Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Animal models of nonalcoholic fatty liver disease

Abstract

In 1980, Ludwig and colleagues described a series of patients with liver histology characterized by the accumulation of fat and the presence of hepatic necroinflammation in the absence of a history of excessive alcohol consumption. They coined the term nonalcoholic steatohepatitis (NASH), which today is regarded as one of the most common causes of liver disease in affluent countries. NASH is a subset of a larger spectrum of diseases termed fatty liver disease (including alcoholic and nonalcoholic fatty liver disease; AFLD and NAFLD, respectively). NAFLD and NASH are linked to visceral adiposity, insulin resistance, dyslipidemia and type 2 diabetes, and are increasing due to the prevalence of the metabolic syndrome. In this context, research has been undertaken using animals to model human steatosis and NAFLD to NASH disease progression. This Review discusses the prevalent dietary and inflammation-based genetic animal models described in recent years.

Key Points

  • Hepatic steatosis is associated with the metabolic syndrome

  • No dietary animal model can fully recapitulate the human steatosis disease process

  • Genetic models have shown adipose inflammation to drive hepatic steatosis

  • Cholesterol promotes hepatic inflammation

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Histopathologic specimens of human liver.
Figure 2: The 'integrated response' hypothesis of nonalcoholic fatty liver disease pathogenesis: current concepts of tissue crosstalk that can promote hepatic steatosis and inflammation.
Figure 3: Obesity promotes adipocyte inflammation and steatosis.
Figure 4: Cholesterol can promote steatosis.

Similar content being viewed by others

References

  1. Cheung, O. & Sanyal, A. J. Recent advances in nonalcoholic fatty liver disease. Curr. Opin. Gastroenterol. 26, 202–208 (2010).

    PubMed  Google Scholar 

  2. Ludwig, J., Viggiano, T. R., McGill, D. B. & Oh, B. J. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin. Proc. 55, 434–438 (1980).

    CAS  PubMed  Google Scholar 

  3. Calle, E. E., Rodriguez, C., Walker-Thurmond, K. & Thun, M. J. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U. S. adults. N. Engl. J. Med. 348, 1625–1638 (2003).

    PubMed  Google Scholar 

  4. Veldt, B. J. et al. Increased risk of hepatocellular carcinoma among patients with hepatitis C cirrhosis and diabetes mellitus. Hepatology 47, 1856–1862 (2008).

    PubMed  Google Scholar 

  5. Chen, C. L. et al. Metabolic factors and risk of hepatocellular carcinoma by chronic hepatitis B/C infection: a follow-up study in Taiwan. Gastroenterology 135, 111–121 (2008).

    CAS  PubMed  Google Scholar 

  6. Wieckowska, A. & Feldstein, A. E. Diagnosis of nonalcoholic fatty liver disease: invasive versus noninvasive. Semin. Liver Dis. 28, 386–395 (2008).

    CAS  PubMed  Google Scholar 

  7. Tiniakos, D. G., Vos, M. B. & Brunt, E. M. Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu. Rev. Pathol. 5, 145–171 (2010).

    CAS  PubMed  Google Scholar 

  8. Brunt, E. M., Janney, C. G., Di Bisceglie, A. M., Neuschwander-Tetri, B. A. & Bacon, B. R. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am. J. Gastroenterol. 94, 2467–2474 (1999).

    CAS  PubMed  Google Scholar 

  9. Kleiner, D. E. et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 1313–1321 (2005).

    PubMed  Google Scholar 

  10. [No authors listed] Alcoholic liver disease: morphological manifestation. Review by an international group. Lancet 317, 707–711 (1981).

  11. Lefkowitch, J. H. Morphology of alcoholic liver disease. Clin. Liver Dis. 9, 37–53 (2005).

    PubMed  Google Scholar 

  12. Matteoni, C. A. et al. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology 116, 1413–1419 (1999).

    CAS  PubMed  Google Scholar 

  13. Stumptner, C., Fuchsbichler, A., Heid, H., Zatloukal, K. & Denk, H. Mallory body—a disease-associated type of sequestosome. Hepatology 35, 1053–1062 (2002).

    CAS  PubMed  Google Scholar 

  14. Brunt, E. M. Histopathology of non-alcoholic fatty liver disease. Clin. Liver Dis. 13, 533–544 (2009).

    PubMed  Google Scholar 

  15. Ratziu, V., Bellentani, S., Cortez-Pinto, H., Day, C. & Marchesini, G. A position statement on NAFLD/NASH based on the EASL 2009 special conference. J. Hepatol. 53, 372–384 (2010).

    PubMed  Google Scholar 

  16. Day, C. P. & Saksena, S. Non-alcoholic steatohepatitis: definitions and pathogenesis. J. Gastroenterol. Hepatol 17 (Suppl. 3), S377–S384 (2002).

    PubMed  Google Scholar 

  17. Marra, F., Gastaldelli, A., Svegliati Baroni, G., Tell, G. & Tiribelli, C. Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends Mol. Med. 14, 72–81 (2008).

    CAS  PubMed  Google Scholar 

  18. Pan, M. et al. Lipid peroxidation and oxidant stress regulate hepatic apolipoprotein B degradation and VLDL production. J. Clin. Invest. 113, 1277–1287 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Feldstein, A. E. et al. Free fatty acids promote hepatic lipotoxicity by stimulating TNF-α expression via a lysosomal pathway. Hepatology 40, 185–194 (2004).

    CAS  PubMed  Google Scholar 

  20. Wueest, S. et al. Deletion of Fas in adipocytes relieves adipose tissue inflammation and hepatic manifestations of obesity in mice. J. Clin. Invest. 120, 191–202 (2010).

    CAS  PubMed  Google Scholar 

  21. Anstee, Q. M. & Goldin, R. D. Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int. J. Exp. Pathol. 87, 1–16 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rinella, M. E. & Green, R. M. The methionine-choline deficient dietary model of steatohepatitis does not exhibit insulin resistance. J. Hepatol. 40, 47–51 (2004).

    CAS  PubMed  Google Scholar 

  23. Rinella, M. E. et al. Mechanisms of hepatic steatosis in mice fed a lipogenic methionine choline-deficient diet. J. Lipid Res. 49, 1068–1076 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Weltman, M. D., Farrell, G. C. & Liddle, C. Increased hepatocyte CYP2E1 expression in a rat nutritional model of hepatic steatosis with inflammation. Gastroenterology 111, 1645–1653 (1996).

    CAS  PubMed  Google Scholar 

  25. Leclercq, I. A. et al. CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J. Clin. Invest. 105, 1067–1075 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ip, E. et al. Central role of PPARalpha-dependent hepatic lipid turnover in dietary steatohepatitis in mice. Hepatology 38, 123–132 (2003).

    CAS  PubMed  Google Scholar 

  27. George, J. et al. Lipid peroxidation, stellate cell activation and hepatic fibrogenesis in a rat model of chronic steatohepatitis. J. Hepatol. 39, 756–764 (2003).

    CAS  PubMed  Google Scholar 

  28. Phung, N. et al. Pro-oxidant-mediated hepatic fibrosis and effects of antioxidant intervention in murine dietary steatohepatitis. Int. J. Mol. Med. 24, 171–180 (2009).

    CAS  PubMed  Google Scholar 

  29. Ip, E., Farrell, G., Hall, P., Robertson, G. & Leclercq, I. Administration of the potent PPARalpha agonist, Wy-14643, reverses nutritional fibrosis and steatohepatitis in mice. Hepatology 39, 1286–1296 (2004).

    CAS  PubMed  Google Scholar 

  30. Leclercq, I. A., Farrell, G. C., Sempoux, C., dela Pena, A. & Horsmans, Y. Curcumin inhibits NF-kappaB activation and reduces the severity of experimental steatohepatitis in mice. J. Hepatol. 41, 926–934 (2004).

    CAS  PubMed  Google Scholar 

  31. Dela Pena, A. et al. NF-kappaB activation, rather than TNF, mediates hepatic inflammation in a murine dietary model of steatohepatitis. Gastroenterology 129, 1663–1674 (2005).

    CAS  PubMed  Google Scholar 

  32. Yu, J. et al. COX-2 induction in mice with experimental nutritional steatohepatitis: role as pro-inflammatory mediator. Hepatology 43, 826–836 (2006).

    CAS  PubMed  Google Scholar 

  33. McCuskey, R. S. et al. Hepatic microvascular dysfunction during evolution of dietary steatohepatitis in mice. Hepatology 40, 386–393 (2004).

    PubMed  Google Scholar 

  34. Larter, C. Z., Yeh, M. M., Williams, J., Bell-Anderson, K. S. & Farrell, G. C. MCD-induced steatohepatitis is associated with hepatic adiponectin resistance and adipogenic transformation of hepatocytes. J. Hepatol. 49, 407–416 (2008).

    CAS  PubMed  Google Scholar 

  35. Leclercq, I. A., Lebrun, V. A., Starkel, P. & Horsmans, Y. J. Intrahepatic insulin resistance in a murine model of steatohepatitis: effect of PPARgamma agonist pioglitazone. Lab. Invest. 87, 56–65 (2007).

    CAS  PubMed  Google Scholar 

  36. Nagasawa, T. et al. Effects of bezafibrate, PPAR pan-agonist, and GW501516, PPARdelta agonist, on development of steatohepatitis in mice fed a methionine- and choline-deficient diet. Eur. J. Pharmacol. 536, 182–191 (2006).

    CAS  PubMed  Google Scholar 

  37. Schattenberg, J. M., Wang, Y., Singh, R., Rigoli, R. M. & Czaja, M. J. Hepatocyte CYP2E1 overexpression and steatohepatitis lead to impaired hepatic insulin signaling. J. Biol. Chem. 280, 9887–9894 (2005).

    CAS  PubMed  Google Scholar 

  38. Schattenberg, J. M. et al. JNK1 but not JNK2 promotes the development of steatohepatitis in mice. Hepatology 43, 163–172 (2006).

    CAS  PubMed  Google Scholar 

  39. Nakae, D. Endogenous liver carcinogenesis in the rat. Pathol. Int. 49, 1028–1042 (1999).

    CAS  PubMed  Google Scholar 

  40. Nakae, D. et al. Comparative changes in the liver of female Fischer-344 rats after short-term feeding of a semipurified or a semisynthetic L-amino acid-defined choline-deficient diet. Toxicol. Pathol. 23, 583–590 (1995).

    CAS  PubMed  Google Scholar 

  41. Kodama, Y. et al. c-Jun N-terminal kinase-1 from hematopoietic cells mediates progression from hepatic steatosis to steatohepatitis and fibrosis in mice. Gastroenterology 137, 1467–1477 (2009).

    CAS  PubMed  Google Scholar 

  42. Lieber, C. S. et al. Model of nonalcoholic steatohepatitis. Am. J. Clin. Nutr. 79, 502–509 (2004).

    CAS  PubMed  Google Scholar 

  43. Deng, Q. G. et al. Steatohepatitis induced by intragastric overfeeding in mice. Hepatology 42, 905–914 (2005).

    CAS  PubMed  Google Scholar 

  44. Zou, Y. et al. High-fat emulsion-induced rat model of nonalcoholic steatohepatitis. Life Sci. 79, 1100–1107 (2006).

    CAS  PubMed  Google Scholar 

  45. Baumgardner, J. N., Shankar, K., Hennings, L., Badger, T. M. & Ronis, M. J. A new model for nonalcoholic steatohepatitis in the rat utilizing total enteral nutrition to overfeed a high-polyunsaturated fat diet. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G27–G38 (2008).

    CAS  PubMed  Google Scholar 

  46. Gami, A. S. et al. Metabolic syndrome and risk of incident cardiovascular events and death: a systematic review and meta-analysis of longitudinal studies. J. Am. Coll. Cardiol. 49, 403–414 (2007).

    CAS  PubMed  Google Scholar 

  47. Kim, J. K. et al. Redistribution of substrates to adipose tissue promotes obesity in mice with selective insulin resistance in muscle. J. Clin. Invest. 105, 1791–1797 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Jornayvaz, F. R., Samuel, V. T. & Shulman, G. I. The role of muscle insulin resistance in the pathogenesis of atherogenic dyslipidemia and nonalcoholic fatty liver disease associated with the metabolic syndrome. Annu. Rev. Nutr. 30, 273–290 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Jeong, W.-I. et al. Mild hepatic fibrosis in cholesterol and sodium cholate diet-fed rats. J. Vet. Med. Sci. 67, 235–242 (2005).

    CAS  PubMed  Google Scholar 

  50. Paigen, B., Morrow, A., Brandon, C., Mitchell, D. & Holmes, P. Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis 57, 65–73 (1985).

    CAS  PubMed  Google Scholar 

  51. Vergnes, L., Phan, J., Strauss, M., Tafuri, S. & Reue, K. Cholesterol and cholate components of an atherogenic diet induce distinct stages of hepatic inflammatory gene expression. J. Biol. Chem. 278, 42774–42784 (2003).

    CAS  PubMed  Google Scholar 

  52. Wouters, K. et al. Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis. Hepatology 48, 474–486 (2008).

    PubMed  Google Scholar 

  53. Mari, M. et al. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab. 4, 185–198 (2006).

    CAS  PubMed  Google Scholar 

  54. Matsuzawa, N. et al. Lipid-induced oxidative stress causes steatohepatitis in mice fed an atherogenic diet. Hepatology 46, 1392–1403 (2007).

    CAS  PubMed  Google Scholar 

  55. Ouyang, X. et al. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J. Hepatol. 48, 993–999 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Abdelmalek, M. F. et al. Increased fructose consumption is associated with fibrosis severity in patients with nonalcoholic fatty liver disease. Hepatology 51, 1961–1971 (2010).

    CAS  PubMed  Google Scholar 

  57. Lim, J. S., Mietus-Snyder, M., Valente, A., Schwarz, J. M. & Lustig, R. H. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat. Rev. Gastroenterol. Hepatol. 7, 251–264 (2010).

    CAS  PubMed  Google Scholar 

  58. Spruss, A. et al. Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology 50, 1094–1104 (2009).

    CAS  PubMed  Google Scholar 

  59. Bergheim, I. et al. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. J. Hepatol. 48, 983–992 (2008).

    CAS  PubMed  Google Scholar 

  60. Tetri, L. H., Basaranoglu, M., Brunt, E. M., Yerian, L. M. & Neuschwander-Tetri, B. A. Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G987–G995 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wada, T. et al. Spironolactone improves glucose and lipid metabolism by ameliorating hepatic steatosis and inflammation and suppressing enhanced gluconeogenesis induced by high-fat and high-fructose diet. Endocrinology 151, 2040–2049 (2010).

    CAS  PubMed  Google Scholar 

  62. Obara, N. et al. Possible involvement and the mechanisms of excess trans-fatty acid consumption in severe NAFLD in mice. J. Hepatol. 53, 326–334 (2010).

    CAS  PubMed  Google Scholar 

  63. Ogawa, T., Fujii, H., Yoshizato, K. & Kawada, N. A human-type nonalcoholic steatohepatitis model with advanced fibrosis in rabbits. Am. J. Pathol. 177, 153–165 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. London, R. M. & George, J. Pathogenesis of NASH: animal models. Clin. Liver Dis. 11, 55–74 (2007).

    PubMed  Google Scholar 

  65. Postic, C. & Girard, J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J. Clin. Invest. 118, 829–838 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15, 930–939 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Nishimura, S. et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med. 15, 914–920 (2009).

    CAS  PubMed  Google Scholar 

  69. Greenberg, A. S. & Obin, M. S. Obesity and the role of adipose tissue in inflammation and metabolism. Am. J. Clin. Nutr. 83, 461S–465S (2006).

    CAS  PubMed  Google Scholar 

  70. Kamada, Y. et al. Enhanced carbon tetrachloride-induced liver fibrosis in mice lacking adiponectin. Gastroenterology 125, 1796–1807 (2003).

    CAS  PubMed  Google Scholar 

  71. Kamada, Y. et al. Hypoadiponectinemia accelerates hepatic tumor formation in a nonalcoholic steatohepatitis mouse model. J. Hepatol. 47, 556–564 (2007).

    CAS  PubMed  Google Scholar 

  72. Asano, T. et al. Adiponectin knockout mice on high fat diet develop fibrosing steatohepatitis. J. Gastroenterol. Hepatol. 24, 1669–1676 (2009).

    CAS  PubMed  Google Scholar 

  73. Uji, Y. et al. Adiponectin deficiency promotes the production of inflammatory mediators while severely exacerbating hepatic injury in mice with polymicrobial sepsis. J. Surg. Res. 161, 301–311 (2010).

    CAS  PubMed  Google Scholar 

  74. Ohashi, K. et al. Adiponectin promotes macrophage polarization towards an anti-inflammatory phenotype. J. Biol. Chem. 285, 6153–6160 (2010).

    CAS  PubMed  Google Scholar 

  75. Tomita, K. et al. Hepatic AdipoR2 signaling plays a protective role against progression of nonalcoholic steatohepatitis in mice. Hepatology 48, 458–473 (2008).

    CAS  PubMed  Google Scholar 

  76. Ouchi, N. et al. Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. Science 329, 454–457 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Alkhouri, N. et al. Adipocyte apoptosis, a link between obesity, insulin resistance, and hepatic steatosis. J. Biol. Chem. 285, 3428–3438 (2010).

    CAS  PubMed  Google Scholar 

  78. Park, E. J. et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140, 197–208 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Cai, D. et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat. Med. 11, 183–190 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Luedde, T. et al. Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 11, 119–132 (2007).

    CAS  PubMed  Google Scholar 

  81. Wunderlich, F. T. et al. Hepatic NF-kappa B essential modulator deficiency prevents obesity-induced insulin resistance but synergizes with high-fat feeding in tumorigenesis. Proc. Natl Acad. Sci. USA 105, 1297–1302 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hirosumi, J. et al. A central role for JNK in obesity and insulin resistance. Nature 420, 333–336 (2002).

    CAS  PubMed  Google Scholar 

  83. Shiri-Sverdlov, R. et al. Early diet-induced non-alcoholic steatohepatitis in APOE2 knock-in mice and its prevention by fibrates. J. Hepatol. 44, 732–741 (2006).

    CAS  PubMed  Google Scholar 

  84. Bieghs, V. et al. Role of scavenger receptor A and CD36 in diet-induced nonalcoholic steatohepatitis in hyperlipidemic mice. Gastroenterology 138, 2477–2486 (2010).

    CAS  PubMed  Google Scholar 

  85. Bie, J., Zhao, B., Song, J. & Ghosh, S. Improved insulin sensitivity in high fat- and high cholesterol-fed Ldlr-/- mice with macrophage-specific transgenic expression of cholesteryl ester hydrolase: role of macrophage inflammation and infiltration into adipose tissue. J. Biol. Chem. 285, 13630–13637 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Li, T. et al. Transgenic expression of cholesterol 7alpha-hydroxylase in the liver prevents high-fat diet-induced obesity and insulin resistance in mice. Hepatology 52, 678–690 (2010).

    CAS  PubMed  Google Scholar 

  87. Seki, E. & Brenner, D. A. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology 48, 322–335 (2008).

    CAS  PubMed  Google Scholar 

  88. Miura, K. et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology 139, 323–334 (2010).

    CAS  PubMed  Google Scholar 

  89. Velayudham, A. et al. VSL#3 probiotic treatment attenuates fibrosis without changes in steatohepatitis in a diet-induced nonalcoholic steatohepatitis model in mice. Hepatology 49, 989–997 (2009).

    CAS  PubMed  Google Scholar 

  90. Petersen, K. F. et al. Increased prevalence of insulin resistance and nonalcoholic fatty liver disease in Asian-Indian men. Proc. Natl Acad. Sci. USA 103, 18273–18277 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Romeo, S. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40, 1461–1465 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. He, S. et al. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J. Biol. Chem. 285, 6706–6715 (2010).

    CAS  PubMed  Google Scholar 

  93. Chen, W., Chang, B., Li, L. & Chan, L. Patatin-like phospholipase domain-containing 3/adiponutrin deficiency in mice is not associated with fatty liver disease. Hepatology 52, 1134–1142 (2010).

    CAS  PubMed  Google Scholar 

  94. Browning, J. D., Cohen, J. C. & Hobbs, H. H. Patatin-like phospholipase domain-containing 3 and the pathogenesis and progression of pediatric nonalcoholic fatty liver disease. Hepatology 52, 1189–1192 (2010).

    CAS  PubMed  Google Scholar 

  95. Petersen, K. F. et al. Apolipoprotein C3 gene variants in nonalcoholic fatty liver disease. N. Engl. J. Med. 362, 1082–1089 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Salerno, A. G. et al. Overexpression of apolipoprotein CIII increases and CETP reverses diet-induced obesity in transgenic mice. Int. J. Obes. (Lond.) 31, 1586–1595 (2007).

    CAS  Google Scholar 

  97. Ito, Y., Azrolan, N., O'Connell, A., Walsh, A. & Breslow, J. L. Hypertriglyceridemia as a result of human apo CIII gene expression in transgenic mice. Science 249, 790–793 (1990).

    CAS  PubMed  Google Scholar 

  98. Korenblat, K. M., Fabbrini, E., Mohammed, B. S. & Klein, S. Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects. Gastroenterology 134, 1369–1375 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

L. Hebbard and J. George are supported by a Project Grant from the National Health and Medical Research Council, Australia (No: 632630) and the Robert W. Storr Bequest to the Medical Foundation of the University of Sydney.

Author information

Authors and Affiliations

Authors

Contributions

L. Hebbard and J. George contributed equally to the research, discussion, writing and reviewing of the manuscript.

Corresponding author

Correspondence to Lionel Hebbard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hebbard, L., George, J. Animal models of nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 8, 35–44 (2011). https://doi.org/10.1038/nrgastro.2010.191

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2010.191

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing