (2015).

    CAS  PubMed  Google Scholar 

  162. Haverkamp, J. M. et al. Myeloid-derived suppressor activity is mediated by monocytic lineages maintained by continuous inhibition of extrinsic and intrinsic death pathways. Immunity 41, 947–959 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Zimmermann, H. W. et al. Interleukin-8 is activated in patients with chronic liver diseases and associated with hepatic macrophage accumulation in human liver fibrosis. PLoS ONE 6, e21381 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Liaskou, E. et al. Monocyte subsets in human liver disease show distinct phenotypic and functional characteristics. Hepatology 57, 385–398 (2013).

    CAS  PubMed  Google Scholar 

  165. Aspinall, A. I. et al. CX3CR1 and vascular adhesion protein-1-dependent recruitment of CD16+ monocytes across human liver sinusoidal endothelium. Hepatology 51, 2030–2039 (2010).

    PubMed  PubMed Central  Google Scholar 

  166. Zimmermann, H. W. et al. Functional contribution of elevated circulating and hepatic non-classical CD14CD16 monocytes to inflammation and human liver fibrosis. PLoS ONE 5, e11049 (2010).

    PubMed  PubMed Central  Google Scholar 

  167. Bernsmeier, C. et al. Patients with acute-on-chronic liver failure have increased numbers of regulatory immune cells expressing the receptor tyrosine kinase MERTK. Gastroenterology 148, 603–615.e14 (2015).

    CAS  PubMed  Google Scholar 

  168. Pradere, J.-P. et al. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology 58, 1461–1473 (2013).

    CAS  PubMed  Google Scholar 

  169. Ehling, J. et al. CCL2-dependent infiltrating macrophages promote angiogenesis in progressive liver fibrosis. Gut 63, 1960–1971 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Heymann, F. et al. Hepatic macrophage migration and differentiation critical for liver fibrosis is mediated by the chemokine receptor C-C motif chemokine receptor 8 in mice. Hepatology 55, 898–909 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Karlmark, K. R. et al. The fractalkine receptor CX3CR1 protects against liver fibrosis by controlling differentiation and survival of infiltrating hepatic monocytes. Hepatology 52, 1769–1782 (2010).

    CAS  PubMed  Google Scholar 

  172. Link, A. et al. Association of T-zone reticular networks and conduits with ectopic lymphoid tissues in mice and humans. Am. J. Pathol. 178, 1662–1675 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Tsung, A. et al. Increasing numbers of hepatic dendritic cells promote HMGB1-mediated ischemia-reperfusion injury. J. Leukoc. Biol. 81, 119–128 (2007).

    CAS  PubMed  Google Scholar 

  174. Henning, J. R. et al. Dendritic cells limit fibroinflammatory injury in nonalcoholic steatohepatitis in mice. Hepatology 58, 589–602 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Herber, D. L. et al. Lipid accumulation and dendritic cell dysfunction in cancer. Nat. Med. 16, 880–886 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Yoneyama, H. et al. Regulation by chemokines of circulating dendritic cell precursors, and the formation of portal tract-associated lymphoid tissue, in a granulomatous liver disease. J. Exp. Med. 193, 35–49 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Connolly, M. K. et al. In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-α. J. Clin. Invest. 119, 3213–3225 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Bosschaerts, T. et al. Tip-DC development during parasitic infection is regulated by IL-10 and requires CCL2/CCR2, IFN-γ and MyD88 signaling. PLoS Pathog. 6, e1001045 (2010).

    PubMed  PubMed Central  Google Scholar 

  179. Jiao, J. et al. Dendritic cell regulation of carbon tetrachloride-induced murine liver fibrosis regression. Hepatology 55, 244–255 (2012).

    PubMed  PubMed Central  Google Scholar 

  180. Kahraman, A., Fingas, C. D., Syn, W. K., Gerken, G. & Canbay, A. Role of stress-induced NKG2D ligands in liver diseases. Liver Int. 32, 370–382 (2012).

    CAS  PubMed  Google Scholar 

  181. Wang, H., Feng, D., Park, O., Yin, S. & Gao, B. Invariant NKT cell activation induces neutrophil accumulation and hepatitis: opposite regulation by IL-4 and IFN-γ. Hepatology 58, 1474–1485 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Lynch, L. et al. Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production. Immunity 37, 574–587 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Wondimu, Z., Santodomingo-Garzon, T., Le, T. & Swain, M. G. Protective role of interleukin-17 in murine NKT cell-driven acute experimental hepatitis. Am. J. Pathol. 177, 2334–2346 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Wang, Y. et al. STAT4 knockout mice are more susceptible to concanavalin A-induced T-cell hepatitis. Am. J. Pathol. 184, 1785–1794 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Lee, K.-A. et al. Retinoic acid alleviates Con A-induced hepatitis and differentially regulates effector production in NKT cells. Eur. J. Immunol. 42, 1685–1694 (2012).

    CAS  PubMed  Google Scholar 

  186. Santodomingo-Garzon, T., Han, J., Le, T., Yang, Y. & Swain, M. G. Natural killer T cells regulate the homing of chemokine CXC receptor 3-positive regulatory T cells to the liver in mice. Hepatology 49, 1267–1276 (2009).

    CAS  PubMed  Google Scholar 

  187. Rehermann, B. Pathogenesis of chronic viral hepatitis: differential roles of T cells and NK cells. Nat. Med. 19, 859–868 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Krämer, B. et al. Natural killer p46High expression defines a natural killer cell subset that is potentially involved in control of hepatitis C virus replication and modulation of liver fibrosis. Hepatology 56, 1201–1213 (2012).

    PubMed  Google Scholar 

  189. Eisenhardt, M. et al. The CXCR3+CD56Bright phenotype characterizes a distinct NK cell subset with anti-fibrotic potential that shows dys-regulated activity in hepatitis C. PLoS ONE 7, e38846 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Kramer, B. et al. Natural killer p46High expression defines a natural killer cell subset that is potentially involved in control of hepatitis C virus replication and modulation of liver fibrosis. Hepatology 56, 1201–1213 (2012).

    PubMed  Google Scholar 

  191. Dunn, C. et al. Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell-mediated liver damage. J. Exp. Med. 204, 667–680 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Peppa, D. et al. Up-regulation of a death receptor renders antiviral T cells susceptible to NK cell-mediated deletion. J. Exp. Med. 210, 99–114 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Zeissig, S. et al. Hepatitis B virus-induced lipid alterations contribute to natural killer T cell-dependent protective immunity. Nat. Med. 18, 1060–1068 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Kenna, T. et al. CD1 expression and CD1-restricted T cell activity in normal and tumour-bearing human liver. Cancer Immunol. Immunother. 56, 563–572 (2007).

    CAS  PubMed  Google Scholar 

  195. Schrumpf, E. et al. The biliary epithelium presents antigens to and activates natural killer T cells. Hepatology 62, 1249–1259 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Balmer, M. L. et al. The liver may act as a firewall mediating mutualism between the host and its gut commensal microbiota. Sci. Transl. Med. 6, 237ra66 (2014).

    PubMed  Google Scholar 

  197. Sertorio, M. et al. IL-22 and IL-22 binding protein (IL-22BP) regulate fibrosis and cirrhosis in hepatitis C virus and schistosome infections. Hepatology 61, 1321–1331 (2015).

    CAS  PubMed  Google Scholar 

  198. Kong, X. et al. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology 56, 1150–1159 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Gur, C. et al. NKp46-mediated killing of human and mouse hepatic stellate cells attenuates liver fibrosis. Gut 61, 885–893 (2012).

    CAS  PubMed  Google Scholar 

  200. Abu-Tair, L. et al. Natural killer cell-dependent anti-fibrotic pathway in liver injury via Toll-like receptor-9. PLoS ONE 8, e82571 (2013).

    PubMed  PubMed Central  Google Scholar 

  201. Park, O. et al. Diverse roles of invariant natural killer T cells in liver injury and fibrosis induced by carbon tetrachloride. Hepatology 49, 1683–1694 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Syn, W. K. et al. Accumulation of natural killer T cells in progressive nonalcoholic fatty liver disease. Hepatology 51, 1998–2007 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Wolf, M. J. et al. Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell 26, 549–564 (2014).

    CAS  PubMed  Google Scholar 

  204. Gold, M. C. et al. Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol. 8, e1000407 (2010).

    PubMed  PubMed Central  Google Scholar 

  205. Le Bourhis, L. et al. MAIT cells detect and efficiently lyse bacterially-infected epithelial cells. PLoS Pathog. 9, e1003681 (2013).

    PubMed  PubMed Central  Google Scholar 

  206. Sawa, Y. et al. Hepatic interleukin-7 expression regulates T cell responses. Immunity 30, 447–457 (2009).

    CAS  PubMed  Google Scholar 

  207. Jo, J. et al. Toll-like receptor 8 agonist and bacteria trigger potent activation of innate immune cells in human liver. PLoS Pathog. 10, e1004210 (2014).

    PubMed  PubMed Central  Google Scholar 

  208. Volpes, R., van den Oord, J. J. & Desmet, V. J. Memory T cells represent the predominant lymphocyte subset in acute and chronic liver inflammation. Hepatology 13, 826–829 (1991).

    CAS  PubMed  Google Scholar 

  209. Bottcher, J. P. et al. Liver-primed memory T cells generated under noninflammatory conditions provide anti-infectious immunity. Cell Rep. 3, 779–795 (2013).

    PubMed  Google Scholar 

  210. Taubert, R. et al. Intrahepatic regulatory T cells in autoimmune hepatitis are associated with treatment response and depleted with current therapies. J. Hepatol. 61, 1106–1114 (2014).

    CAS  PubMed  Google Scholar 

  211. Ferri, S. et al. A multifaceted imbalance of T cells with regulatory function characterizes type 1 autoimmune hepatitis. Hepatology 52, 999–1007 (2010).

    CAS  PubMed  Google Scholar 

  212. Hammerich, L. & Tacke, F. Role of gamma-delta T cells in liver inflammation and fibrosis. World J. Gastrointest. Pathophysiol. 5, 107–113 (2014).

    PubMed  PubMed Central  Google Scholar 

  213. Heymann, F., Hamesch, K., Weiskirchen, R. & Tacke, F. The concanavalin A model of acute hepatitis in mice. Lab. Anim. 49, 12–20 (2015).

    CAS  PubMed  Google Scholar 

  214. Tiegs, G., Hentschel, J. & Wendel, A. A. T cell-dependent experimental liver injury in mice inducible by concanavalin A. J. Clin. Invest. 90, 196–203 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Burghardt, S. et al. Hepatocytes contribute to immune regulation in the liver by activation of the Notch signaling pathway in T cells. J. Immunol. 191, 5574–5582 (2013).

    CAS  PubMed  Google Scholar 

  216. Hammerich, L. et al. Chemokine receptor CCR6-dependent accumulation of γδ T cells in injured liver restricts hepatic inflammation and fibrosis. Hepatology 59, 630–642 (2014).

    CAS  PubMed  Google Scholar 

  217. Adams, D. H., Sanchez-Fueyo, A. & Samuel, D. From immunosuppression to tolerance. J. Hepatol. 62, S170–S185 (2015).

    CAS  PubMed  Google Scholar 

  218. Klein, I. & Crispe, I. N. Complete differentiation of CD8+ T cells activated locally within the transplanted liver. J. Exp. Med. 203, 437–447 (2006).

    PubMed  PubMed Central  Google Scholar 

  219. Shen, X. et al. CD4 T cells promote tissue inflammation via CD40 signaling without de novo activation in a murine model of liver ischemia/reperfusion injury. Hepatology 50, 1537–1546 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Rehermann, B. & Bertoletti, A. Immunological aspects of antiviral therapy of chronic hepatitis B virus and hepatitis C virus infections. Hepatology 61, 712–721 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Wuensch, S. A., Spahn, J. & Crispe, I. N. Direct, help-independent priming of CD8+ T cells by adeno-associated virus-transduced hepatocytes. Hepatology 52, 1068–1077 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Spahn, J., Pierce, R. H. & Crispe, I. N. Ineffective CD8+ T-cell immunity to adeno-associated virus can result in prolonged liver injury and fibrogenesis. Am. J. Pathol. 179, 2370–2381 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Iannacone, M. et al. Platelets mediate cytotoxic T lymphocyte-induced liver damage. Nat. Med. 11, 1167–1169 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Guidotti, L. G. et al. Immunosurveillance of the liver by intravascular effector CD8+ T cells. Cell 161, 486–500 (2015).

    CAS  PubMed  Google Scholar 

  225. Isogawa, M., Chung, J., Murata, Y., Kakimi, K. & Chisari, F. V. CD40 activation rescues antiviral CD8+ T cells from PD-1-mediated exhaustion. PLoS Pathog. 9, e1003490 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Glässner, A. et al. Impaired CD4+ T cell stimulation of NK cell anti-fibrotic activity may contribute to accelerated liver fibrosis progression in HIV/HCV patients. J. Hepatol. 59, 427–433 (2013).

    PubMed  Google Scholar 

  227. Kong, X., Sun, R., Chen, Y., Wei, H. & Tian, Z. γδT cells drive myeloid-derived suppressor cell-mediated CD8+ T cell exhaustion in hepatitis B virus-induced immunotolerance. J. Immunol. 193, 1645–1653 (2014).

    CAS  PubMed  Google Scholar 

  228. Tang, Y. et al. Interleukin-17 exacerbates hepatic steatosis and inflammation in non-alcoholic fatty liver disease. Clin. Exp. Immunol. 166, 281–290 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Sutti, S. et al. Adaptive immune responses triggered by oxidative stress contribute to hepatic inflammation in NASH. Hepatology 59, 886–897 (2014).

    CAS  PubMed  Google Scholar 

  230. Chatzigeorgiou, A. et al. Dual role of B7 costimulation in obesity-related nonalcoholic steatohepatitis and metabolic dysregulation. Hepatology 60, 1196–1210 (2014).

    CAS  PubMed  Google Scholar 

  231. Mucida, D. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317, 256–260 (2007).

    CAS  PubMed  Google Scholar 

  232. Licata, L. A. et al. Biliary obstruction results in PD-1-dependent liver T cell dysfunction and acute inflammation mediated by Th17 cells and neutrophils. J. Leukoc. Biol. 94, 813–823 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Guillot, A. et al. Cannabinoid receptor 2 counteracts interleukin-17-induced immune and fibrogenic responses in mouse liver. Hepatology 59, 296–306 (2014).

    CAS  PubMed  Google Scholar 

  234. Teixeira-Clerc, F. et al. CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis. Nat. Med. 12, 671–676 (2006).

    CAS  PubMed  Google Scholar 

  235. Mentink-Kane, M. M. et al. Accelerated and progressive and lethal liver fibrosis in mice that lack interleukin (IL)-10, IL-12p40, and IL-13R α2. Gastroenterology 141, 2200–2209 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  236. Markwick, L. J. L. et al. Blockade of PD1 and TIM3 restores innate and adaptive immunity in patients with acute alcoholic hepatitis. Gastroenterology 148, 590–602.e10 (2015).

    CAS  PubMed  Google Scholar 

  237. Barron, L. & Wynn, T. A. Fibrosis is regulated by Th2 and Th17 responses and by dynamic interactions between fibroblasts and macrophages. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G723–G728 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Tan, Z. et al. IL-17A plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation. J. Immunol. 191, 1835–1844 (2013).

    CAS  PubMed  Google Scholar 

  239. Lin, Y. et al. Gut-derived lipopolysaccharide promotes T-cell-mediated hepatitis in mice through Toll-like receptor 4. Cancer Prev. Res. (Phila.) 5, 1090–1102 (2012).

    CAS  Google Scholar 

  240. Meng, F. et al. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology 143, 765–776.e1-3 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Pellicoro, A., Ramachandran, P., Iredale, J. P. & Fallowfield, J. A. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat. Rev. Immunol. 14, 181–194 (2014).

    CAS  PubMed  Google Scholar 

  242. Affò, S. et al. CCL20 mediates lipopolysaccharide induced liver injury and is a potential driver of inflammation and fibrosis in alcoholic hepatitis. Gut 63, 1782–1792 (2014).

    PubMed  PubMed Central  Google Scholar 

  243. Dapito, D. H. et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4. Cancer Cell 21, 504–516 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  244. Tacke, F. & Trautwein, C. Mechanisms of liver fibrosis resolution. J. Hepatol. 63, 1038–1039 (2015).

    PubMed  Google Scholar 

  245. Mehal, W. Z., Iredale, J. & Friedman, S. L. Scraping fibrosis: expressway to the core of fibrosis. Nat. Med. 17, 552–553 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Trautwein, C., Friedman, S. L., Schuppan, D. & Pinzani, M. Hepatic fibrosis: concept to treatment. J. Hepatol. 62, S15–S24 (2015).

    CAS  PubMed  Google Scholar 

  247. Mossanen, J. C. & Tacke, F. Role of lymphocytes in liver cancer. Oncoimmunology 2, e26468 (2013).

    PubMed  PubMed Central  Google Scholar 

  248. Kantari-Mimoun, C. et al. Resolution of liver fibrosis requires myeloid cell-driven sinusoidal angiogenesis. Hepatology 61, 2042–2055 (2014).

    Google Scholar 

Download references

Acknowledgements

The authors are supported by the German Research Foundation (DFG Ta434/3-1, SFB/TRR 57) and the Interdisciplinary Center for Clinical Research (IZKF) Aachen.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Frank Tacke.

Ethics declarations

Competing interests

Work in the laboratory of F.T. has been funded by Noxxon and Tobira Therapeutics. F.H. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heymann, F., Tacke, F. Immunology in the liver — from homeostasis to disease. Nat Rev Gastroenterol Hepatol 13, 88–110 (2016). https://doi.org/10.1038/nrgastro.2015.200

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2015.200

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing