Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Functional role of chemokines in liver disease models

Abstract

Chemokines are a class of small cytokine-like molecules that orchestrate immune cell infiltration into the liver in response to acute and chronic injuries. Apart from their chemotactic effect, however, chemokines seem to mediate many other aspects of liver diseases, including a direct activation of stellate cells, the modulation of hepatocyte proliferation and angiogenesis. The identification of specific biological functions for chemokines in liver diseases has been hampered by the finding that resident and infiltrating cells in the liver are often a source, as well as a target, of chemokines. Furthermore, chemokines might cause differing effects depending on the etiology of liver damage, their local concentrations and their ability to form multimers and heterodimers. Nevertheless, the functions of a number of important chemokines and their associated receptors have been identified in both in vivo and in vitro studies. Indeed, harmful (proinflammatory, profibrogenic) and beneficial (antifibrogenic, antiangiogenic) effects of chemokines have been discovered in experimental liver disease models. In this Review, the current knowledge of chemokines in experimental liver disease models is summarized. Advances that might lead to preclinical applications are discussed, as are the roles of chemokine receptors as promising pharmacologically targetable molecules.

Key Points

  • Chemokines are soluble mediators that are expressed by most resident and infiltrating cells in the liver following acute and chronic liver injury

  • Chemokines regulate the infiltration of immune cells and stem cells into the liver and modulate the activation and proliferation of liver-resident cells (including hepatocytes, stellate cells and endothelial cells)

  • The effects of chemokines depend on their local concentration and context within the liver as different chemokines are involved in distinct liver diseases at different disease stages

  • Antagonism of single chemokines or their receptors can ameliorate experimental acute and chronic (fibrotic) liver damage in selected models

  • Chemokines are associated with numerous human liver diseases but functional in vivo studies have not been performed in humans to date

  • Chemokine antagonists are currently under clinical investigation for use in human diseases; therefore, further elucidation and characterization of chemokine functions in liver diseases is of great clinical interest

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemokines mediate the different functions of hepatic stellate cells.
Figure 2: Immune cell infiltration and stellate cell activation mediated by chemokines in chronic liver diseases.
Figure 3: Potential therapeutic interventions to interfere with the chemokine network.

Similar content being viewed by others

References

  1. Charo, I. F. & Ransohoff, R. M. The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med. 354, 610–621 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Luster, A. D. Chemokines—chemotactic cytokines that mediate inflammation. N. Engl. J. Med. 338, 436–445 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Bonecchi, R. et al. Chemokines and chemokine receptors: an overview. Front. Biosci. 14, 540–551 (2009).

    Article  CAS  Google Scholar 

  4. Colvin, R. A., Campanella, G. S., Sun, J. & Luster, A. D. Intracellular domains of CXCR3 that mediate CXCL9, CXCL10, and CXCL11 function. J. Biol. Chem. 279, 30219–30227 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Liu, L., Callahan, M. K., Huang, D. & Ransohoff, R. M. Chemokine receptor CXCR3: an unexpected enigma. Curr. Top. Dev. Biol. 68, 149–181 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Weber, C. & Koenen, R. R. Fine-tuning leukocyte responses: towards a chemokine 'interactome'. Trends Immunol. 27, 268–273 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Koenen, R. R. & Weber, C. Therapeutic targeting of chemokine interactions in atherosclerosis. Nat. Rev. Drug Discov. 9, 141–153 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Wasmuth, H. E., Tacke, F. & Trautwein, C. Chemokines in liver inflammation and fibrosis. Semin. Liver Dis. 30, 215–225 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Pease, J. E. & Horuk, R. Chemokine receptor antagonists: part 1. Expert Opin. Ther. Pat. 19, 39–58 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Pease, J. E. & Horuk, R. Chemokine receptor antagonists: part 2. Expert Opin. Ther. Pat. 19, 199–221 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Heydtmann, M. & Adams, D. H. Chemokines in the immunopathogenesis of hepatitis C infection. Hepatology 49, 676–688 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Lalor, P. F., Faint, J., Aarbodem, Y., Hubscher, S. G. & Adams, D. H. The role of cytokines and chemokines in the development of steatohepatitis. Semin. Liver Dis. 27, 173–193 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Oo, Y. H., Shetty, S. & Adams, D. H. The role of chemokines in the recruitment of lymphocytes to the liver. Dig. Dis. 28, 31–44 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Huang, F. & Geng, X. P. Chemokines and hepatocellular carcinoma. World J. Gastroenterol. 16, 1832–1836 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tiegs, G., Hentschel, J. & Wendel, A. A T cell-dependent experimental liver injury in mice inducible by concanavalin A. J. Clin. Invest. 90, 196–203 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zamara, E. et al. Prevention of severe toxic liver injury and oxidative stress in MCP-1-deficient mice. J. Hepatol. 46, 230–238 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Berres, M. L. et al. The chemokine scavenging receptor D6 limits acute toxic liver injury in vivo. Biol. Chem. 390, 1039–1045 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. James, L. P., Mayeux, P. R. & Hinson, J. A. Acetaminophen-induced hepatotoxicity. Drug Metab. Dispos. 31, 1499–1506 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Walsh, K. B., Toledo, A. H., Rivera-Chavez, F. A., Lopez-Neblina, F. & Toledo-Pereyra, L. H. Inflammatory mediators of liver ischemia-reperfusion injury. Exp. Clin. Transplant. 7, 78–93 (2009).

    PubMed  Google Scholar 

  20. Karlmark, K. R. et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology 50, 261–274 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Possamai, L. A. et al. Role of monocytes and macrophages in experimental and human acute liver failure. World J. Gastroenterol. 16, 1811–1819 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Seki, E. et al. CCR1 and CCR5 promote hepatic fibrosis in mice. J. Clin. Invest. 119, 1858–1870 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ajuebor, M. N., Hogaboam, C. M., Le, T., Proudfoot, A. E. & Swain, M. G. CCL3/MIP-1α is pro-inflammatory in mouse T cell-mediated hepatitis by recruiting CCR1-expressing CD4(+) T cells to the liver. Eur. J. Immunol. 34, 2907–2918 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Moreno, C. et al. CCR5 deficiency exacerbates T-cell-mediated hepatitis in mice. Hepatology 42, 854–862 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Ajuebor, M. N. et al. CCR5 deficiency drives enhanced natural killer cell trafficking to and activation within the liver in mouse T cell-mediated hepatitis. Am. J. Pathol. 170, 1975–1988 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bernal, W., Auzinger, G., Dhawan, A. & Wendon, J. Acute liver failure. Lancet 376, 190–201 (2010).

    Article  PubMed  Google Scholar 

  27. Dambach, D. M., Watson, L. M., Gray, K. R., Durham, S. K. & Laskin, D. L. Role of CCR2 in macrophage migration into the liver during acetaminophen-induced hepatotoxicity in the mouse. Hepatology 35, 1093–1103 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Si, Y., Tsou, C. L., Croft, K. & Charo, I. F. CCR2 mediates hematopoietic stem and progenitor cell trafficking to sites of inflammation in mice. J. Clin. Invest. 120, 1192–1203 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Williams, C. D., Bajt, M. L., Farhood, A. & Jaeschke, H. Acetaminophen-induced hepatic neutrophil accumulation and inflammatory liver injury in CD18-deficient mice. Liver Int. doi:10.1111/j.1478-3231.2010.02284.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hu, B. & Colletti, L. M. CXC receptor-2 knockout genotype increases X-linked inhibitor of apoptosis protein and protects mice from acetaminophen hepatotoxicity. Hepatology 52, 691–702 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Bone-Larson, C. L., Hogaboam, C. M., Evanhoff, H., Strieter, R. M. & Kunkel, S. L. IFN-γ-inducible protein-10 (CXCL10) is hepatoprotective during acute liver injury through the induction of CXCR2 on hepatocytes. J. Immunol. 167, 7077–7083 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Lentsch, A. B., Kato, A., Yoshidome, H., McMasters, K. M. & Edwards, M. J. Inflammatory mechanisms and therapeutic strategies for warm hepatic ischemia/reperfusion injury. Hepatology 32, 169–173 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Colletti, L. M. et al. Chemokine expression during hepatic ischemia/reperfusion-induced lung injury in the rat. The role of epithelial neutrophil activating protein. J. Clin. Invest. 95, 134–141 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bertini, R. et al. Noncompetitive allosteric inhibitors of the inflammatory chemokine receptors CXCR1 and CXCR2: prevention of reperfusion injury. Proc. Natl Acad. Sci. USA 101, 11791–11796 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kuboki, S. et al. Hepatocyte signaling through CXC chemokine receptor-2 is detrimental to liver recovery after ischemia/reperfusion in mice. Hepatology 48, 1213–1223 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Erhardt, A. & Tiegs, G. Tolerance induction in response to liver inflammation. Dig. Dis. 28, 86–92 (2010).

    Article  PubMed  CAS  Google Scholar 

  37. Eksteen, B. et al. Epithelial inflammation is associated with CCL28 production and the recruitment of regulatory T cells expressing CCR10. J. Immunol. 177, 593–603 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Graham, G. J. D6 and the atypical chemokine receptor family: novel regulators of immune and inflammatory processes. Eur. J. Immunol. 39, 342–351 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Mantovani, A., Bonecchi, R. & Locati, M. Tuning inflammation and immunity by chemokine sequestration: decoys and more. Nat. Rev. Immunol. 6, 907–918 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Jamieson, T. et al. The chemokine receptor D6 limits the inflammatory response in vivo. Nat. Immunol. 6, 403–411 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Martinez de la Torre, Y. et al. Protection against inflammation- and autoantibody-caused fetal loss by the chemokine decoy receptor D6. Proc. Natl Acad. Sci. USA 104, 2319–2324 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wiederholt, T. et al. Genetic variations of the chemokine scavenger receptor D6 are associated with liver inflammation in chronic hepatitis C. Hum. Immunol. 69, 861–866 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Karlmark, K. R., Wasmuth, H. E., Trautwein, C. & Tacke, F. Chemokine-directed immune cell infiltration in acute and chronic liver disease. Expert Rev. Gastroenterol. Hepatol. 2, 233–242 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Friedman, S. L. Mechanisms of hepatic fibrogenesis. Gastroenterology 134, 1655–1669 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Holt, A. P. et al. Liver myofibroblasts regulate infiltration and positioning of lymphocytes in human liver. Gastroenterology 136, 705–714 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Wasmuth, H. E. et al. Antifibrotic effects of CXCL9 and its receptor CXCR3 in livers of mice and humans. Gastroenterology 137, 309–319 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Zaldivar, M. M. et al. CXC chemokine ligand 4 (Cxcl4) is a platelet-derived mediator of experimental liver fibrosis. Hepatology 51, 1345–1353 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Dranoff, J. A. & Wells, R. G. Portal fibroblasts: underappreciated mediators of biliary fibrosis. Hepatology 51, 1438–1444 (2010).

    Article  PubMed  Google Scholar 

  49. Malik, I. A. et al. Single-dose γ-irradiation induces up-regulation of chemokine gene expression and recruitment of granulocytes into the portal area but not into other regions of rat hepatic tissue. Am. J. Pathol. 176, 1801–1815 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marra, F., Valente, A. J., Pinzani, M. & Abboud, H. E. Cultured human liver fat-storing cells produce monocyte chemotactic protein-1. Regulation by proinflammatory cytokines. J. Clin. Invest. 92, 1674–1680 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ramm, G. A. et al. Fibrogenesis in pediatric cholestatic liver disease: role of taurocholate and hepatocyte-derived monocyte chemotaxis protein-1 in hepatic stellate cell recruitment. Hepatology 49, 533–544 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Seki, E. et al. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat. Med. 13, 1324–1332 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Kruglov, E. A., Nathanson, R. A., Nguyen, T. & Dranoff, J. A. Secretion of MCP-1/CCL2 by bile duct epithelia induces myofibroblastic transdifferentiation of portal fibroblasts. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G765–G771 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Marra, F. et al. Increased expression of monocyte chemotactic protein-1 during active hepatic fibrogenesis: correlation with monocyte infiltration. Am. J. Pathol. 152, 423–430 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Duffield, J. S. et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest. 115, 56–65 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Seki, E. et al. CCR2 promotes hepatic fibrosis in mice. Hepatology 50, 185–197 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Berres, M. L. et al. Antagonism of the chemokine CCL5 (RANTES) ameliorates experimental liver fibrosis in mice. J. Clin. Invest. (in press).

  58. Schwabe, R. F., Bataller, R. & Brenner, D. A. Human hepatic stellate cells express CCR5 and RANTES to induce proliferation and migration. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G949–G958 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. von Hundelshausen, P., Petersen, F. & Brandt, E. Platelet-derived chemokines in vascular biology. Thromb. Haemost. 97, 704–713 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. von Hundelshausen, P. et al. Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium. Blood 105, 924–930 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Koenen, R. R. et al. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat. Med. 15, 97–103 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Iannacone, M. et al. Platelets mediate cytotoxic T lymphocyte-induced liver damage. Nat. Med. 11, 1167–1169 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lang, P. A. et al. Aggravation of viral hepatitis by platelet-derived serotonin. Nat. Med. 14, 756–761 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Safadi, R. et al. Immune stimulation of hepatic fibrogenesis by CD8 cells and attenuation by transgenic interleukin-10 from hepatocytes. Gastroenterology 127, 870–882 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Goulding, C. et al. The CCR5-Δ32 mutation: impact on disease outcome in individuals with hepatitis C infection from a single source. Gut 54, 1157–1161 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Obstfeld, A. E. et al. C-C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes 59, 916–925 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Weisberg, S. P. et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J. Clin. Invest. 116, 115–124 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Marra, F. et al. Monocyte chemotactic protein-1 as a chemoattractant for human hepatic stellate cells. Hepatology 29, 140–148 (1999).

    Article  CAS  PubMed  Google Scholar 

  69. Mühlbauer, M. et al. A novel MCP-1 gene polymorphism is associated with hepatic MCP-1 expression and severity of HCV-related liver disease. Gastroenterology 125, 1085–1093 (2003).

    Article  PubMed  Google Scholar 

  70. Müller, G., Höpken, U. E. & Lipp, M. The impact of CCR7 and CXCR5 on lymphoid organ development and systemic immunity. Immunol. Rev. 195, 117–135 (2003).

    Article  PubMed  Google Scholar 

  71. Bonacchi, A. et al. The chemokine CCL21 modulates lymphocyte recruitment and fibrosis in chronic hepatitis C. Gastroenterology 125, 1060–1076 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Heydtmann, M. et al. Detailed analysis of intrahepatic CD8 T cells in the normal and hepatitis C-infected liver reveals differences in specific populations of memory cells with distinct homing phenotypes. J. Immunol. 177, 729–738 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Bernhagen, J. et al. MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat. Med. 13, 587–596 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Stefanovic, L., Brenner, D. A. & Stefanovic, B. Direct hepatotoxic effect of KC chemokine in the liver without infiltration of neutrophils. Exp. Biol. Med. (Maywood) 230, 573–586 (2005).

    Article  CAS  Google Scholar 

  75. Hori, Y. et al. Immunohistochemical study of macrophage migration inhibitory factor in rat liver fibrosis induced by thioacetamide. Eur. J. Histochem. 47, 317–324 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Shi, Z., Wakil, A. E. & Rockey, D. C. Strain-specific differences in mouse hepatic wound healing are mediated by divergent T helper cytokine responses. Proc. Natl Acad. Sci. USA 94, 10663–10668 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pesce, J. et al. The IL-21 receptor augments TH2 effector function and alternative macrophage activation. J. Clin. Invest. 116, 2044–2055 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wynn, T. A. Fibrotic disease and the TH1/TH2 paradigm. Nat. Rev. Immunol. 4, 583–594 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Syrbe, U., Siveke, J. & Hamann, A. TH1/TH2 subsets: distinct differences in homing and chemokine receptor expression? Springer Semin. Immunopathol. 21, 263–285 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Curbishley, S. M., Eksteen, B., Gladue, R. P., Lalor, P. & Adams, D. H. CXCR3 activation promotes lymphocyte transendothelial migration across human hepatic endothelium under fluid flow. Am. J. Pathol. 167, 887–899 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schrage, A. et al. Enhanced T cell transmigration across the mouse liver sinusoidal endothelium is mediated by transcytosis and surface presentation of chemokines. Hepatology 48, 1262–1272 (2008).

    Article  PubMed  Google Scholar 

  82. Jiang, D. et al. Regulation of pulmonary fibrosis by chemokine receptor CXCR3. J. Clin. Invest. 114, 291–299 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nakaya, I. et al. Blockade of IP-10/CXCR3 promotes progressive renal fibrosis. Nephron Exp. Nephrol. 107, e12–e21 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Santodomingo-Garzon, T., Han, J., Le, T., Yang, Y. & Swain, M. G. Natural killer T cells regulate the homing of chemokine CXC receptor 3-positive regulatory T cells to the liver in mice. Hepatology 49, 1267–1276 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Oo, Y. H. et al. Distinct roles for CCR4 and CXCR3 in the recruitment and positioning of regulatory T cells in the inflamed human liver. J. Immunol. 184, 2886–2898 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Tiegs, G. & Lohse, A. W. Immune tolerance: what is unique about the liver. J. Autoimmun. 34, 1–6 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Stockinger, B., Veldhoen, M. & Martin, B. TH17 T cells: linking innate and adaptive immunity. Semin. Immunol. 19, 353–361 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Rosenblum, J. M. et al. CXCR3 antagonism impairs the development of donor-reactive, IFN-γ-producing effectors and prolongs allograft survival. Transplantation 87, 360–369 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Barbi, J. et al. Lack of CXCR3 delays the development of hepatic inflammation but does not impair resistance to Leishmania donovani. J. Infect. Dis. 195, 1713–1717 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Bonacchi, A. et al. Signal transduction by the chemokine receptor CXCR3: activation of Ras/ERK, Src, and phosphatidylinositol 3-kinase/Akt controls cell migration and proliferation in human vascular pericytes. J. Biol. Chem. 276, 9945–9954 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Strieter, R. M., Burdick, M. D., Gomperts, B. N., Belperio, J. A. & Keane, M. P. CXC chemokines in angiogenesis. Cytokine Growth Factor Rev. 16, 593–609 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Fernández, M. et al. Angiogenesis in liver disease. J. Hepatol. 50, 604–620 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Wasmuth, H. E. et al. The fractalkine receptor CX3CR1 is involved in liver fibrosis due to chronic hepatitis C infection. J. Hepatol. 48, 208–215 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Efsen, E. et al. Up-regulated expression of fractalkine and its receptor CX3CR1 during liver injury in humans. J. Hepatol. 37, 39–47 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Aoyama, T., Inokuchi, S., Brenner, D. A. & Seki, E. CX3CL1-CX3CR1 interaction prevents CCl4-induced liver inflammation and fibrosis. Hepatology (in press).

  96. Shimoda, S. et al. CX3CL1 (fractalkine): a signpost for biliary inflammation in primary biliary cirrhosis. Hepatology 51, 567–575 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Karlmark, K. R. et al. The fractalkine receptor CX3CR1 protects from liver fibrosis by controlling differentiation and survival of infiltrating hepatic monocytes. Hepatology (in press).

  98. Proudfoot, A. E., Power, C. A. & Schwarz, M. K. Anti-chemokine small molecule drugs: a promising future? Expert Opin. Investig. Drugs 19, 345–355 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work on chemokines in the laboratory of H. E. Wasmuth is supported by the Deutsche Forschungsgemeinschaft (SFB TRR57 P07/P08) and Aachen University (IZKF grants).

Author information

Authors and Affiliations

Authors

Contributions

H. Sahin and H. E. Wasmuth contributed to researching data and writing the article. All authors provided a substantial contribution to discussions of the content and contributed to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Hermann E. Wasmuth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahin, H., Trautwein, C. & Wasmuth, H. Functional role of chemokines in liver disease models. Nat Rev Gastroenterol Hepatol 7, 682–690 (2010). https://doi.org/10.1038/nrgastro.2010.168

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2010.168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing