Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetics of IL28B and HCV—response to infection and treatment

Abstract

The IL28B locus attracted the attention of HCV researchers after a series of genome-wide association studies independently identified a strong association between common IL28B polymorphisms and the outcome of PEG-IFN-α plus ribavirin combination therapy in patients chronically infected with HCV genotype 1. This association was subsequently replicated for other HCV genotypes and has been linked to spontaneous eradication of HCV, development of steatosis and biochemical changes (such as altered levels of γ-glutamyl transpeptidase and LDL). Despite the introduction of direct-acting antiviral drugs, IL28B genetics are likely to play a part in patient selection and treatment decisions—moving towards a personalized approach to therapy. In HCV-infected patients with the so-called favourable IL28B genotype (rs12979860 CC; associated with better treatment response), hepatic expression levels of IL28B and interferon-stimulated genes seem to be reduced at baseline, but are induced more strongly after IFN-α administration, perhaps resulting in more effective elimination of the virus. Clarification of the mechanisms underlying these biological phenomena will lead to improved understanding of the antiviral effects of IFN-λ and, ideally, to the development of better therapies against HCV infection. This Review summarizes current understanding of the role of IL28B in HCV infection and response to therapy.

Key Points

  • The 130–170 million people chronically infected with HCV have an increased risk of cirrhosis, hepatocellular carcinoma and liver failure

  • Several single nucleotide polymorphisms upstream of the IL28B gene are associated with spontaneous clearance of HCV and improved response to PEG-IFN-α plus ribavirin combination therapy

  • In patients with the so-called favourable IL28B allele (rs12979860 CC), associated with better response to therapy, HCV RNA levels decline rapidly with treatment and IFN-α therapy induces strong interferon-stimulated gene (ISG) expression

  • In patients with unfavourable IL28B genotypes (rs12979860 CC/TT), ISG expression tends to be refractory to further IFN stimulation, resulting in poor response to IFN therapy

  • IL28B genotype might also predict response to telaprevir triple therapy, although it might not be as effective at predicting the treatment response in this scenario as with PEG-IFN-α plus ribavirin combination therapy

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The IL28–IL29 locus on chromosome 19.
Figure 2: Potential role of the favourable IL28B genotype in the response to interferon therapy.
Figure 3: Potential role of the unfavourable IL28B genotype in the response to interferon therapy.

Similar content being viewed by others

References

  1. Choo, Q. L. et al. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244, 359–362 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Rehermann, B. Hepatitis C virus versus innate and adaptive immune responses: a tale of coevolution and coexistence. J. Clin. Invest. 119, 1745–1754 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Davis, G. L., Albright, J. E., Cook, S. F. & Rosenberg, D. M. Projecting future complications of chronic hepatitis C in the United States. Liver Transpl. 9, 331–338 (2003).

    Article  PubMed  Google Scholar 

  4. Hadziyannis, S. J. et al. Peginterferon-alpha2a and ribavirin combination therapy in chronic hepatitis C: a randomized study of treatment duration and ribavirin dose. Ann. Intern. Med. 140, 346–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Fowell, A. J. & Nash, K. L. Telaprevir: a new hope in the treatment of chronic hepatitis C? Adv. Ther. 27, 512–522 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Ge, D. et al. Genetic variation in IL28B predicts hepatitis C treatment-induced viral clearance. Nature 461, 399–401 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Tanaka, Y. et al. Genome-wide association of IL28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C. Nat. Genet. 41, 1105–1109 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Suppiah, V. et al. IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy. Nat. Genet. 41, 1100–1104 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Thomas, D. L. et al. Genetic variation in IL28B and spontaneous clearance of hepatitis C virus. Nature 461, 798–801 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gad, H. H. et al. Interferon-λ is functionally an interferon but structurally related to the interleukin-10 family. J. Biol. Chem. 284, 20869–20875 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kotenko, S. V. et al. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat. Immunol. 4, 69–77 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Sheppard, P. et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat. Immunol. 4, 63–68 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Yoshimoto, K. et al. Interleukin-28B acts synergistically with cisplatin to suppress the growth of head and neck squamous cell carcinoma. J. Immunother. 34, 139–148 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Morrow, M. P. et al. IL-28B/IFN-lambda 3 drives granzyme B loading and significantly increases CTL killing activity in macaques. Mol. Ther. 18, 1714–1723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, L. et al. IL28B inhibits hepatitis C virus replication through the JAK-STAT pathway. J. Hepatol. 55, 289–298 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Zhou, Z. et al. Type III interferon (IFN) induces a type I IFN-like response in a restricted subset of cells through signaling pathways involving both the Jak-STAT pathway and the mitogen-activated protein kinases. J. Virol. 81, 7749–7758 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thomson, S. J. et al. The role of transposable elements in the regulation of IFN-λ1 gene expression. Proc. Natl Acad. Sci. USA 106, 11564–11569 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sommereyns, C., Paul, S., Staeheli, P. & Michiels, T. IFN-lambda (IFN-λ) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo. PLoS Pathog. 4, e1000017 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Marcello, T. et al. Interferons alpha and lambda inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics. Gastroenterology 131, 1887–1898 (2006).

    Article  PubMed  Google Scholar 

  20. Iversen, M. B., Ank, N., Melchjorsen, J. & Paludan, S. R. Expression of type III interferon (IFN) in the vaginal mucosa is mediated primarily by dendritic cells and displays stronger dependence on NF-kappaB than type I IFNs. J. Virol. 84, 4579–4586 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thomas, D. L. et al. The natural history of hepatitis C virus infection: host, viral, and environmental factors. JAMA 284, 450–456 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Kenny-Walsh, E. Clinical outcomes after hepatitis C infection from contaminated anti-D immune globulin. Irish Hepatology Research Group. N. Engl. J. Med. 340, 1228–1233 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Naito, M. et al. SNPs in the promoter region of the osteopontin gene as a marker predicting the efficacy of interferon-based therapies in patients with chronic hepatitis C. J. Gastroenterol. 40, 381–388 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Tsukada, H. et al. A polymorphism in MAPKAPK3 affects response to interferon therapy for chronic hepatitis C. Gastroenterology 136, 1796–1805 e6 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Matsuyama, N. et al. The dinucleotide microsatellite polymorphism of the IFNAR1 gene promoter correlates with responsiveness of hepatitis C patients to interferon. Hepatol. Res. 25, 221–225 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Knapp, S. et al. Polymorphisms in interferon-induced genes and the outcome of hepatitis C virus infection: roles of MxA, OAS-1 and PKR. Genes Immun. 4, 411–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Lange, C. M. & Zeuzem, S. IL28B single nucleotide polymorphisms in the treatment of hepatitis C. J. Hepatol. 55, 692–701 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Rauch, A. et al. Genetic variation in IL28B is associated with chronic hepatitis C and treatment failure: a genome-wide association study. Gastroenterology 138, 1338–1345 e1–7 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. McCarthy, J. J. et al. Replicated association between an IL28B gene variant and a sustained response to pegylated interferon and ribavirin. Gastroenterology 138, 2307–2314 (2010).

    Article  PubMed  Google Scholar 

  30. Tillmann, H. L. et al. A polymorphism near IL28B is associated with spontaneous clearance of acute hepatitis C virus and jaundice. Gastroenterology 139, 1586–1592 e1 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Ruiz-Extremera, A. et al. Genetic variation in interleukin 28B with respect to vertical transmission of hepatitis C virus and spontaneous clearance in HCV-infected children. Hepatology 53, 1830–1838 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Lunge, V. R. et al. IL28B polymorphism associated with spontaneous clearance of hepatitis C infection in a Southern Brazilian HIV type 1 population. AIDS Res. Hum. Retroviruses 28, 215–219 (2011).

    Article  PubMed  CAS  Google Scholar 

  33. Knapp, S. et al. A polymorphism in IL28B distinguishes exposed, uninfected individuals from spontaneous resolvers of HCV infection. Gastroenterology 141, 1320–325 e–2 (2011).

    Article  CAS  Google Scholar 

  34. Chayama, K. et al. Pretreatment virus load and multiple amino acid substitutions in the interferon sensitivity-determining region predict the outcome of interferon treatment in patients with chronic genotype 1b hepatitis C virus infection. Hepatology 25, 745–749 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Hayes, C. N. et al. HCV substitutions and IL28B polymorphisms on outcome of peg-interferon plus ribavirin combination therapy. Gut 60, 261–267 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Lindh, M. et al. IL28B polymorphisms determine early viral kinetics and treatment outcome in patients receiving peginterferon/ribavirin for chronic hepatitis C genotype 1. J. Viral Hepat. 18, e325–331 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Ochi, H. et al. IL-28B predicts response to chronic hepatitis C therapy--fine-mapping and replication study in Asian populations. J. Gen. Virol. 92, 1071–1081 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Thompson, A. J. et al. Interleukin-28B polymorphism improves viral kinetics and is the strongest pretreatment predictor of sustained virologic response in genotype 1 hepatitis C virus. Gastroenterology 139, 120–129 e18 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Yu, M. L. et al. Role of interleukin-28B polymorphisms in the treatment of hepatitis C virus genotype 2 infection in Asian patients. Hepatology 53, 7–13 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Mangia, A. et al. Limited use of interleukin 28B in the setting of response-guided treatment with detailed on-treatment virological monitoring. Hepatology 54, 772–780 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Bochud, P. Y. et al. IL28B polymorphisms predict reduction of HCV RNA from the first day of therapy in chronic hepatitis C. J. Hepatol. 55, 980–988 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Moghaddam, A. et al. IL28B genetic variation and treatment response in patients with hepatitis C virus genotype 3 infection. Hepatology 53, 746–754 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Scott, J. et al. IL28B genotype effects during early treatment with peginterferon and ribavirin in difficult-to-treat hepatitis C virus infection. J. Infect. Dis. 204, 419–425 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lin, C. Y. et al. IL28B SNP rs12979860 is a critical predictor for on-treatment and sustained virologic response in patients with hepatitis C virus genotype-1 infection. PLoS ONE 6, e18322 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Stattermayer, A. F. et al. Impact of IL28B genotype on the early and sustained virologic response in treatment-naive patients with chronic hepatitis C. Clin. Gastroenterol. Hepatol. 9, 344–350 e2 (2011).

    Article  PubMed  CAS  Google Scholar 

  46. Hsu, C. S. et al. Association of IL28B gene variations with mathematical modeling of viral kinetics in chronic hepatitis C patients with IFN plus ribavirin therapy. Proc. Natl Acad. Sci. USA 108, 3719–3724 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dill, M. T. et al. Interferon-induced gene expression is a stronger predictor of treatment response than IL28B genotype in patients with hepatitis C. Gastroenterology 140, 1021–1031 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Honda, M. et al. Hepatic ISG expression is associated with genetic variation in interleukin 28B and the outcome of IFN therapy for chronic hepatitis C. Gastroenterology 139, 499–509 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Sarasin-Filipowicz, M. et al. Interferon signaling and treatment outcome in chronic hepatitis C. Proc. Natl Acad. Sci USA 105, 7034–7039 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Abe, H. et al. IL28 variation affects expression of interferon stimulated genes and peg-interferon and ribavirin therapy. J. Hepatol. 54, 1094–1101 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Abe, H. et al. Inverse association of IL28B genotype and liver mRNA expression of genes promoting or suppressing antiviral state. J. Med. Virol. 83, 1597–1607 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Shebl, F. M. et al. In the absence of HCV infection, interferon stimulated gene expression in liver is not associated with IL28B genotype. Gastroenterology 139, 1422–1424 (2010).

    Article  PubMed  Google Scholar 

  53. Asahina, Y. et al. Association of gene expression involving innate immunity and genetic variation in IL28B with antiviral response. Hepatology 55, 20–29 (2011).

    Article  PubMed  CAS  Google Scholar 

  54. Abe, H. et al. Common variation of IL28 affects gamma-GTP levels and inflammation of the liver in chronically infected hepatitis C virus patients. J. Hepatol. 53, 439–443 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Fabris, C. et al. IL-28B rs12979860 C/T allele distribution in patients with liver cirrhosis: role in the course of chronic viral hepatitis and the development of HCC. J. Hepatol. 54, 716–722 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Falleti, E. et al. Role of interleukin 28B rs12979860 C/T polymorphism on the histological outcome of chronic hepatitis C: relationship with gender and viral genotype. J. Clin. Immunol. 31, 891–899 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Marabita, F. et al. Genetic variation in the interleukin-28B gene is not associated with fibrosis progression in patients with chronic hepatitis C and known date of infection. Hepatology 54, 1127–1134 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Li, J. H. et al. Interferon-lambda genotype and low serum low-density lipoprotein cholesterol levels in patients with chronic hepatitis C infection. Hepatology 51, 1904–1911 (2010).

    Article  PubMed  Google Scholar 

  59. Tillmann, H. L. et al. Beneficial IL28B genotype associated with lower frequency of hepatic steatosis in patients with chronic hepatitis C. J. Hepatol. 55, 1195–1200 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Halfon, P. et al. A single IL28B genotype SNP rs12979860 determination predicts treatment response in patients with chronic hepatitis C genotype 1 virus. Eur. J. Gastroenterol. Hepatol. 23, 931–935 (2011).

    Article  PubMed  Google Scholar 

  61. Ladero, J. M. et al. Predicting response to therapy in chronic hepatitis C: an approach combining IL28B gene polymorphisms and clinical data. J. Gastroenterol. Hepatol. 27, 279–285 (2011).

    Article  CAS  Google Scholar 

  62. Smith, K. R. et al. Identification of improved IL28B SNPs and haplotypes for prediction of drug response in treatment of hepatitis C using massively parallel sequencing in a cross-sectional European cohort. Genome Med. 3, 57 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mangia, A. et al. An IL28B polymorphism determines treatment response of hepatitis C virus genotype 2 or 3 patients who do not achieve a rapid virologic response. Gastroenterology 139, 821–827 e1 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Asselah, T. et al. IL28B polymorphism is associated with treatment response in patients with genotype 4 chronic hepatitis C. J. Hepatol. 56, 527–532 (2011).

    Article  PubMed  CAS  Google Scholar 

  65. Kawaoka, T. et al. Predictive value of the IL28B polymorphism on the effect of interferon therapy in chronic hepatitis C patients with genotypes 2a and 2b. J. Hepatol. 54, 408–414 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Lindh, M. et al. Interleukin 28B gene variation at rs12979860 determines early viral kinetics during treatment in patients carrying genotypes 2 or 3 of hepatitis C virus. J. Infect. Dis. 203, 1748–1752 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Sakamoto, N. et al. Association of IL28B variants with response to pegylated-interferon alpha plus ribavirin combination therapy reveals intersubgenotypic differences between genotypes 2a and 2b. J. Med. Virol. 83, 871–878 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Sarrazin, C. et al. Importance of IL28B gene polymorphisms in hepatitis C virus genotype 2 and 3 infected patients. J. Hepatol. 54, 415–421 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Akuta, N. et al. Amino acid substitution in hepatitis C virus core region and genetic variation near the interleukin 28B gene predict viral response to telaprevir with peginterferon and ribavirin. Hepatology 52, 421–429 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Chayama, K. et al. IL28B but not ITPA polymorphism is predictive of response to pegylated interferon, ribavirin, and telaprevir triple therapy in patients with genotype 1 hepatitis C. J. Infect. Dis. 204, 84–93 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Grebely, J. et al. Potential role for interleukin-28B genotype in treatment decision-making in recent hepatitis C virus infection. Hepatology 52, 1216–1224 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Montes-Cano, M. A. et al. Interleukin-28B genetic variants and hepatitis virus infection by different viral genotypes. Hepatology 52, 33–37 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Aizawa, Y. et al. Genotype rs8099917 near the IL28B gene and amino acid substitution at position 70 in the core region of the hepatitis C virus are determinants of serum apolipoprotein B-100 concentration in chronic hepatitis C. Mol. Cell. Biochem. 360, 29–14 (2011).

    Google Scholar 

  74. Urban, T. J. et al. IL28B genotype is associated with differential expression of intrahepatic interferon-stimulated genes in patients with chronic hepatitis C. Hepatology 52, 1888–1896 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Onomoto, K. et al. Dysregulation of IFN system can lead to poor response to pegylated interferon and ribavirin therapy in chronic hepatitis C. PLoS ONE 6, e19799 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Barreiro, P. et al. Influence of interleukin-28B single-nucleotide polymorphisms on progression to liver cirrhosis in human immunodeficiency virus-hepatitis C virus-coinfected patients receiving antiretroviral therapy. J. Infect. Dis. 203, 1629–1636 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Kawai, T. et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 6, 981–988 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Xu, L. G. et al. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol. Cell. 19, 727–740 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Seth, R. B., Sun, L., Ea, C. K. & Chen, Z. J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122, 669–682 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Sarasin-Filipowicz, M. et al. Interferon signaling and treatment outcome in chronic hepatitis C. Proc. Natl Acad. Sci. USA 105, 7034–7039 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Makowska, Z., Duong, F. H., Trincucci, G., Tough, D. F. & Heim, M. H. Interferon-beta and interferon-lambda signaling is not affected by interferon-induced refractoriness to interferon-alpha in vivo. Hepatology 53, 1154–1163 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Muir, A. J. et al. Phase 1b study of pegylated interferon lambda 1 with or without ribavirin in patients with chronic genotype 1 hepatitis C virus infection. Hepatology 52, 822–832 (2010).

    Article  CAS  PubMed  Google Scholar 

  83. O'Brien, T. R. et al. An IL28B genotype-based clinical prediction model for treatment of chronic hepatitis C. PLoS ONE 6, e20904 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Romero-Gomez, M., Eslam, M., Ruiz, A. & Maraver, M. Genes and hepatitis C: susceptibility, fibrosis progression and response to treatment. Liver Int. 31, 443–460 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Kurosaki, M. et al. Pre-treatment prediction of response to pegylated-interferon plus ribavirin for chronic hepatitis C using genetic polymorphism in IL28B and viral factors. J. Hepatol. 54, 439–448 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Ochi, H. et al. Toward the establishment of a prediction system for the personalized treatment of chronic hepatitis C. J. Infect. Dis. 205, 204–210 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Suppiah, V. et al. IL28B, HLA-C, and KIR variants additively predict response to therapy in chronic hepatitis C virus infection in a European cohort: a cross-sectional study. PLoS Med. 8, e1001092 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. de Rueda, P. M. et al. Importance of host genetic factors HLA and IL28B as predictors of response to pegylated interferon and ribavirin. Am. J. Gastroenterol. 106, 1246–1254 (2011).

    Article  PubMed  CAS  Google Scholar 

  89. Fattovich, G. et al. IL28B polymorphisms, IP-10 and viral load predict virological response to therapy in chronic hepatitis C. Aliment. Pharmacol. Ther. 33, 1162–1172 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Bitetto, D. et al. Complementary role of vitamin D deficiency and the interleukin-28B rs12979860 C/T polymorphism in predicting antiviral response in chronic hepatitis C. Hepatology 53, 1118–1126 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Akuta, N. et al. Amino acid substitution in hcv core region and genetic variation near the IL28B gene affect viral dynamics during telaprevir, peginterferon and ribavirin treatment. Intervirology http://dx.doi.org/10.1159/000323526.

  92. Fukuhara, T. et al. Variants in IL28B in liver recipients and donors correlate with response to peg-interferon and ribavirin therapy for recurrent hepatitis C. Gastroenterology 139, 1577–1585 e1–e3 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Charlton, M. R. et al. Interleukin-28B polymorphisms are associated with histological recurrence and treatment response following liver transplantation in patients with hepatitis C virus infection. Hepatology 53, 317–324 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Coto-Llerena, M. et al. Donor and recipient IL28B polymorphisms in HCV-infected patients undergoing antiviral therapy before and after liver transplantation. Am. J. Transplant. 11, 1051–1057 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Akuta, N. et al. Amino acid substitution in HCV core/NS5A region and genetic variation near IL28B gene affect treatment efficacy to interferon plus ribavirin combination therapy. Intervirology 55, 231–241 (2011).

    Article  PubMed  CAS  Google Scholar 

  97. Zeuzem, S. et al. Expert opinion on the treatment of patients with chronic hepatitis C. J. Viral Hepat. 16, 75–90 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grants-in-Aid for scientific research and development from the Ministry of Education, Culture, Sports, Science and Technology, and the Ministry of Health, Labour and Welfare, Government of Japan.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching data for the article, discussion of content and reviewing and/or editing the manuscript before submission. C. N. Hayes and K. Chayama wrote the article.

Corresponding author

Correspondence to Kazuaki Chayama.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayes, C., Imamura, M., Aikata, H. et al. Genetics of IL28B and HCV—response to infection and treatment. Nat Rev Gastroenterol Hepatol 9, 406–417 (2012). https://doi.org/10.1038/nrgastro.2012.101

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2012.101

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing