Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of protein synthesis and digestive enzymes in acinar cell injury

Abstract

The exocrine pancreas is the organ with the highest level of protein synthesis in the adult—each day the pancreas produces litres of fluid filled with enzymes that are capable of breaking down nearly all organic substances. For optimal health, the pancreas must produce sufficient enzymes of the right character to match the dietary intake. Disruption of normal pancreatic function occurs primarily as a result of dysfunction of the acinar cells that produce these digestive enzymes, and can lead to acute or chronic diseases. For many years, the prevailing dogma has been that inappropriate intracellular activation of the digestive enzymes produced by acinar cells was the key to pancreatic inflammatory diseases, as digestive enzymes themselves are potentially harmful to the cells that secrete them. However, we now know that many stressors can affect pancreatic acinar cells, and that these stressors can independently trigger pancreatic pathology through various mechanisms. This Review focuses on protein synthesis and active digestive enzymes—two key stressors faced by the acinar cell that are likely to be the major drivers of pathology encountered in the pancreas.

Key Points

  • The pancreas is a highly active organ, primarily because it contains the acinar cells that produce digestive enzymes

  • Physiological stresses on acinar cells include those associated with high levels of protein synthesis and with the production, storage and secretion of potentially damaging digestive enzymes

  • Synthesis of secreted proteins occurs in the endoplasmic reticulum (ER) and can be affected by many factors that result in protein misfolding or ER stress

  • Several compensatory mechanisms have evolved to protect the acinar cell from ER stress and inappropriate activation of digestive enzymes

  • Under normal circumstances, the compensatory mechanisms for ER stress and digestive enzyme activation are sufficient to fully protect the cells without any decrease in function

  • At high levels of stress, these same mechanisms result in acinar cell destruction and disease

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The components of the pancreas.
Figure 2: The structure of the pancreatic acinar cell.
Figure 3: ER stress responses that occur in pancreatic acinar cells.
Figure 4: Digestive enzyme stress responses in pancreatic acinar cells.

Similar content being viewed by others

References

  1. Case, R. M. Synthesis, intracellular transport and discharge of exportable proteins in the pancreatic acinar cell and other cells. Biol. Rev. Camb. Philos. Soc. 53, 211–354 (1978).

    Article  CAS  Google Scholar 

  2. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2012. CA Cancer J. Clin. 62, 10–29 (2012).

    Google Scholar 

  3. Jamieson, J. D. & Palade, G. E. Synthesis, intracellular transport, and discharge of secretory proteins in stimulated pancreatic exocrine cells. J. Cell Biol. 50, 135–158 (1971).

    Article  CAS  Google Scholar 

  4. Weng, N., Thomas, D. D. & Groblewski, G. E. Pancreatic acinar cells express vesicle-associated membrane protein 2- and 8-specific populations of zymogen granules with distinct and overlapping roles in secretion. J. Biol. Chem. 282, 9635–9645 (2007).

    Article  CAS  Google Scholar 

  5. Schroder, M. & Kaufman, R. J. The mammalian unfolded protein response. Annu. Rev. Biochem. 74, 739–789 (2005).

    Article  Google Scholar 

  6. Bonifacino, J. S., Suzuki, C. K. & Klausner, R. D. A peptide sequence confers retention and rapid degradation in the endoplasmic reticulum. Science 247, 79–82 (1990).

    Article  CAS  Google Scholar 

  7. Brodsky, J. L. & McCracken, A. A. ER protein quality control and proteasome-mediated protein degradation. Semin. Cell Dev. Biol. 10, 507–513 (1999).

    Article  CAS  Google Scholar 

  8. Trombetta, E. S. & Parodi, A. J. Quality control and protein folding in the secretory pathway. Annu. Rev. Cell Dev. Biol. 19, 649–676 (2003).

    Article  CAS  Google Scholar 

  9. Mareninova, O. A. et al. Impaired autophagic flux mediates acinar cell vacuole formation and trypsinogen activation in rodent models of acute pancreatitis. J. Clin. Invest. 119, 3340–3355 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cao, S. S. & Kaufman, R. J. Unfolded protein response. Curr. Biol. 22, R622–R626 (2012).

    Article  CAS  Google Scholar 

  11. Dorner, A. J., Wasley, L. C. & Kaufman, R. J. Increased synthesis of secreted proteins induces expression of glucose-regulated proteins in butyrate-treated Chinese hamster ovary cells. J. Biol. Chem. 264, 20602–20607 (1989).

    CAS  PubMed  Google Scholar 

  12. Kozutsumi, Y., Segal, M., Normington, K., Gething, M. J. & Sambrook, J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332, 462–464 (1988).

    Article  CAS  Google Scholar 

  13. Bhagat, L. et al. Heat shock protein 70 prevents secretagogue-induced cell injury in the pancreas by preventing intracellular trypsinogen activation. J. Clin. Invest. 106, 81–89 (2000).

    Article  CAS  Google Scholar 

  14. Kubisch, C. et al. Overexpression of heat shock protein Hsp27 protects against cerulein-induced pancreatitis. Gastroenterology 127, 275–286 (2004).

    Article  CAS  Google Scholar 

  15. Bhagat, L. et al. Thermal stress-induced HSP70 mediates protection against intrapancreatic trypsinogen activation and acute pancreatitis in rats. Gastroenterology 122, 156–165 (2002).

    Article  CAS  Google Scholar 

  16. Hietaranta, A. J. et al. Water immersion stress prevents caerulein-induced pancreatic acinar cell NF-κb activation by attenuating caerulein-induced intracellular Ca2+ changes. J. Biol. Chem. 276, 18742–18747 (2001).

    Article  CAS  Google Scholar 

  17. Gupta, S. et al. HSP72 protects cells from ER stress-induced apoptosis via enhancement of IRE1α-XBP1 signaling through a physical interaction. PLoS Biol. 8, e1000410 (2010).

    Article  Google Scholar 

  18. Beere, H. M. et al. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat. Cell Biol. 2, 469–475 (2000).

    Article  CAS  Google Scholar 

  19. Green, G. M. et al. Role of cholecystokinin in induction and maintenance of dietary protein-stimulated pancreatic growth. Am. J. Physiol. 262, G740–G746 (1992).

    Article  CAS  Google Scholar 

  20. Pahl, H. L. & Baeuerle, P. A. The ER-overload response: activation of NF-κB. Trends Biochem. Sci. 22, 63–67 (1997).

    Article  CAS  Google Scholar 

  21. Zhang, K. & Kaufman, R. J. From endoplasmic-reticulum stress to the inflammatory response. Nature 454, 455–462 (2008).

    Article  CAS  Google Scholar 

  22. Henkel, T. et al. Rapid proteolysis of IκB-α is necessary for activation of transcription factor NF-κB. Nature 365, 182–185 (1993).

    Article  CAS  Google Scholar 

  23. Kuang, E. et al. ER Ca2+ depletion triggers apoptotic signals for endoplasmic reticulum (ER) overload response induced by overexpressed reticulon 3 (RTN3/HAP). J. Cell Physiol. 204, 549–559 (2005).

    Article  CAS  Google Scholar 

  24. Pahl, H. L. & Baeuerle, P. A. Activation of NF-κB by ER stress requires both Ca2+ and reactive oxygen intermediates as messengers. FEBS Lett. 392, 129–136 (1996).

    Article  CAS  Google Scholar 

  25. Belal, C. et al. The homocysteine-inducible endoplasmic reticulum (ER) stress protein Herp counteracts mutant α-synuclein-induced ER stress via the homeostatic regulation of ER-resident calcium release channel proteins. Hum. Mol. Genet. 21, 963–977 (2012).

    Article  CAS  Google Scholar 

  26. Schreck, R., Meier, B., Mannel, D. N., Droge, W. & Baeuerle, P. A. Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells. J. Exp. Med. 175, 1181–1194 (1992).

    Article  CAS  Google Scholar 

  27. Deng, J. et al. Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol. Cell Biol. 24, 10161–10168 (2004).

    Article  CAS  Google Scholar 

  28. Gorman, A. M., Healy, S. J., Jäger, R. & Samali, A. Stress management at the ER: regulators of ER stress-induced apoptosis. Pharmacol. Ther. 134, 306–316 (2012).

    Article  CAS  Google Scholar 

  29. Tabas, I. & Ron, D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol. 13, 184–190 (2011).

    Article  CAS  Google Scholar 

  30. Grimm, S. The ER-mitochondria interface: the social network of cell death. Biochim. Biophys. Acta. 1823, 327–334 (2012).

    Article  CAS  Google Scholar 

  31. Berridge, M. J. The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium 32, 235–249 (2002).

    Article  CAS  Google Scholar 

  32. Huang, H. et al. Activation of Nuclear Factor-κB in Acinar Cells Increases the Severity of Pancreatitis in Mice. Gastroenterology 144, 201–210 (2012).

    Google Scholar 

  33. Aho, H. J., Koskensalo, S. M. L. & Nevalainen, T. J. Experimental pancreatitis in the rat. Sodium taurocholate-induced acute haemorrhagic pancreatitis. Scand. J. Gastroenterol. 15, 411–416 (1980).

    Article  CAS  Google Scholar 

  34. Mizunuma, T., Kawamura, S. & Kishino, Y. Effects of injecting excess arginine on rat pancreas. J. Nutr. 114, 467–471 (1984).

    Article  CAS  Google Scholar 

  35. Lerch, M. M. et al. Pancreatic duct obstruction triggers acute necrotizing pancreatitis in the opossum [see comments]. Gastroenterology 104, 853–861 (1993).

    Article  CAS  Google Scholar 

  36. Seyhun, E. et al. Tauroursodeoxycholic acid reduces endoplasmic reticulum stress, acinar cell damage, and systemic inflammation in acute pancreatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G773–G782 (2011).

    Article  CAS  Google Scholar 

  37. Hegewald, G., Nikulin, A., Gmaz-Nikulin, E., Plamenac, P. & Bärenwald, G. Ultrastructural changes of the human pancreas in acute shock. Pathol. Res. Pract. 179, 610–615 (1985).

    Article  CAS  Google Scholar 

  38. Ji, B. et al. Pancreatic gene expression during the initiation of acute pancreatitis: identification of EGR-1 as a key regulator. Physiol. Genomics 14, 59–72 (2003).

    Article  CAS  Google Scholar 

  39. Kereszturi, E. et al. Hereditary pancreatitis caused by mutation-induced misfolding of human cationic trypsinogen: a novel disease mechanism. Hum. Mutat. 30, 575–582 (2009).

    Article  CAS  Google Scholar 

  40. Kubisch, C. H. et al. Long-term ethanol consumption alters pancreatic gene expression in rats: a possible connection to pancreatic injury. Pancreas 33, 68–76 (2006).

    Article  CAS  Google Scholar 

  41. Lugea, A. et al. Adaptive unfolded protein response attenuates alcohol-induced pancreatic damage. Gastroenterology 140, 987–997 (2011).

    Article  CAS  Google Scholar 

  42. Chen, J. M. et al. Evolution of trypsinogen activation peptides. Mol. Biol. Evol. 20, 1767–1777 (2003).

    Article  CAS  Google Scholar 

  43. Beer, S. et al. Comprehensive functional analysis of chymotrypsin C (CTRC) variants reveals distinct loss-of-function mechanisms associated with pancreatitis risk. Gut http://dx.doi.org/10.1136/gutjnl-2012-303090.

  44. Szabó, A. & Sahin-Tóth, M. Increased activation of hereditary pancreatitis-associated human cationic trypsinogen mutants in presence of chymotrypsin C. J. Biol. Chem. 287, 20701–20710 (2012).

    Article  Google Scholar 

  45. Gaiser, S. et al. Intracellular activation of trypsinogen in transgenic mice induces acute but not chronic pancreatitis. Gut 60, 1379–1388 (2011).

    Article  CAS  Google Scholar 

  46. Ji, B., Gaiser, S., Chen, X., Ernst, S. A. & Logsdon, C. D. Intracellular trypsin induces pancreatic acinar cell death but not NF-κB activation. J. Biol. Chem. 284, 17488–17498 (2009).

    Article  CAS  Google Scholar 

  47. Chiari, H. Über die Selbstverdauung des menschlichen Pankreas [German]. Zeitschrift für Heilkunde 17, 69–96 (1896).

    Google Scholar 

  48. Van Acker, G. J. et al. Cathepsin B inhibition prevents trypsinogen activation and reduces pancreatitis severity. Am. J. Physiol. Gastrointest. Liver Physiol. 283, G794–G800 (2002).

    Article  CAS  Google Scholar 

  49. Whitcomb, D. C. et al. Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat. Genet. 14, 141–145 (1996).

    Article  CAS  Google Scholar 

  50. Witt, H. et al. Mutations in the gene encoding the serine protease inhibitor, Kazal type 1 are associated with chronic pancreatitis. Nat. Genet. 25, 213–216 (2000).

    Article  CAS  Google Scholar 

  51. Ohmuraya, M. et al. Autophagic cell death of pancreatic acinar cells in serine protease inhibitor Kazal type 3-deficient mice. Gastroenterology 129, 696–705 (2005).

    Article  CAS  Google Scholar 

  52. Nathan, J. D. et al. Transgenic expression of pancreatic secretory trypsin inhibitor-I ameliorates secretagogue-induced pancreatitis in mice. Gastroenterology 128, 717–727 (2005).

    Article  CAS  Google Scholar 

  53. Halangk, W. et al. Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J. Clin. Invest. 106, 773–781 (2000).

    Article  CAS  Google Scholar 

  54. Han, B., Ji, B. & Logsdon, C. D. CCK independently activates intracellular trypsinogen and NF-κB in rat pancreatic acinar cells. Am. J. Physiol. Cell Physiol. 280, C465–C472 (2001).

    Article  CAS  Google Scholar 

  55. Halangk, W. et al. Trypsin activity is not involved in premature, intrapancreatic trypsinogen activation. Am. J. Physiol. Gastrointest. Liver Physiol. 282, G367–G374 (2002).

    Article  CAS  Google Scholar 

  56. Singh, V. P. & Chari, S. T. Protease inhibitors in acute pancreatitis: lessons from the bench and failed clinical trials. Gastroenterology 128, 2172–2174 (2005).

    Article  Google Scholar 

  57. Dawra, R. et al. Intra-acinar trypsinogen activation mediates early stages of pancreatic injury but not inflammation in mice with acute pancreatitis. Gastroenterology 141, 2210–2217 (2011).

    Article  CAS  Google Scholar 

  58. Chen, X. et al. NF-κB activation in pancreas induces pancreatic and systemic inflammatory response. Gastroenterology 122, 448–457 (2002).

    Article  CAS  Google Scholar 

  59. Han, B. & Logsdon, C. D. Cholecystokinin induction of mob-1 chemokine expression in pancreatic acinar cells requires NF-κB activation. Am. J. Physiol. 277, C74–C82 (1999).

    Article  CAS  Google Scholar 

  60. Ji, B. et al. Pancreatic gene expression during the initiation of acute pancreatitis: identification of EGR-1 as a key regulator. Physiol. Genomics 14, 59–72 (2003).

    Article  CAS  Google Scholar 

  61. Ji, B. et al. Ras activity levels control the development of pancreatic diseases. Gastroenterology 137, 1072–1082, 1082 e1–6 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C. D. Logsdon's scientific research is supported by grant DK052067 and AA020822.

Author information

Authors and Affiliations

Authors

Contributions

C. D. Logsdon researched the data for the article, and wrote the manuscript. C. D. Logsdon and B. Ji contributed to discussions of its content and undertook review and editing of the manuscript before submission.

Corresponding author

Correspondence to Craig D. Logsdon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Logsdon, C., Ji, B. The role of protein synthesis and digestive enzymes in acinar cell injury. Nat Rev Gastroenterol Hepatol 10, 362–370 (2013). https://doi.org/10.1038/nrgastro.2013.36

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2013.36

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing