Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New biomarkers and targets in pancreatic cancer and their application to treatment

Abstract

Late diagnosis of pancreatic ductal adenocarcinoma (pancreatic cancer) and the limited response to current treatments results in an exceptionally poor prognosis. Advances in our understanding of the molecular events underpinning pancreatic cancer development and metastasis offer the hope of tangible benefits for patients. In-depth mutational analyses have shed light on the genetic abnormalities in pancreatic cancer, providing potential treatment targets. New biological studies in patients and in mouse models have advanced our knowledge of the timing of metastasis of pancreatic cancer, highlighting new directions for the way in which patients are treated. Furthermore, our increasing understanding of the molecular events in tumorigenesis is leading to the identification of biomarkers that enable us to predict response to treatment. A major drawback, however, is the general lack of an adequate systematic approach to advancing the use of biomarkers in cancer drug development, highlighted in a Cancer Biomarkers Collaborative consensus report. In this Review, we summarize the latest insights into the biology of pancreatic cancer, and their repercussions for treatment. We provide an overview of current treatments and, finally, we discuss novel therapeutic approaches, including the role of biomarkers in therapy for pancreatic cancer.

Key Points

  • Pancreatic cancer is genetically a heterogeneous disease that has a limited response to treatment

  • No accepted way of predicting which patients will respond to treatment currently exists

  • Research is building on advances in our understanding of the molecular pathogenesis of pancreatic cancer to identify more sensitive and robust biomarkers

  • Mouse models and translational studies have further elucidated the timing of metastasis and the therapeutic window in pancreatic cancer

  • The intense stromal response in pancreatic cancer offers one explanation for therapeutic failure and merits further biomarker development

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Heterogeneity of primary pancreatic tumours and metastases.
Figure 2: Therapeutic benefits of targeting pancreatic tumour stroma.

Similar content being viewed by others

References

  1. Ferlay, J., Parkin, D. M. & Steliarova-Foucher, E. Estimates of cancer incidence and mortality in Europe in 2008. Eur. J. Cancer 46, 765–781 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2012. CA Cancer J. Clin. 62, 10–29 (2012).

    Article  PubMed  Google Scholar 

  3. Vincent, A., Herman, J., Schulick, R., Hruban, R. H. & Goggins, M. Pancreatic cancer. Lancet 378, 607–620 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lemmens, V. E. et al. Improving outcome for patients with pancreatic cancer through centralization. Br. J. Surg. 98, 1455–1462 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Ghaneh, P., Costello, E. & Neoptolemos, J. P. Biology and management of pancreatic cancer. Gut 56, 1134–1152 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Neoptolemos, J. P. et al. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N. Engl. J. Med. 350, 1200–1210 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Neoptolemos, J. P. et al. Adjuvant 5-fluorouracil and folinic acid vs observation for pancreatic cancer: composite data from the ESPAC-1 and -3(v1) trials. Br. J. Cancer 100, 246–250 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Neoptolemos, J. P. et al. Adjuvant chemotherapy with fluorouracil plus folinic acid vs gemcitabine following pancreatic cancer resection: a randomized controlled trial. JAMA 304, 1073–1081 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Cunningham, D. et al. Phase III randomized comparison of gemcitabine versus gemcitabine plus capecitabine in patients with advanced pancreatic cancer. J. Clin. Oncol. 27, 5513–5518 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Stathis, A. & Moore, M. J. Advanced pancreatic carcinoma: current treatment and future challenges. Nat. Rev. Clin. Oncol. 7, 163–172 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Jones, S. et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321, 1801–1806 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Campbell, P. J. et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467, 1109–1113 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Haeno, H. et al. Computational modeling of pancreatic cancer reveals kinetics of metastasis suggesting optimum treatment strategies. Cell 148, 362–375 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tuveson, D. A. & Neoptolemos, J. P. Understanding metastasis in pancreatic cancer: a call for new clinical approaches. Cell 148, 21–23 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Rhim, A. D. et al. EMT and dissemination precede pancreatic tumor formation. Cell 148, 349–361 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Collisson, E. A. et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat. Med. 17, 500–503 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Burris, H. A. 3rd et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J. Clin. Oncol. 15, 2403–2413 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Moore, M. J. et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol. 25, 1960–1966 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Dancey, J. E., Bedard, P. L., Onetto, N. & Hudson, T. J. The genetic basis for cancer treatment decisions. Cell 148, 409–420 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Tisdale, M. J. Cancer cachexia. Langenbecks Arch. Surg. 389, 299–305 (2004).

    Article  PubMed  Google Scholar 

  22. Felix, K. et al. Identification of serum proteins involved in pancreatic cancer cachexia. Life Sci. 88, 218–225 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Conroy, T. et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 364, 1817–1825 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Simon, R. M., Paik, S. & Hayes, D. F. Use of archived specimens in evaluation of prognostic and predictive biomarkers. J. Natl Cancer Inst. 101, 1446–1452 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Erkan, M. et al. The role of stroma in pancreatic cancer—diagnostic and therapeutic implications. Nat. Rev. Gastroenterol. Hepatol. http://dx.doi/org/10.1038/nrgastro.2012.115.

  26. Marechal, R. et al. Human equilibrative nucleoside transporter 1 and human concentrative nucleoside transporter 3 predict survival after adjuvant gemcitabine therapy in resected pancreatic adenocarcinoma. Clin. Cancer Res. 15, 2913–2919 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Farrell, J. J. et al. Human equilibrative nucleoside transporter 1 levels predict response to gemcitabine in patients with pancreatic cancer. Gastroenterology 136, 187–195 (2009).

    Article  PubMed  Google Scholar 

  28. Regine, W. F. et al. Fluorouracil vs gemcitabine chemotherapy before and after fluorouracil-based chemoradiation following resection of pancreatic adenocarcinoma: a randomized controlled trial. JAMA 299, 1019–1026 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Regine, W. F. et al. Fluorouracil-based chemoradiation with either gemcitabine or fluorouracil chemotherapy after resection of pancreatic adenocarcinoma: 5-year analysis of the, U. S. Intergroup/RTOG 9704 phase III trial. Ann. Surg. Oncol. 18, 1319–1326 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Oettle, H. et al. Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA 297, 267–277 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Costello, E. & Neoptolemos, J. Enhancing the translation of cancer biomarkers. Br. J. Surg. 98, 1039–1040 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. McShane, L. M. et al. REporting recommendations for tumour MARKer prognostic studies (REMARK). Br. J. Cancer 93, 387–391 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Khleif, S. N., Doroshow, J. H. & Hait, W. N. AACR-FDA-NCI Cancer Biomarkers Collaborative consensus report: advancing the use of biomarkers in cancer drug development. Clin. Cancer Res. 16, 3299–3318 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Heinemann, V., Schulz, L., Issels, R. D. & Plunkett, W. Gemcitabine: a modulator of intracellular nucleotide and deoxynucleotide metabolism. Semin. Oncol. 22, 11–18 (1995).

    CAS  PubMed  Google Scholar 

  35. Marechal, R. et al. Deoxycitidine kinase is associated with prolonged survival after adjuvant gemcitabine for resected pancreatic adenocarcinoma. Cancer 116, 5200–5206 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Costantino, C. L. et al. The role of HuR in gemcitabine efficacy in pancreatic cancer: HuR Up-regulates the expression of the gemcitabine metabolizing enzyme deoxycytidine kinase. Cancer Res. 69, 4567–4572 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Richards, N. G. et al. HuR status is a powerful marker for prognosis and response to gemcitabine-based chemotherapy for resected pancreatic ductal adenocarcinoma patients. Ann. Surg. 252, 499–505 (2010).

    PubMed  Google Scholar 

  38. Valsecchi, M. E. et al. Is there a role for the quantification of RRM1 and ERCC1 expression in pancreatic ductal adenocarcinoma? BMC Cancer 12, 104 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hummel, R., Hussey, D. J. & Haier, J. MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur. J. Cancer 46, 298–311 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Frampton, A. E. et al. microRNAs as markers of survival and chemoresistance in pancreatic ductal adenocarcinoma. Expert Rev. Anticancer Ther. 11, 1837–1842 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Giovannetti, E. et al. MicroRNA-21 in pancreatic cancer: correlation with clinical outcome and pharmacologic aspects underlying its role in the modulation of gemcitabine activity. Cancer Res. 70, 4528–4538 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Hwang, J. H. et al. Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLoS ONE 5, e10630 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Preis, M. et al. MicroRNA-10b expression correlates with response to neoadjuvant therapy and survival in pancreatic ductal adenocarcinoma. Clin. Cancer Res. 17, 5812–5821 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bauer, A. S. et al. Diagnosis of pancreatic ductal adenocarcinoma and chronic pancreatitis by measurement of microRNA abundance in blood and tissue. PLoS ONE 7, e34151 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miyazono, F. et al. Molecular detection of circulating cancer cells during surgery in patients with biliary-pancreatic cancer. Am. J. Surg. 177, 475–479 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. de Albuquerque, A. et al. Multimarker gene analysis of circulating tumor cells in pancreatic cancer patients: a feasibility study. Oncology 82, 3–10 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Kurihara, T. et al. Detection of circulating tumor cells in patients with pancreatic cancer: a preliminary result. J. Hepatobiliary Pancreat. Surg. 15, 189–195 (2008).

    Article  PubMed  Google Scholar 

  48. Olmos, D. et al. Baseline circulating tumor cell counts significantly enhance a prognostic score for patients participating in phase I oncology trials. Clin. Cancer Res. 17, 5188–5196 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Neesse, A. et al. Stromal biology and therapy in pancreatic cancer. Gut 60, 861–868 (2010).

    Article  PubMed  Google Scholar 

  50. Polyak, K., Haviv, I. & Campbell, I. G. Co-evolution of tumor cells and their microenvironment. Trends Genet. 25, 30–38 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Whiteside, T. L. The tumor microenvironment and its role in promoting tumor growth. Oncogene 27, 5904–5912 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hwang, R. F. et al. Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res. 68, 918–926 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Olive, K. P. et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Grippo, P. J. & Tuveson, D. A. Deploying mouse models of pancreatic cancer for chemoprevention studies. Cancer Prev. Res. (Phila.) 3, 1382–1387 (2010).

    Article  Google Scholar 

  55. Infante, J. R. et al. Peritumoral fibroblast SPARC expression and patient outcome with resectable pancreatic adenocarcinoma. J. Clin. Oncol. 25, 319–325 (2007).

    Article  PubMed  Google Scholar 

  56. Von Hoff, D. D. et al. Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J. Clin. Oncol. 29, 4548–4554 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Frese, K. K. et al. nab-Paclitaxel potentiates gemcitabine activity by reducing cytidine deaminase levels in a mouse model of pancreatic cancer. Cancer Discov. 2, 261–269 (2012).

    Article  CAS  Google Scholar 

  58. Klimstra, D. S. & Longnecker, D. S. K-ras mutations in pancreatic ductal proliferative lesions. Am. J. Pathol. 145, 1547–1550 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Collins, M. A. et al. Oncogenic Kras is required for both the initiation and maintenance of pancreatic cancer in mice. J. Clin. Invest. 122, 639–653 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Grocock, C. J. et al. The variable phenotype of the p.A16V mutation of cationic trypsinogen (PRSS1) in pancreatitis families. Gut 59, 357–363 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Yan, L. et al. Molecular analysis to detect pancreatic ductal adenocarcinoma in high-risk groups. Gastroenterology 128, 2124–2130 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Rowinsky, E. K., Windle, J. J. & Von Hoff, D. D. Ras protein farnesyltransferase: a strategic target for anticancer therapeutic development. J. Clin. Oncol. 17, 3631–3652 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Porzner, M. & Seufferlein, T. Novel approaches to target pancreatic cancer. Curr. Cancer Drug Targets 11, 698–713 (2011).

    Article  PubMed  Google Scholar 

  64. Bendell, J. & Goldberg, R. M. Targeted agents in the treatment of pancreatic cancer: history and lessons learned. Curr. Opin. Oncol. 19, 390–395 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. da Cunha Santos, G. et al. Molecular predictors of outcome in a phase 3 study of gemcitabine and erlotinib therapy in patients with advanced pancreatic cancer: National Cancer Institute of Canada Clinical Trials Group Study PA.3. Cancer 116, 5599–5607 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Jimeno, A. et al. Coordinated epidermal growth factor receptor pathway gene overexpression predicts epidermal growth factor receptor inhibitor sensitivity in pancreatic cancer. Cancer Res. 68, 2841–2849 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. RTOG 0848 protocol information. Radiation Therapy Oncology Group [online], (2012).

  68. Lowery, M. A. & O'Reilly, E. M. New approaches to the treatment of pancreatic cancer: from tumor-directed therapy to immunotherapy. BioDrugs 25, 207–216 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Middleton, G., Ghaneh, P., Costello, E., Greenhalf, W. & Neoptolemos, J. P. New Treatment options for advanced pancreatic cancer. Expert Rev. Gastroenterol. Hepatol. 2, 673–696 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Kindler, H. L. et al. A placebo-controlled, randomized phase II study of conatumumab (C) or AMG 479 (A) or placebo (P) plus gemcitabine (G.) in patients (pts) with metastatic pancreatic cancer (mPC) [abstract]. J. Clin. Oncol. a4035 (2010).

  71. Nguyen, L. V., Vanner, R., Dirks, P. & Eaves, C. J. Cancer stem cells: an evolving concept. Nat. Rev. Cancer 12, 133–143 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. McCubrey, J. A. et al. Targeting the cancer initiating cell: the ultimate target for cancer therapy. Curr. Pharm. Des. 18, 1784–1795 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Shah, A. N. et al. Development and characterization of gemcitabine-resistant pancreatic tumor cells. Ann. Surg. Oncol. 14, 3629–3637 (2007).

    Article  PubMed  Google Scholar 

  74. Li, C. et al. c-Met is a marker of pancreatic cancer stem cells and therapeutic target. Gastroenterology 141, 2218–2227 e5 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Ranganathan, P., Weaver, K. L. & Capobianco, A. J. Notch signalling in solid tumours: a little bit of everything but not all the time. Nat. Rev. Cancer 11, 338–351 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Ristorcelli, E. & Lombardo, D. Targeting Notch signaling in pancreatic cancer. Expert Opin. Ther. Targets 14, 541–552 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Wang, Z. et al. Targeting notch to eradicate pancreatic cancer stem cells for cancer therapy. Anticancer Res. 31, 1105–1113 (2011).

    CAS  PubMed  Google Scholar 

  78. Plentz, R. et al. Inhibition of gamma-secretase activity inhibits tumor progression in a mouse model of pancreatic ductal adenocarcinoma. Gastroenterology 136, 1741–1749 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Cook, N. et al. Gamma secretase inhibition promotes hypoxic necrosis in mouse pancreatic ductal adenocarcinoma. J. Exp. Med. 209, 437–444 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Morris, J. P. 4th, Wang, S. C. & Hebrok, M. KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat. Rev. Cancer 10, 683–695 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hidalgo, M. & Maitra, A. The hedgehog pathway and pancreatic cancer. N. Engl. J. Med. 361, 2094–2096 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Olson, P. & Hanahan, D. Cancer. Breaching the cancer fortress. Science 324, 1400–1401 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Feldmann, G. et al. Hedgehog inhibition prolongs survival in a genetically engineered mouse model of pancreatic cancer. Gut 57, 1420–1430 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Feldmann, G. et al. An orally bioavailable small-molecule inhibitor of Hedgehog signaling inhibits tumor initiation and metastasis in pancreatic cancer. Mol. Cancer Ther. 7, 2725–2735 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stephenson, J. et al. The safety of IPI-926, a novel hedgehog pathway inhibitor, in combination with gemcitabine in patients (pts) with metastatic pancreatic cancer [abstract 4114]. J. Clin. Oncol. 29 (2011).

  86. Infinity reports update from phase 2 study of saridegib plus gemcitabine in patients with metastatic pancreatic cancer. Infinity Pharmaceuticals [online], (2012).

  87. Beatty, G. L. et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331, 1612–1616 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hahn, S. A. et al. BRCA2 germline mutations in familial pancreatic carcinoma. J. Natl Cancer Inst. 95, 214–221 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Bartsch, D. K., Gress, T. M. & Langer, P. Familial pancreatic cancer—current knowledge. Nat. Rev. Gastroenterol. Hepatol. http://dx.doi/org/10.1038/nrgastro.2012.111.

  90. Rouleau, M., Patel, A., Hendzel, M. J., Kaufmann, S. H. & Poirier, G. G. PARP inhibition: PARP1 and beyond. Nat. Rev. Cancer 10, 293–301 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fogelman, D. R. et al. Evidence for the efficacy of Iniparib, a PARP-1 inhibitor, in BRCA2-associated pancreatic cancer. Anticancer Res. 31, 1417–1420 (2011).

    PubMed  Google Scholar 

  92. US National Library of Medicine. Study to assess the safety and tolerability of a PARP inhibitor in combination with gemcitabine in pancreastic cancer. ClinicalTrials.gov [online], (2012).

  93. Sawai, H. et al. The G691S RET polymorphism increases glial cell line-derived neurotrophic factor-induced pancreatic cancer cell invasion by amplifying mitogen-activated protein kinase signaling. Cancer Res. 65, 11536–11544 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Ito, Y. et al. Expression of glial cell line-derived neurotrophic factor family members and their receptors in pancreatic cancers. Surgery 138, 788–794 (2005).

    Article  PubMed  Google Scholar 

  95. Wells, S. A. Jr et al. Vandetanib in patients with locally advanced or metastatic medullary thyroid cancer: a randomized, double-blind phase III trial. J. Clin. Oncol. 30, 134–141 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. US National Library of Medicine. Clinical trial comparing gemcitabine and vandetanib therapy with gemcitabine alone in pancreatic cancer. ClinicalTrial.gov [online], (2012).

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to John P. Neoptolemos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costello, E., Greenhalf, W. & Neoptolemos, J. New biomarkers and targets in pancreatic cancer and their application to treatment. Nat Rev Gastroenterol Hepatol 9, 435–444 (2012). https://doi.org/10.1038/nrgastro.2012.119

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2012.119

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing