Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Surgical approaches to the treatment of obesity

Abstract

Bariatric surgery, through its efficacy and improved safety, is emerging as an important and broadly available treatment for people with severe and complex obesity that has not responded adequately to other therapy. Established procedures, such as Roux-en-Y gastric bypass and adjustable gastric banding, account for more than 80% of bariatric surgical procedures globally. Sleeve gastrectomy has emerged as a stand-alone procedure. Truly malabsoptive procedures, such as biliopancreatic diversion and its duodenal switch variant, have a diminishing role as primary procedures, but remain an option for patients who do not respond adequately to less disruptive procedures. The procedures vary considerably in their postoperative morbidity and mortality; pattern and extent of weight loss; nature and severity of long-term complications; and nutritional requirements and risks. There is no perfect procedure—an informed risk and benefit assessment should be made by each patient. Gastroenterologists also need to be familiar with the risks and benefits of current and emerging procedures as they are likely to be increasingly involved in the integrated care of these patients.

Key Points

  • Bariatric surgery has an established role in achieving sustained weight loss, improving obesity-related conditions and saving lives

  • During the past decade there has been a major increase in the use of bariatric surgery and a reduction in postoperative morbidity and mortality

  • There is no perfect bariatric procedure; selection is based on local availability, the balance of risks and benefits for an individual, and ultimately patient choice

  • The nature of bariatric surgery places the gastroenterologist on the front line for detecting and evaluating surgical complications

  • Interventions to the gut can lead to major changes in energy balance and metabolism; future research will be guided by an improved understanding of the mechanisms involved

  • Gastroenterologists will be increasingly involved in the development and implementation of a range of novel endoluminal bariatric and metabolic procedures

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The four established bariatric surgical procedures.
Figure 2: Obesity, especially central or abdominal obesity, and weight gain generate a complex metabolic, inflammatory and physical cascade that lead through a number of pathways to the more serious conditions associated with obesity.

Similar content being viewed by others

References

  1. Alverdy, J. C. et al. Bariatric surgery: a history of empiricism, a future in science. J. Gastrointest. Surg. 13, 465–477 (2009).

    Article  PubMed  Google Scholar 

  2. Picot, J. et al. The clinical effectiveness and cost-effectiveness of bariatric (weight loss) surgery for obesity: a systematic review and economic evaluation. Health Technol. Assess. 13, 1–190, 215–357, iii–iv (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Finkelstein, E. A. & Brown, D. S. A cost-benefit simulation model of coverage for bariatric surgery among full-time employees. Am. J. Manag. Care 11, 641–646 (2005).

    PubMed  Google Scholar 

  4. Whitaker, R. C., Wright, J. A., Pepe, M. S., Seidel, K. D. & Dietz, W. H. Predicting obesity in young adulthood from childhood and parental obesity. N. Engl. J. Med. 337, 869–873 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Schwartz, M. W. et al. Is the energy homeostasis system inherently biased toward weight gain? Diabetes 52, 232–238 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Rosenbaum, M. et al. Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. J. Clin. Invest. 115, 3579–3586 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rosenbaum, M., Kissileff, H. R., Mayer, L. E., Hirsch, J. & Leibel, R. L. Energy intake in weight-reduced humans. Brain Res. 1350, 95–102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Buchwald, H. & Oien, D. M. Metabolic/bariatric surgery Worldwide 2008. Obes. Surg. 19, 1605–1611 (2008).

    Article  Google Scholar 

  9. Buchwald, H. & Williams, S. E. Bariatric surgery worldwide 2003. Obes. Surg. 14, 1157–1164 (2003).

    Article  Google Scholar 

  10. DeMaria, E. J., Pate, V., Warthen, M. & Winegar, D. A. Baseline data from American Society for Metabolic and Bariatric Surgery-designated Bariatric Surgery Centers of Excellence using the Bariatric Outcomes Longitudinal Database. Surg. Obes. Relat. Dis. 6, 347–355 (2010).

    Article  PubMed  Google Scholar 

  11. Christou, N. V. et al. Surgery decreases long-term mortality, morbidity, and health care use in morbidly obese patients. Ann. Surg. 240, 416–423 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  12. [No authors listed]. Gastrointestinal surgery for severe obesity: National Institutes of Health Consensus Development Conference Statement. Am. J. Clin. Nutr. 55 (2 Suppl.), 615S–619S (1992).

  13. National Institute for Health and Clinical Excellence. Obesity: the prevention, identification, assessment and management of overweight and obesity in adults and children. NICE [online], (2006).

  14. Dixon, J. B., Zimmet, P., Alberti, K. G. & Rubino, F. Bariatric surgery: an IDF statement for obese Type 2 diabetes. Diabet. Med. 28, 628–642 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sharma, A. M. & Kushner, R. F. A proposed clinical staging system for obesity. Int. J. Obes. (Lond.) 33, 289–295 (2009).

    Article  CAS  Google Scholar 

  16. Sharma, A. M. M, M, M & M: a mnemonic for assessing obesity. Obes. Rev. 11, 808–809 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Dixon, J. B. Referral for a bariatric surgical consultation: it is time to set a standard of care. Obes. Surg. 19, 641–644 (2008).

    Article  PubMed  Google Scholar 

  18. Mechanick, J. I. et al. American Association of Clinical Endocrinologists, The Obesity Society, and American Society for Metabolic & Bariatric Surgery Medical guidelines for clinical practice for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient. Endocr. Pract. 14 (Suppl. 1), 1–83 (2008).

    Article  PubMed  Google Scholar 

  19. Welbourn, R., Fiennes, A., Kinsman, R. & Walton, P. The United Kingdom National Bariatric Surgery Registry—First Registry Report to March 2010. The Association of Upper Gastrointestinal Surgeons of Great Britain and Ireland [online], (2011).

    Google Scholar 

  20. Brethauer, S. A., Hammel, J. P. & Schauer, P. R. Systematic review of sleeve gastrectomy as staging and primary bariatric procedure. Surg. Obes. Relat. Dis. 5, 469–475 (2009).

    Article  PubMed  Google Scholar 

  21. Himpens, J., Dobbeleir, J. & Peeters, G. Long-term results of laparoscopic sleeve gastrectomy for obesity. Ann. Surg. 252, 319–324 (2010).

    Article  PubMed  Google Scholar 

  22. Bohdjalian, A. et al. Sleeve gastrectomy as sole and definitive bariatric procedure: 5-year results for weight loss and ghrelin. Obes. Surg. 20, 535–540 (2010).

    Article  PubMed  Google Scholar 

  23. Deitel, M., Gagner, M., Dixon, J. B., Himpens, J. & Madan, A. K. (Eds). Handbook of Obesity Surgery (FD-Communications Inc., Toronto, 2010).

    Google Scholar 

  24. Andersen, T., Pedersen, B. H., Henriksen, J. H. & Uhrenholdt, A. Pouch emptying of solid foods after gastroplasty for morbid obesity. Scand. J. Gastroenterol. 20, 1175–1179 (1985).

    Article  CAS  PubMed  Google Scholar 

  25. Burton, P. R. et al. Changes in satiety, supra- and infraband transit, and gastric emptying following laparoscopic adjustable gastric banding: a prospective follow-up study. Obes. Surg. 21, 217–223 (2011).

    Article  PubMed  Google Scholar 

  26. de Jong, J. R., van Ramshorst, B., Gooszen, H. G., Smout, A. J. & Tiel-Van Buul, M. M. Weight loss after laparoscopic adjustable gastric banding is not caused by altered gastric emptying. Obes. Surg. 19, 287–292 (2008).

    Article  PubMed  Google Scholar 

  27. Melissas, J. et al. Sleeve gastrectomy: a restrictive procedure? Obes. Surg. 17, 57–62 (2007).

    Article  PubMed  Google Scholar 

  28. Dixon, A. F., Dixon, J. B. & O'Brien, P. E. Laparoscopic adjustable gastric banding induces prolonged satiety: a randomized blind crossover study. J. Clin. Endocrinol. Metab. 90, 813–819 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Hallberg, D. Why the operation I prefer is adjustable gastric banding. Obes. Surg. 1, 187–188 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Kuzmak, L. I. A review of seven years' experience with silicone gastric banding. Obes. Surg. 1, 403–408 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. le Roux, C. W. et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann. Surg. 243, 108–114 (2006).

    Article  PubMed  Google Scholar 

  32. Vetter, M. L., Cardillo, S., Rickels, M. R. & Iqbal, N. Narrative review: effect of bariatric surgery on type 2 diabetes mellitus. Ann. Intern. Med. 150, 94–103 (2009).

    Article  PubMed  Google Scholar 

  33. Pories, W. J. et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann. Surg. 222, 339–350 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rubino, F. Is type 2 diabetes an operable intestinal disease? A provocative yet reasonable hypothesis. Diabetes Care 31 (Suppl. 2), S290–S296 (2008).

    Article  PubMed  Google Scholar 

  35. Cohen, R. V., Schiavon, C. A., Pinheiro, J. S., Correa, J. L. & Rubino, F. Duodenal-jejunal bypass for the treatment of type 2 diabetes in patients with body mass index of 22–34 kg/m2: a report of 2 cases. Surg. Obes. Relat. Dis. 3, 195–197 (2007).

    Article  PubMed  Google Scholar 

  36. Holdstock, C., Zethelius, B., Sundbom, M., Karlsson, F. A. & Eden Engstrom, B. Postprandial changes in gut regulatory peptides in gastric bypass patients. Int. J. Obes. (Lond.) 32, 1640–1646 (2008).

    Article  CAS  Google Scholar 

  37. Laferrere, B. et al. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 93, 2479–2485 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Strader, A. D., Clausen, T. R., Goodin, S. Z. & Wendt, D. Ileal interposition improves glucose tolerance in low dose streptozotocin-treated diabetic and euglycemic rats. Obes. Surg. 19, 96–104 (2009).

    Article  PubMed  Google Scholar 

  39. Wang, T. T. et al. Ileal transposition controls diabetes as well as modified duodenal jejunal bypass with better lipid lowering in a nonobese rat model of type II diabetes by increasing GLP-1. Ann. Surg. 247, 968–975 (2008).

    Article  PubMed  Google Scholar 

  40. Rubino, F. et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann. Surg. 244, 741–749 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Geloneze, B. et al. Surgery for nonobese type 2 diabetic patients: an interventional study with duodenal-jejunal exclusion. Obes. Surg. 19, 1077–1083 (2009).

    Article  PubMed  Google Scholar 

  42. Schouten, R. et al. A multicenter, randomized efficacy study of the EndoBarrier Gastrointestinal Liner for presurgical weight loss prior to bariatric surgery. Ann. Surg. 251, 236–243 (2010).

    Article  PubMed  Google Scholar 

  43. Vidal, J. et al. Short-term effects of sleeve gastrectomy on type 2 diabetes mellitus in severely obese subjects. Obes. Surg. 17, 1069–1074 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Peterli, R. et al. Improvement in glucose metabolism after bariatric surgery: comparison of laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: a prospective randomized trial. Ann. Surg. 250, 234–241 (2009).

    Article  PubMed  Google Scholar 

  45. Lee, W. J. et al. Gastric bypass vs sleeve gastrectomy for type 2 diabetes mellitus: a randomized controlled trial. Arch. Surg. 146, 143–148 (2011).

    Article  PubMed  Google Scholar 

  46. Dixon, J. B., Dixon, A. F. & O'Brien, P. E. Improvements in insulin sensitivity and beta-cell function (HOMA) with weight loss in the severely obese. Diabet. Med. 20, 127–134 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Dixon, J. B., Anderson, M., Cameron-Smith, D. & O'Brien, P. E. Sustained weight loss in obese subjects has benefits that are independent of attained weight. Obes. Res. 12, 1895–1902 (2004).

    Article  PubMed  Google Scholar 

  48. Buchwald, H. et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am. J. Med. 122, 248–256 (2009).

    Article  PubMed  Google Scholar 

  49. Dixon, J. B. et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA 299, 316–323 (2008).

    CAS  PubMed  Google Scholar 

  50. Dixon, J. B. & O'Brien, P. Health outcomes of severely obese type 2 diabetic subjects 1 year after laparoscopic adjustable gastric banding. Diabetes Care 25, 358–363 (2002).

    Article  PubMed  Google Scholar 

  51. Schauer, P. et al. Effect of laparoscopic roux-en Y gastric bypass on type 2 diabetes mellitis. Ann. Surg. 238, 467–485 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dixon, J. B. Surgical treatment for obesity and its impact on non-alcoholic steatohepatitis. Clin. Liver Dis. 11, 141–154 (2007).

    Article  PubMed  Google Scholar 

  53. Kolotkin, R. L., Crosby, R. D., Gress, R. E., Hunt, S. C. & Adams, T. D. Two-year changes in health-related quality of life in gastric bypass patients compared with severely obese controls. Surg. Obes. Relat. Dis. 5, 250–256 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Dixon, J. B., Dixon, M. E. & O'Brien, P. E. Depression in association with severe obesity: changes with weight loss. Arch. Intern. Med. 163, 2058–2065 (2003).

    Article  PubMed  Google Scholar 

  55. Sjostrom, C. D., Peltonen, M., Wedel, H. & Sjostrom, L. Differentiated long-term effects of intentional weight loss on diabetes and hypertension. Hypertension 36, 20–25 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Dixon, J. B. & O'Brien, P. A disparity between conventional lipid and insulin resistance markers at body mass index levels greater than 34 kg/m2. Int. J. Obes. Relat. Metab. Disord. 25, 793–797 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Livingston, E. H., Chandalia, M. & Abate, N. Do current body mass index criteria for obesity surgery reflect cardiovascular risk? Surg. Obes. Relat. Dis. 3, 577–585 (2007).

    Article  PubMed  Google Scholar 

  58. Adams, T. D. et al. Long-term mortality after gastric bypass surgery. N. Engl. J. Med. 357, 753–761 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Tindle, H. A. et al. Risk of suicide after long-term follow-up from bariatric surgery. Am. J. Med. 123, 1036–1042 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Christensen, R., Kristensen, P. K., Bartels, E. M., Bliddal, H. & Astrup, A. Efficacy and safety of the weight-loss drug rimonabant: a meta-analysis of randomised trials. Lancet 370, 1706–1713 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Berthoud, H. R. Vagal and hormonal gut–brain communication: from satiation to satisfaction. Neurogastroenterol. Motil. 20 (Suppl. 1), 64–72 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Soeki, T. et al. Ghrelin suppresses cardiac sympathetic activity and prevents early left ventricular remodeling in rats with myocardial infarction. Am. J. Physiol. 294, H426–H432 (2008).

    CAS  Google Scholar 

  63. Rossi, F. et al. Ghrelin inhibits contraction and proliferation of human aortic smooth muscle cells by cAMP/PKA pathway activation. Atherosclerosis 203, 97–104 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Schwenke, D. O. et al. Early ghrelin treatment after myocardial infarction prevents an increase in cardiac sympathetic tone and reduces mortality. Endocrinology 149, 5172–5176 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Granata, R., Isgaard, J., Alloatti, G. & Ghigo, E. Cardiovascular actions of the ghrelin gene-derived peptides and growth hormone-releasing hormone. Exp. Biol. Med. (Maywood) 236, 505–514 (2011).

    Article  CAS  Google Scholar 

  66. Lutter, M. et al. The orexigenic hormone ghrelin defends against depressive symptoms of chronic stress. Nat. Neurosci. 11, 752–753 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lambert, E. et al. Ghrelin modulates sympathetic nervous system activity and stress response in lean and overweight men. Hypertension doi:10.1161/HYPERTENSIONAHA.111.171025.

    Article  CAS  PubMed  Google Scholar 

  68. Cummings, D. E. et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N. Engl. J. Med. 346, 1623–1630 (2002).

    Article  PubMed  Google Scholar 

  69. Berrington de Gonzalez, A. et al. Body-mass index and mortality among 1.46 million white adults. N. Engl. J. Med. 363, 2211–2219 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Sjostrom, L. et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N. Engl. J. Med. 357, 741–752 (2007).

    Article  PubMed  Google Scholar 

  71. Peeters, A. et al. Substantial intentional weight loss and mortality in the severely obese. Ann. Surg. 246, 1028–1033 (2007).

    Article  PubMed  Google Scholar 

  72. Busetto, L. et al. Comparative long-term mortality after laparoscopic adjustable gastric banding versus nonsurgical controls. Surg. Obes. Relat. Dis. 3, 496–502 (2007).

    Article  PubMed  Google Scholar 

  73. Colagiuri, S. et al. The cost of overweight and obesity in Australia. Med. J. Aust. 192, 260–264 (2010).

    Article  PubMed  Google Scholar 

  74. Tsai, A. G., Williamson, D. F. & Glick, H. A. Direct medical cost of overweight and obesity in the USA: a quantitative systematic review. Obes. Rev. 12, 50–61 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Trogdon, J. G., Finkelstein, E. A., Hylands, T., Dellea, P. S. & Kamal-Bahl, S. J. Indirect costs of obesity: a review of the current literature. Obes. Rev. 9, 489–500 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Cremieux, P. Y. et al. A study on the economic impact of bariatric surgery. Am. J. Manag. Care 14, 589–596 (2008).

    PubMed  Google Scholar 

  77. Keating, C. L. et al. Cost-effectiveness of surgically induced weight loss for the management of type 2 diabetes: modeled lifetime analysis. Diabetes Care 32, 567–574 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Finkelstein, E. A. & Brown, D. S. Return on investment for bariatric surgery. Am. J. Manag. Care 14, 561–562 (2008).

    PubMed  Google Scholar 

  79. Flum, D. R. et al. Perioperative safety in the longitudinal assessment of bariatric surgery. N. Engl. J. Med. 361, 445–454 (2009).

    Article  PubMed  Google Scholar 

  80. O'Brien, P. E. & Dixon, J. B. Pars flaccida versus perigastric pathways for the placement of the Lap-Band® system [abstract]. Obes. Surg. 13, 211 (2003).

    Google Scholar 

  81. Dolan, K., Finch, R. & Fielding, G. Laparoscopic gastric banding and crural repair in the obese patient with a hiatal hernia. Obes. Surg. 13, 772–775 (2003).

    Article  PubMed  Google Scholar 

  82. Singhal, R. et al. Band slippage and erosion after laparoscopic gastric banding: a meta-analysis. Surg. Endosc. 24, 2980–2986 (2010).

    Article  PubMed  Google Scholar 

  83. Gagner, M. Leaks after sleeve gastrectomy are associated with smaller bougies: prevention and treatment strategies. Surg. Laparosc. Endosc. Percutan. Tech. 20, 166–169 (2010).

    Article  PubMed  Google Scholar 

  84. Brethauer, S. A., Harris, J. L., Kroh, M. & Schauer, P. R. Laparoscopic gastric plication for treatment of severe obesity. Surg. Obes. Relat. Dis. 7, 15–22 (2011).

    Article  PubMed  Google Scholar 

  85. Rubino, F. & Marescaux, J. Effect of duodenal–jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann. Surg. 239, 1–11 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Strader, A. D. et al. Weight loss through ileal transposition is accompanied by increased ileal hormone secretion and synthesis in rats. Am. J. Physiol. Endocrinol. Metab. 288, E447–E453 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Lee, H. C., Kim, M. K., Kwon, H. S., Kim, E. & Song, K. H. Early changes in incretin secretion after laparoscopic duodenal-jejunal bypass surgery in type 2 diabetic patients. Obes. Surg. 20, 1530–1535 (2010).

    Article  PubMed  Google Scholar 

  88. Kasama, K. et al. Laparoscopic sleeve gastrectomy with duodenojejunal bypass: technique and preliminary results. Obes. Surg. doi:10.1007/s11695-009-9873-z.

    Article  PubMed  Google Scholar 

  89. Gagner, M. Laparoscopic sleeve gastrectomy with ileal interposition (SGIT): a modified duodenal switch for resolution of type 2 diabetes mellitus in lesser obese patients (BMI < 35). World J. Surg. 35, 109–110 (2011).

    Article  PubMed  Google Scholar 

  90. DePaula, A. L., Stival, A., Halpern, A. & Vencio, S. Thirty-day morbidity and mortality of the laparoscopic ileal interposition associated with sleeve gastrectomy for the treatment of type 2 diabetic patients with BMI <35: an analysis of 454 consecutive patients. World J. Surg. 35, 102–108 (2011).

    Article  PubMed  Google Scholar 

  91. Kumar, K. V. et al. Ileal interposition with sleeve gastrectomy for control of type 2 diabetes. Diabetes Technol. Ther. 11, 785–789 (2009).

    Article  PubMed  Google Scholar 

  92. DePaula, A. L., Macedo, A. L., Mota, B. R. & Schraibman, V. Laparoscopic ileal interposition associated to a diverted sleeve gastrectomy is an effective operation for the treatment of type 2 diabetes mellitus patients with BMI 21–29. Surg. Endosc. 23, 1313–1320 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Dumonceau, J. M. Evidence-based review of the Bioenterics intragastric balloon for weight loss. Obes. Surg. 18, 1611–1617 (2008).

    Article  PubMed  Google Scholar 

  94. Genco, A. et al. BioEnterics Intragastric Balloon: the Italian experience with 2,515 patients. Obes. Surg. 15, 1161–1164 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Tsesmeli, N. & Coumaros, D. The future of bariatrics: endoscopy, endoluminal surgery, and natural orifice transluminal endoscopic surgery. Endoscopy 42, 155–162 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Aronne, L. J. & Waitman, J. A. Gastric pacing is not enough: additional measures for an effective obesity treatment program. Obes. Surg. 14 (Suppl. 1), S23–S27 (2004).

    Article  PubMed  Google Scholar 

  97. Zhang, J. & Chen, J. D. Systematic review: applications and future of gastric electrical stimulation. Aliment. Pharmacol. Ther. 24, 991–1002 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Sanmiguel, C. P. et al. Gastric electrical stimulation with the TANTALUS System in obese type 2 diabetes patients: effect on weight and glycemic control. J. Diabetes Sci. Technol. 3, 964–970 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Camilleri, M. et al. Intra-abdominal vagal blocking (VBLOC therapy): clinical results with a new implantable medical device. Surgery 143, 723–731 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. National Health and Medical Research Council. Clinical Practice Guidelines for the Management of Overweight and Obesity in Adults. Australian Government Department of Health and Aging [online], (2003).

  101. Fried, M. et al. Inter-disciplinary European guidelines on surgery of severe obesity. Int. J. Obes. (Lond.) 31, 569–577 (2007).

    Article  CAS  Google Scholar 

  102. Logue, J. et al. Management of obesity: summary of SIGN guideline. BMJ 340, c154 (2010).

    Article  PubMed  Google Scholar 

  103. ADA. Standards of medical care in diabetes—2010. Diabetes Care 33 (Suppl. 1), S11–S61 (2010).

  104. Chapman, A. et al. Laparoscopic adjustable gastric banding in the treatment of obesity: a systematic review. Surgery 135, 326–351 (2004).

    Article  PubMed  Google Scholar 

  105. Buchwald, H., Estok, R., Fahrbach, K., Banel, D. & Sledge, I. Trends in mortality in bariatric surgery: a systematic review and meta-analysis. Surgery 142, 621–632 (2007).

    Article  PubMed  Google Scholar 

  106. O'Brien, P., E., McPhail, T., Chaston, T. B. & Dixon, J. B. Systematic review of medium-term weight loss after bariatric operations. Obes. Surg. 16, 1032–1040 (2006).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the help of Toni McGee in reviewing, editing and preparing the manuscript for submission.

Author information

Authors and Affiliations

Authors

Contributions

J. B. Dixon and G. W. Lambert contributed to all aspects of this manuscript. M. P. Schlaich contributed to the research, discussion of content and editing of the manuscript. N. E. Straznicky and E. A. Lambert contributed to the discussion of content and editing of the manuscript.

Corresponding author

Correspondence to John B. Dixon.

Ethics declarations

Competing interests

All authors receive research support from Abbott Pharmaceuticals, Allergan Inc., Ardian, Inc. and Scientific Intake. J. B. Dixon is a consultant for Allergan Inc., Metagenics and Scientific Intake, and is on the Medical Advisory Board for Optifast (Nestle Australia). M. P. Schlaich is on the Scientific Advisory Board for Abbott and Novartis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dixon, J., Straznicky, N., Lambert, E. et al. Surgical approaches to the treatment of obesity. Nat Rev Gastroenterol Hepatol 8, 429–437 (2011). https://doi.org/10.1038/nrgastro.2011.112

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2011.112

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing