Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The evolving concept of acute kidney injury in patients with cirrhosis

Key Points

  • Acute kidney injury (AKI) in cirrhosis consists of a spectrum of diseases, some related to abnormalities in renal function, whereas others are related to renal damage

  • The International Club of Ascites defined AKI in cirrhosis by small changes in serum creatinine and has defined staging, progression and response to treatment

  • Acute or type 1 hepatorenal syndrome (HRS) is now known as HRS-AKI, whereas chronic type 2 HRS is now known as HRS chronic kidney disease

  • The new AKI definition allows patients with persistent doubling of serum creatinine despite albumin and diuretic withdrawal who otherwise fulfil the diagnostic criteria for hepatorenal syndrome to receive pharmacotherapy

  • The use of biomarkers of renal functional changes and structural damage might enhance our ability to assess risk, diagnose AKI and provide a prognosis for patients

  • New knowledge of the pathophysiology of AKI in patients with liver cirrhosis could lead to further refinement of our definition of AKI for cirrhosis in the future

Abstract

Renal dysfunction is prevalent in patients with advanced cirrhosis and decompensation. The presence of type 1 hepatorenal syndrome (HRS) has traditionally been defined by a set of stringent criteria based on serum creatinine levels. These diagnostic criteria have been found to be too stringent to be widely applicable to patients with cirrhosis, leading to underdiagnosis of renal failure in this population. Acute kidney injury (AKI) has now been proposed to characterize renal dysfunction in patients with cirrhosis and is defined as an increase in serum creatinine by 0.3 mg/dl in <48 h or an increase in serum creatinine by 50% from a stable baseline reading within 3 months. Type 1 HRS is renamed HRS-AKI. Stage 1 AKI is defined by 0.3 mg/dl serum creatinine or a 50% increase, stages 2 and 3 AKI are defined by a two-fold and three-fold increase in serum creatinine levels, respectively. Data collected so far suggests that even stage 1 AKI is associated with worse prognosis in patients with cirrhosis. The progression of AKI usually indicates substantially worse outcomes. A panel of biomarkers, including inflammatory markers, are envisaged to complement and enhance our current diagnostic criteria in the future and provide aetiology of the AKI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spectrum of renal diseases in cirrhosis.
Figure 2: Pathogenetic mechanism of acute kidney injury in cirrhosis.
Figure 3: Progression of stage of acute kidney injury is associated with significantly worse survival.
Figure 4: Proposed algorithm for the management of patients with cirrhosis who present acute kidney injury.
Figure 5: A schematic representation of the evolution of the diagnosis of renal dysfunction in cirrhosis.

Similar content being viewed by others

References

  1. Garcia-Tsao, G., Parikh, C. R. & Viola, A. Acute kidney injury in cirrhosis. Hepatology 48, 2064–2077 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Salerno, F., Gerbes, A., Ginès, P., Wong, F. & Arroyo, V. Diagnosis, prevention and treatment of hepatorenal syndrome in cirrhosis. Gut 56, 1310–1318 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ginès, P., Guevara, M., Arroyo, V. & Rodés, J. Hepatorenal syndrome. Lancet 362, 1819–1827 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. Salerno, F. et al. Diagnosis, treatment and survival of patients with hepatorenal syndrome: a survey on daily medical practice. J. Hepatol. 55, 1241–1248 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Sanyal, A. J. et al. A randomized, prospective, double-blind, placebo-controlled trial of terlipressin for type 1 hepatorenal syndrome. Gastroenterology 134, 1360–1368 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Martín-Llahí, M. et al. Terlipressin and albumin vs albumin in patients with cirrhosis and hepatorenal syndrome: a randomized study. Gastroenterology 134, 1352–1359 (2008).

    Article  PubMed  CAS  Google Scholar 

  7. Boyer, T. D. et al. Initial report of a large, randomized, double blind, placebo-controlled, phase 3 trial of terlipressin plus albumin for the treatment of type 1 hepatorenal syndrome (HRS-1): the REVERSE Study. Hepatology 60 (Suppl. 1), 255A (2014).

    Google Scholar 

  8. Boyer, T. D. et al. Predictors of response to terlipressin plus albumin in hepatorenal syndrome (HRS) type 1: relationship of serum creatinine to hemodynamics. J. Hepatol. 55, 315–321 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Francoz, C. & Durand, F. Type-1 hepatorenal syndrome in patients with cirrhosis and infection vs. sepsis-induced acute kidney injury: what matters? J. Hepatol. 60, 907–909 (2014).

    Article  PubMed  Google Scholar 

  10. Rodríguez, E. et al. Terlipressin and albumin for type-1 hepatorenal syndrome associated with sepsis. J. Hepatol. 60, 955–961 (2014).

    Article  PubMed  CAS  Google Scholar 

  11. Adebayo, D., Morabito, V., Davenport, A. & Jalan, R. Renal dysfunction in cirrhosis is not just a vasomotor nephropathy. Kidney Int. 87, 509–515 (2015).

    Article  PubMed  Google Scholar 

  12. Pipili, C. & Cholongitas, E. Renal dysfunction in patients with cirrhosis: where do we stand? World J. Gastrointest. Pharmacol. Ther. 5, 156–168 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Macnider, W. D. A study of acute mercuric chloride intoxications in the dog with special reference to the kidney injury. J. Exp. Med. 27, 519–538 (1918).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bellomo, R., Ronco, C., Kellum, J. A., Mehta, R. L. & Palevsky, P. Acute Dialysis Quality Initiative workgroup. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care. 8, R204–R212 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hoste, E. A. et al. RIFLE criteria for acute kidney injury is associated with hospital mortality in critical ill patients: a cohort analysis. Crit. Care 10, R73 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ali, T. et al. Incidence and outcomes in acute kidney injury: a comprehensive population-based study. J. Am. Soc. Nephrol. 18, 1292–1298 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Mehta, R. L. et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit. Care. 11, R31 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lassnigg, A. et al. Minimal changes of serum creatinine predict prognosis in patients after cardiothoracic surgery: a prospective cohort study. J. Am. Soc. Nephrol. 15, 1597–1605 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Joannidis, M. et al. Acute kidney injury in critically ill patients classified by AKIN versus RIFLE using the SAPS 3 database. Intensive Care Med. 35, 1692–1702 (2009).

    Article  PubMed  Google Scholar 

  20. International Society of Nephrology. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl. 2, S1–S138 (2012).

  21. Jenq, C. C. et al. RIFLE classification can predict short-term prognosis in critically ill cirrhotic patients. Intensive Care Med. 33, 1921–1930 (2007).

    Article  PubMed  Google Scholar 

  22. Cholongitas, E. et al. RIFLE classification as predictive factor of mortality in patients with cirrhosis admitted to intensive care unit. J. Gastroenterol. Hepatol. 24, 1639–1647 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Rosi, S. et al. New ICA criteria for the diagnosis of acute kidney injury in cirrhotic patients: can we use an imputed value of serum creatinine? Liver Int. 35, 2108–2114 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Francoz, C., Glotz, D., Moreau, R. & Durand, F. The evaluation of renal function and disease in patients with cirrhosis. J. Hepatol. 52, 605–613 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Francoz, C. et al. Inaccuracies of creatinine and creatinine-based equations in candidates for liver transplantation with low creatinine: impact on the Model for End-Stage Liver Disease score. Liver Transpl. 16, 1169–1177 (2010).

    Article  PubMed  Google Scholar 

  26. Wong, F. Management of ascites in cirrhosis. J. Gastroenterol. Hepatol. 27, 11–20 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Wong, F. et al. Working party proposal for a revised classification system of renal dysfunction in patients with cirrhosis. Gut 60, 702–709 (2011).

    Article  PubMed  Google Scholar 

  28. Orlando, R. et al. Evaluation of measured and calculated creatinine clearances as glomerular filtration markers in different stages of liver cirrhosis. Clin. Nephrol. 51, 341–347 (1999).

    CAS  PubMed  Google Scholar 

  29. Sherman, D. S., Fish, D. N. & Teitelbaum, I. Assessing renal function in cirrhotic patients: problems and pitfalls. Am. J. Kidney Dis. 41, 269–278 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Tsien, C. D., Rabie, R. & Wong, F. Acute kidney injury in decompensated cirrhosis. Gut 62, 131–137 (2013).

    Article  PubMed  Google Scholar 

  31. Tsien, C. & Wong, F. The impact of acute kidney injury in cirrhosis: does definition matter? Gut 62, 1091–1092 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Wong, F. et al. New consensus definition of acute kidney injury accurately predicts 30-day mortality in patients with cirrhosis and infection. Gastroenterology 145, 1280–1289 (2013).

    Article  PubMed  Google Scholar 

  33. Belcher, J. M. et al. Association of AKI with mortality and complications in hospitalized patients with cirrhosis. Hepatology 57, 753–762 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Wong, F. et al. Reduction in acute kidney injury (AKI) stage is a strong predictor of survival in patients with hepatorenal syndrome type-1 (HRS-1) treated with terlipressin plus albumin or albumin alone. Nephrol. Dial. Transplant. 30, Siii451 (2015).

    Article  Google Scholar 

  35. Altamirano, J. et al. Acute kidney injury is an early predictor of mortality for patients with alcoholic hepatitis. Clin. Gastroenterol. Hepatol. 10, 65–71 (2012).

    Article  PubMed  Google Scholar 

  36. Scott, R. A., Austin, A. S., Kolhe, N. V., McIntyre, C. W. & Selby, N. M. Acute kidney injury is independently associated with death in patients with cirrhosis. Frontline Gastroenterol. 4, 191–197 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Arroyo, V. Acute kidney injury (AKI) in cirrhosis: should we change current definition and diagnostic criteria of renal failure in cirrhosis? J. Hepatol. 59, 415–417 (2013).

    Article  PubMed  Google Scholar 

  38. Cardenas A. Defining renal failure in cirrhosis—acute kidney injury classification or traditional criteria? Ann. Hepatol. 12, 984–985 (2013).

    Article  PubMed  Google Scholar 

  39. Sort, P. et al. Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis. N. Engl. J. Med. 341, 403–409 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Angeli, P. et al. Combined versus sequential diuretic treatment of ascites in non-azotaemic patients with cirrhosis: results of an open randomized clinical trial. Gut 59, 98–104 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Piano, S. et al. Evaluation of the Acute Kidney Injury Network criteria in hospitalized patients with cirrhosis and ascites. J. Hepatol. 59, 482–489 (2013).

    Article  PubMed  Google Scholar 

  42. Fagundes, C. et al. A modified acute kidney injury classification for diagnosis and risk stratification of impairment of kidney function in cirrhosis. J. Hepatol. 59, 474–481 (2013).

    Article  PubMed  Google Scholar 

  43. Wong, F. et al. A cut-off serum creatinine value of 1.5mg/dl for AKI —to be or not to be. J. Hepatol. 62, 741–743 (2015).

    Article  PubMed  Google Scholar 

  44. Thalhemier, U. & Burroughs, A. K. To close the stable door before the horse has bolted. J. Hepatol. 60, 678–679 (2014).

    Article  Google Scholar 

  45. Piano, S. et al. Reply to: “A cut-off serum creatinine value of 1.5mg/dl for AKI — to be or not to be”. J. Hepatol. 62, 744–746 (2015).

    Article  PubMed  Google Scholar 

  46. Fagundes, C. et al. Reply to: “A cut-off serum creatinine value of 1.5mg/dl for AKI — to be or not to be”. J. Hepatol. 62, 743–744 (2015).

    Article  PubMed  Google Scholar 

  47. Wong, F. et al. Acute kidney injury in cirrhosis: baseline serum creatinine predicts patient outcome. J. Hepatol. 62, S380 (2015).

    Article  Google Scholar 

  48. Angeli, P. et al. Diagnosis and management of acute kidney injury in patients with cirrhosis: revised consensus recommendations of the International Club of Ascites. Gut 64, 531–537 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. McCullough, M. C. et al. Diagnosis of acute kidney injury using functional and injury biomarkers: workgroup statements from the tenth Acute Dialysis Quality Initiative Consensus Conference. Contrib. Nephrol. 182, 13–29 (2013).

    Article  PubMed  Google Scholar 

  50. Murray, P. T. et al. Potential use of biomarkers in acute kidney injury: report and summary of recommendations from the 10th Acute Dialysis Quality Initiative consensus conference. Kidney Int. 85, 513–521 (2014).

    Article  PubMed  Google Scholar 

  51. Wong, F. & Murray, P. Kidney damage biomarkers: novel tools for the diagnostic assessment of acute kidney injury in cirrhosis. Hepatology 60, 455–457 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Parikh, C. R. et al. Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery. J. Am. Soc. Nephrol. 22, 1748–1757 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Siew, E. D. et al. Elevated urinary IL-18 levels at the time of ICU admission predict adverse clinical outcomes. Clin. J. Am. Soc. Nephrol. 5, 1497–1505 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bolignano, D. et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a marker of kidney damage. Am. J. Kidney Dis. 52, 595–605 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Verna, E. C. et al. Urinary neutrophil gelatinase-associated lipocalin predicts mortality and identifies acute kidney injury in cirrhosis. Dig. Dis. Sci. 57, 2362–2370 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fagundes, C. et al. Urinary neutrophil gelatinase-associated lipocalin as biomarker in the differential diagnosis of impairment of kidney function in cirrhosis. J. Hepatol. 57, 267–273 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Barreto, R. et al. Urinary neutrophil gelatinase-associated lipocalin predicts kidney outcome and death in patients with cirrhosis and bacterial infections. J. Hepatol. 61, 35–42 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Ariza, X. et al. Analysis of a urinary biomarker panel for clinical outcomes assessment in cirrhosis. PLoS ONE 10, e0128145 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Belcher. J. et al. Kidney biomarkers and differential diagnosis of patients with cirrhosis and acute kidney injury. Hepatology 60, 622–632 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Trawalé, J. M. et al. The spectrum of renal lesions in patients with cirrhosis: a clinicopathological study. Liver Int. 30, 725–732 (2010).

    Article  PubMed  CAS  Google Scholar 

  61. Wong, F. Recent advances in our understanding of hepatorenal syndrome. Nat. Rev. Gastroenterol. Hepatol. 9, 382–391 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Thabut, D. et al. Model for end-stage liver disease score and systemic inflammatory response are major prognostic factors in patients with cirrhosis and acute functional renal failure. Hepatology 46, 1872–1882 (2007).

    Article  PubMed  Google Scholar 

  63. Wong, F., Leung, W., Al Beshir, M., Marquez, M. & Renner, E. L. Outcomes of patients with cirrhosis and hepatorenal syndrome type 1 treated with liver transplantation. Liver Transpl. 21, 300–307 (2015).

    Article  PubMed  Google Scholar 

  64. Leithead, J. A. et al. The systemic inflammatory response syndrome is predictive of renal dysfunction in patients with non-paracetamol-induced acute liver failure. Gut 58, 443–449 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Wenceslau, C. F., McCarthy, C. G., Szasz, T., Goulopoulou, S. & Webb, R. C. Mitochondrial N-formyl peptides induce cardiovascular collapse and sepsis-like syndrome. Am. J. Physiol. Heart Circ. Physiol. 307, H768–H777 (2015).

    Article  CAS  Google Scholar 

  66. Gomez, H. et al. A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock 41, 3–11 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Garcia-Martinez, R., Noiret, L., Sen, S., Mookerjee, R. & Jalan, R. Albumin infusion improves renal blood flow autoregulation in patients with acute decompensation of cirrhosis and acute kidney injury. Liver Int. 35, 335–343 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Shah, N. et al. Prevention of acute kidney injury in a rodent model of cirrhosis following selective gut decontamination is associated with reduced renal TLR4 expression. J. Hepatol. 56, 1047–1053 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Shah, N. et al. Increased renal expression and urinary excretion of TLR4 in acute kidney injury associated with cirrhosis. Liver Int. 33, 398–409 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Arroyo, V. et al. Definition and diagnostic criteria of refractory ascites and hepatorenal syndrome in cirrhosis. International Ascites Club. Hepatology 23, 164–176 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florence Wong.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, F. The evolving concept of acute kidney injury in patients with cirrhosis. Nat Rev Gastroenterol Hepatol 12, 711–719 (2015). https://doi.org/10.1038/nrgastro.2015.174

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2015.174

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing