Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in sexually transmitted infections of the gastrointestinal tract

Abstract

The gastrointestinal mucosa is a target of many sexually transmitted infections, and major advances have increased our understanding of the consequences of such infections within the gastrointestinal system. HIV-1 is associated with a marked loss of mucosal CD4+ T cells that express CC-chemokine receptor 5. This process seems to be more rapid and more severe in mucosa-associated lymphoid tissue than in the peripheral blood. Mechanistic insights into the underlying cause of acute and chronic gastrointestinal damage with HIV infection—microbial translocation, defects in intestinal epithelial barrier function and activation of a systemic immune response—have also been achieved. Increased understanding of the pathogenesis of mucosal HIV-1 infection may identify therapeutic targets to restore immunological function and the integrity of the intestinal mucosal epithelial barrier. The increasing prevalence of lymphogranuloma venereum in Europe, mostly in HIV-positive men who have sex with men, suggests a change in the epidemiology of what was previously considered to be a 'tropical' disease. The increasing incidence of acute HCV infection transmitted via sexual contact has also been fuelled by high-risk sexual behaviors among men who have sex with men, many of whom are also HIV-positive. The first part of this Review discusses the pathogenesis and gastrointestinal complications of HIV infection, and the second part summarizes advances in our understanding of other sexually transmitted infections of the gastrointestinal system.

Key Points

  • A rapid depletion of CD4+ T cells that express CC-chemokine receptor 5 in gastrointestinal mucosa leads to the immunodeficiency that is characteristic of simian immunodeficiency virus (SIV)-infected macaques and HIV-infected individuals

  • Loss of CD4+ T cells occurs more rapidly and more severely in the lymphoid tissue of the intestinal mucosa than in peripheral blood and secondary lymphoid organs after infection with SIV or HIV

  • Microbial translocation, intestinal epithelial barrier damage and release of proinflammatory cytokines may contribute to the chronic immune activation of pathogenic HIV and SIV infections

  • Outbreaks of lymphogranuloma venereum worldwide affect mostly HIV-positive men who have sex with men (MSM) and may facilitate the transmission of HIV

  • A surge in the incidence of shigellosis among MSM parallels an increase in high-risk sexual behaviors that transmits HIV and other infections

  • HCV is emerging as a sexually transmitted infection among HIV-positive MSM and is associated with risk factors for permucosal transmission including traumatic sexual practices

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of HIV entry into the gastrointestinal mucosa.
Figure 2: Mechanisms of HIV transmission into the gastrointestinal tract.
Figure 3: Mucosal events thought to be involved in the pathogenesis of acute and chronic SIV and HIV infection in the gastrointestinal tract.

Similar content being viewed by others

References

  1. Felman, Y. M. & Morrison, J. M. Examining the homosexual male for sexually transmitted diseases. JAMA 238, 2046–2047 (1977).

    Article  CAS  PubMed  Google Scholar 

  2. Kazal, H. L., Sohn, N., Carrasco, J. I., Robilotti, J. G. & Delaney, W. E. The gay bowel syndrome: clinico-pathologic correlation in 260 cases. Ann. Clin. Lab. Sci. 6, 184–192 (1976).

    CAS  PubMed  Google Scholar 

  3. Weller, I. V. The gay bowel. Gut 26, 869–875 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fleming, D. T. & Wasserheit, J. N. From epidemiological synergy to public health policy and practice: the contribution of other sexually transmitted diseases to sexual transmission of HIV infection. Sex. Transm. Infect. 75, 3–17 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Benn, P. D. et al. Chlamydia trachomatis and Neisseria gonorrheae infection and the sexual behavior of men who have sex with men. Sex. Transm. Infect. 83, 106–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Elford, J., Bolding, G., Davis, M., Sherr, L. & Hart, G. Trends in sexual behavior among London homosexual men 1998–2003: implications for HIV prevention and sexual health promotion. Sex. Transm. Infect. 80, 451–454 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schwarcz, S. K. et al. Characterization of sexually transmitted disease clinic patients with recent human immunodeficiency virus infection. J. Infect. Dis. 186, 1019–1022 (2002).

    Article  PubMed  Google Scholar 

  8. Regueiro, M. D. Diagnosis and treatment of ulcerative proctitis. J. Clin. Gastroenterol. 38, 733–740 (2004).

    Article  PubMed  Google Scholar 

  9. Davis, B. T., Thiim, M. & Zukerberg, L. R. Case records of the Massachusetts General Hospital. Case 2–2006: a 31-year-old, HIV-positive man with rectal pain. N. Engl. J. Med. 354, 284–289 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Davis, T. W. & Goldstone, S. E. Sexually transmitted infections as a cause of proctitis in men who have sex with men. Dis. Colon Rectum 52, 507–512 (2009).

    Article  PubMed  Google Scholar 

  11. Wexner, S. D. Sexually transmitted diseases of the colon, rectum and anus: the challenge of the nineties. Dis. Colon Rectum 33, 1048–1062 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Mimiaga, M. J. et al. Asymptomatic gonorrhea and chlamydial infections detected by nucleic acid amplification tests among Boston area men who have sex with men. Sex. Transm. Dis. 35, 495–498 (2008).

    Article  PubMed  Google Scholar 

  13. Mimiaga, M. J. et al. Gonococcal, chlamydia, and syphilis infection positivity among MSM attending a large primary care clinic, Boston, 2003 to 2004. Sex. Transm. Dis. 36, 507–511 (2009).

    Article  PubMed  Google Scholar 

  14. Warkowski, K. A. & Berman S. M. Sexually transmitted diseases treatment guidelines, 2006, MMWR Recommendations and Reports August 4, 2006, 55 (RR 11), 1–94. CDC [online], (2006).

    Google Scholar 

  15. Bryson, Y. J. et al. Treatment of first episodes of genital herpes simplex virus infection with oral acyclovir. A randomized double-blind controlled trial in normal subjects. N. Engl. J. Med. 308, 916–921 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. Corey, L. The diagnosis and treatment of genital herpes. JAMA 248, 1041–1049 (1982).

    Article  CAS  PubMed  Google Scholar 

  17. Barre-Sinoussi, F. et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220, 868–871 (1983).

    Article  CAS  PubMed  Google Scholar 

  18. Gallo, R. C. et al. Isolation of human T-cell leukemia virus in acquired immune deficiency syndrome (AIDS). Science 220, 865–867 (1983).

    Article  CAS  PubMed  Google Scholar 

  19. Kotler, D. P., Gaetz, H. P., Lange, M., Klein, E. B. & Holt, P. R. Enteropathy associated with the acquired immunodeficiency syndrome. Ann. Intern. Med. 101, 421–428 (1984).

    Article  CAS  PubMed  Google Scholar 

  20. Neutra, M. R. & Kozlowski, P. A. Mucosal vaccines: the promise and the challenge. Nat. Rev. Immunol. 6, 148–158 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Schacker, T., Collier, A. C., Hughes, J., Shea, T. & Corey, L. Clinical and epidemiologic features of primary HIV infection. Ann. Intern. Med. 125, 257–264 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Haase, A. T. Perils at mucosal front lines for HIV and SIV and their hosts. Nat. Rev. Immunol. 5, 783–792 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Sharpstone, D. et al. Small intestinal transit, absorption, and permeability in patients with AIDS with and without diarrhea. Gut 45, 70–76 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kapembwa, M. S. et al. Altered small-intestinal permeability associated with diarrhea in human-immunodeficiency-virus-infected Caucasian and African subjects. Clin. Sci. (Lond.) 81, 327–334 (1991).

    Article  CAS  Google Scholar 

  25. Bjarnason, I. et al. Intestinal inflammation, ileal structure and function in HIV. AIDS 10, 1385–1391 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Blanshard, C. & Gazzard, B. G. Natural history and prognosis of diarrhea of unknown cause in patients with acquired immunodeficiency syndrome (AIDS). Gut 36, 283–286 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Blanshard, C., Francis, N. & Gazzard, B. G. Investigation of chronic diarrhea in acquired immunodeficiency syndrome: a prospective study of 155 patients. Gut 39, 824–832 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Smith, P. D. et al. Intestinal infections in patients with the acquired immunodeficiency syndrome (AIDS): etiology and response to therapy. Ann. Intern. Med. 108, 328–333 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. Kewenig, S. et al. Rapid mucosal CD4+ T-cell depletion and enteropathy in simian immunodeficiency virus-infected rhesus macaques. Gastroenterology 116, 1115–1123 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Batman, P. A. et al. HIV enteropathy: crypt stem and transit cell hyperproliferation induces villous atrophy in HIV/Microsporidia-infected jejunal mucosa. AIDS 21, 433–439 (2007).

    Article  PubMed  Google Scholar 

  31. Batman, P. A. et al. Jejunal enteropathy associated with human immunodeficiency virus infection: quantitative histology. J. Clin. Pathol. 42, 275–281 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sharpstone, D. & Gazzard, B. Gastrointestinal manifestations of HIV infection. Lancet 348, 379–383 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Derouin, F. & Lagrange-Xelot, M. Treatment of parasitic diarrhea in HIV-infected patients. Expert Rev. Anti Infect. Ther. 6, 337–349 (2008).

    Article  PubMed  Google Scholar 

  34. Lewthwaite, P., Gill, G. V., Hart, C. A. & Beeching, N. J. Gastrointestinal parasites in the immunocompromised. Curr. Opin. Infect. Dis. 18, 427–435 (2005).

    Article  PubMed  Google Scholar 

  35. Mela, C. M. et al. Depletion of natural killer cells in the colonic lamina propria of viremic HIV-1-infected individuals. AIDS 21, 2177–2182 (2007).

    Article  PubMed  Google Scholar 

  36. Kosub, D. A. et al. γ/δ T-cell functional responses differ after pathogenic human immunodeficiency virus and nonpathogenic simian immunodeficiency virus infections. J. Virol. 82, 1155–1165 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Nilssen, D. E. et al. Intraepithelial γ/δ T cells in duodenal mucosa are related to the immune state and survival time in AIDS. J. Virol. 70, 3545–3550 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martinelli, E. et al. HIV-1 gp120 inhibits TLR9-mediated activation and IFN-α secretion in plasmacytoid dendritic cells. Proc. Natl Acad. Sci. USA 104, 3396–3401 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mandl, J. N. et al. Divergent TLR7 and TLR9 signaling and type I interferon production distinguish pathogenic and nonpathogenic AIDS virus infections. Nat. Med. 14, 1077–1087 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Stagg, A. J., Kamm, M. A. & Knight, S. C. Intestinal dendritic cells increase T cell expression of α4β7 integrin. Eur. J. Immunol. 32, 1445–1454 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Mora, J. R. et al. Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature 424, 88–93 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Johansson-Lindbom, B. et al. Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J. Exp. Med. 202, 1063–1073 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Butcher, E. C., Williams, M., Youngman, K., Rott, L. & Briskin, M. Lymphocyte trafficking and regional immunity. Adv. Immunol. 72, 209–253 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Zabel, B. A. et al. Human G protein-coupled receptor GPR-9-6/CC chemokine receptor 9 is selectively expressed on intestinal homing T lymphocytes, mucosal lymphocytes, and thymocytes and is required for thymus-expressed chemokine-mediated chemotaxis. J. Exp. Med. 190, 1241–1256 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Burns, R. C. et al. Antibody blockade of ICAM-1 and VCAM-1 ameliorates inflammation in the SAMP-1/Yit adoptive transfer model of Crohn's disease in mice. Gastroenterology 121, 1428–1436 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Goto, A., Arimura, Y., Shinomura, Y., Imai, K. & Hinoda, Y. Antisense therapy of MAdCAM-1 for trinitrobenzenesulfonic acid-induced murine colitis. Inflamm. Bowel. Dis. 12, 758–765 (2006).

    Article  PubMed  Google Scholar 

  47. Farkas, S. et al. Blocking MAdCAM-1 in vivo reduces leukocyte extravasation and reverses chronic inflammation in experimental colitis. Int. J. Colorectal Dis. 21, 71–78 (2006).

    Article  PubMed  Google Scholar 

  48. Iwata, M. et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity 21, 527–538 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Johansson-Lindbom, B. et al. Selective generation of gut tropic T cells in gut-associated lymphoid tissue (GALT): requirement for GALT dendritic cells and adjuvant. J. Exp. Med. 198, 963–969 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hengel, R. L., Jones, B. M., Kennedy, M. S., Hubbard, M. R. & McDougal, J. S. CD4+ T cells programd to traffic to lymph nodes account for increases in numbers of CD4+ T cells up to 1 year after the initiation of highly active antiretroviral therapy for human immunodeficiency virus type 1 infection. J. Infect. Dis. 184, 93–97 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Hengel, R. L., Jones, B. M., Kennedy, M. S., Hubbard, M. R. & McDougal, J. S. Markers of lymphocyte homing distinguish CD4 T cell subsets that turn over in response to HIV-1 infection in humans. J. Immunol. 163, 3539–3548 (1999).

    CAS  PubMed  Google Scholar 

  52. Arthos, J. et al. HIV-1 envelope protein binds to and signals through integrin α4β7, the gut mucosal homing receptor for peripheral T cells. Nat. Immunol. 9, 301–309 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Miao, Y. M. et al. Elevated mucosal addressin cell adhesion molecule-1 expression in acquired immunodeficiency syndrome is maintained during antiretroviral therapy by intestinal pathogens and coincides with increased duodenal CD4 T cell densities. J. Infect. Dis. 185, 1043–1050 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Smith, P. D., Meng, G., Salazar-Gonzalez, J. F. & Shaw, G. M. Macrophage HIV-1 infection and the gastrointestinal tract reservoir. J. Leukoc. Biol. 74, 642–649 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Janoff, E. N. & Smith, P. D. Emerging concepts in gastrointestinal aspects of HIV-1 pathogenesis and management. Gastroenterology 120, 607–621 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Veazey, R. S. et al. Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science 280, 427–431 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Mattapallil, J. J. et al. Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature 434, 1093–1097 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Mehandru, S. et al. Mechanisms of gastrointestinal CD4+ T-cell depletion during acute and early human immunodeficiency virus type 1 infection. J. Virol. 81, 599–612 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Li, Q. et al. Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. Nature 434, 1148–1152 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Picker, L. J. et al. Insufficient production and tissue delivery of CD4+ memory T cells in rapidly progressive simian immunodeficiency virus infection. J. Exp. Med. 200, 1299–1314 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Canani, R. B. et al. Effects of HIV-1 Tat protein on ion secretion and on cell proliferation in human intestinal epithelial cells. Gastroenterology 124, 368–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Dandekar, S. Pathogenesis of HIV in the gastrointestinal tract. Curr. HIV/AIDS Rep. 4, 10–15 (2007).

    Article  PubMed  Google Scholar 

  63. Canani, R. B. et al. Inhibitory effect of HIV-1 Tat protein on the sodium-D-glucose symporter of human intestinal epithelial cells. AIDS 20, 5–10 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Cossarizza, A. Apoptosis and HIV infection: about molecules and genes. Curr. Pharm. Des. 14, 237–244 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Veazey, R. S. & Lackner, A. A. HIV swiftly guts the immune system. Nat. Med. 11, 469–470 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Brenchley, J. M., Price, D. A. & Douek, D. C. HIV disease: fallout from a mucosal catastrophe? Nat. Immunol. 7, 235–239 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Schneider, T. et al. Loss of CD4 T lymphocytes in patients infected with human immunodeficiency virus type 1 is more pronounced in the duodenal mucosa than in the peripheral blood. Berlin Diarrhea and Wasting Syndrome Study Group. Gut 37, 524–529 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Okoye, A. et al. Progressive CD4+ central memory T cell decline results in CD4+ effector memory insufficiency and overt disease in chronic SIV infection. J. Exp. Med. 204, 2171–2185 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Giorgi, J. V. et al. Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine co-receptor usage. J. Infect. Dis. 179, 859–870 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Rodriguez, B. et al. Predictive value of plasma HIV RNA level on rate of CD4 T-cell decline in untreated HIV infection. JAMA 296, 1498–1506 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Caradonna, L. et al. Enteric bacteria, lipopolysaccharides and related cytokines in inflammatory bowel disease: biological and clinical significance. J. Endotoxin Res. 6, 205–214 (2000).

    CAS  PubMed  Google Scholar 

  72. Cooke, K. R., Olkiewicz, K., Erickson, N. & Ferrara, J. L. The role of endotoxin and the innate immune response in the pathophysiology of acute graft versus host disease. J. Endotoxin Res. 8, 441–448 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Brenchley, J. M. et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat. Med. 12, 1365–1371 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Gordon, S. N. et al. Severe depletion of mucosal CD4+ T cells in AIDS-free simian immunodeficiency virus-infected sooty mangabeys. J. Immunol. 179, 3026–3034 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Pandrea, I. V. et al. Acute loss of intestinal CD4+ T cells is not predictive of simian immunodeficiency virus virulence. J. Immunol. 179, 3035–3046 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Hunt, P. W. et al. Relationship between T cell activation and CD4+ T cell count in HIV-seropositive individuals with undetectable plasma HIV RNA levels in the absence of therapy. J. Infect. Dis. 197, 126–133 (2008).

    Article  PubMed  Google Scholar 

  77. Derdeyn, C. A. & Silvestri, G. Viral and host factors in the pathogenesis of HIV infection. Curr. Opin. Immunol. 17, 366–373 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Hazenberg, M. D. et al. Persistent immune activation in HIV-1 infection is associated with progression to AIDS. AIDS 17, 1881–1888 (2003).

    Article  PubMed  Google Scholar 

  79. George, M. D., Sankaran, S., Reay, E., Gelli, A. C. & Dandekar, S. High-throughput gene expression profiling indicates dysregulation of intestinal cell cycle mediators and growth factors during primary simian immunodeficiency virus infection. Virology 312, 84–94 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Sankaran, S. et al. Gut mucosal T cell responses and gene expression correlate with protection against disease in long-term HIV-1-infected nonprogressors. Proc. Natl Acad. Sci. USA 102, 9860–9865 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li, Q. et al. Simian immunodeficiency virus-induced intestinal cell apoptosis is the underlying mechanism of the regenerative enteropathy of early infection. J. Infect. Dis. 197, 420–429 (2008).

    Article  PubMed  Google Scholar 

  82. Keating, J. et al. Intestinal absorptive capacity, intestinal permeability and jejunal histology in HIV and their relation to diarrhea. Gut 37, 623–629 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Stockmann, M. et al. Mechanisms of epithelial barrier impairment in HIV infection. Ann. NY Acad. Sci. 915, 293–303 (2000).

    Article  CAS  PubMed  Google Scholar 

  84. Stockmann, M. et al. Duodenal biopsies of HIV-infected patients with diarrhea exhibit epithelial barrier defects but no active secretion. AIDS 12, 43–51 (1998).

    Article  CAS  PubMed  Google Scholar 

  85. Greenson, J. K., Belitsos, P. C., Yardley, J. H. & Bartlett, J. G. AIDS enteropathy: occult enteric infections and duodenal mucosal alterations in chronic diarrhea. Ann. Intern. Med. 114, 366–372 (1991).

    Article  CAS  PubMed  Google Scholar 

  86. Schmitz, H. et al. Supernatants of HIV-infected immune cells affect the barrier function of human HT-29/B6 intestinal epithelial cells. AIDS 16, 983–991 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Zeitz, M. et al. HIV/SIV enteropathy. Ann. NY Acad. Sci. 859, 139–148 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Adams, R. B., Planchon, S. M. & Roche, J. K. IFN-γ modulation of epithelial barrier function: time course, reversibility, and site of cytokine binding. J. Immunol. 150, 2356–2363 (1993).

    CAS  PubMed  Google Scholar 

  89. Heller, F. et al. Interleukin-13 is the key effector TH2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology 129, 550–564 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Gitter, A. H., Bendfeldt, K., Schulzke, J. D. & Fromm, M. Leaks in the epithelial barrier caused by spontaneous and TNF-α-induced single-cell apoptosis. FASEB J. 14, 1749–1753 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Fish, S. M., Proujansky, R. & Reenstra, W. W. Synergistic effects of interferon γ and tumor necrosis factor α on T84 cell function. Gut 45, 191–198 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bruewer, M. et al. Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J. Immunol. 171, 6164–6172 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Epple, H. J. et al. Impairment of the intestinal barrier is evident in untreated but absent in suppressively treated HIV-infected patients. Gut 58, 220–227 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Schulzke, J. D. et al. Disrupted barrier function through epithelial cell apoptosis. Ann. NY Acad. Sci. 1072, 288–299 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Zeissig, S. et al. Changes in expression and distribution of claudins 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease. Gut 56, 61–72 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Clark, E., Hoare, C., Tanianis-Hughes, J., Carlson, G. L. & Warhurst, G. Interferon γ induces translocation of commensal Escherichia coli across gut epithelial cells via a lipid-raft-mediated process. Gastroenterology 128, 1258–1267 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Clark, E. C. et al. Glutamine deprivation facilitates tumor necrosis factor induced bacterial translocation in Caco-2 cells by depletion of enterocyte fuel substrate. Gut 52, 224–230 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Olsson, J. et al. Human immunodeficiency virus type 1 infection is associated with significant mucosal inflammation characterized by increased expression of CCR5, CXCR4, and β-chemokines. J. Infect. Dis. 182, 1625–1635 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. McGowan, I. et al. Increased HIV-1 mucosal replication is associated with generalized mucosal cytokine activation. J. Acquir. Immune Defic. Syndr. 37, 1228–1236 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Clayton, F. et al. Rectal mucosal pathology varies with human immunodeficiency virus antigen content and disease stage 17. Gastroenterology 103, 919–933 (1992).

    Article  CAS  PubMed  Google Scholar 

  101. Kotler, D. P., Reka, S. & Clayton, F. Intestinal mucosal inflammation associated with human immunodeficiency virus infection. Dig. Dis. Sci. 38, 1119–1127 (1993).

    Article  CAS  PubMed  Google Scholar 

  102. Zulu, I. et al. Cytokine activation is predictive of mortality in Zambian patients with AIDS-related diarrhea. BMC Infect. Dis. 8, 156 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Lee, Y. K., Mukasa, R., Hatton, R. D. & Weaver, C. T. Developmental plasticity of TH17 and TREG cells. Curr. Opin. Immunol. 21, 274–280 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Favre, D., Lederer, S. & Kanwar, B. Primary SIV infection causes rapid loss of the balance between TH17 and T regulatory cell populations in pathogenic infection of nonhuman primates [Abstract]. In 15th Conference on Retroviruses and Opportunistic Infections (eds Stevenson, M. & Mellors, J. W.) 117 (2008).

    Google Scholar 

  105. Cervasi, B., Brenchley, J. M. & Paiardini, M. Preferential loss of TH17 CD4 cells in the gastrointestinal tract of HIV-infected individuals but not SIV-infected sooty mangabeys [Abstract]. In 15th Conference on Retroviruses and Opportunistic Infections (eds Stevenson, M. & Mellors, J. W. 115 (2008).

    Google Scholar 

  106. Cecchinato, V., Trindade, C. & Heraud, J. M. Preferential loss of TH17 cells at mucosal sites predicts AIDS progression in simian immunodeficiency virus-infected macaques [Abstract]. In 15th Conference on Retroviruses and Opportunistic Infections (eds Stevenson, M. & Mellors, J. W.) 116 (2008).

    Google Scholar 

  107. Raffatellu, M. et al. Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut. Nat. Med. 14, 421–428 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Brand, S. et al. IL-22 is increased in active Crohn's disease and promotes proinflammatory gene expression and intestinal epithelial cell migration. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G827–G838 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Schwartz, S., Beaulieu, J. F. & Ruemmele, F. M. Interleukin-17 is a potent immuno-modulator and regulator of normal human intestinal epithelial cell growth. Biochem. Biophys. Res. Commun. 337, 505–509 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Shacklett, B. L. Mucosal immunity to HIV: a review of recent literature. Curr. Opin. HIV AIDS 3, 541–547 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Paiardini, M., Frank, I., Pandrea, I., Apetrei, C. & Silvestri, G. Mucosal immune dysfunction in AIDS pathogenesis. AIDS Rev. 10, 36–46 (2008).

    PubMed  Google Scholar 

  113. Hamlyn, E. & Taylor, C. Sexually transmitted proctitis. Postgrad. Med. J. 82, 733–736 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Quinn, T. C. et al. The polymicrobial origin of intestinal infections in homosexual men. N. Engl. J. Med. 309, 576–582 (1983).

    Article  CAS  PubMed  Google Scholar 

  115. Marcus, U. et al. Shigellosis—a re-emerging sexually transmitted infection: outbreak in men having sex with men in Berlin. Int. J. STD AIDS 15, 533–537 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. van der Bij, A. K. et al. Diagnostic and clinical implications of anorectal lymphogranuloma venereum in men who have sex with men: a retrospective case–control study. Clin. Infect. Dis. 42, 186–194 (2006).

    Article  PubMed  Google Scholar 

  117. Macdonald, N. et al. Recent trends in diagnoses of HIV and other sexually transmitted infections in England and Wales among men who have sex with men. Sex. Transm. Infect. 80, 492–497 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Dougan, S., Evans, B. G. & Elford, J. Sexually transmitted infections in Western Europe among HIV-positive men who have sex with men. Sex. Transm. Dis. 34, 783–790 (2007).

    Article  PubMed  Google Scholar 

  119. Dougan, S. et al. Does the recent increase in HIV diagnoses among men who have sex with men in the UK reflect a rise in HIV incidence or increased uptake of HIV testing? Sex. Transm. Infect. 83, 120–125 (2007).

    Article  PubMed  Google Scholar 

  120. Fenton, K. A. & Lowndes, C. M. Recent trends in the epidemiology of sexually transmitted infections in the European Union. Sex. Transm. Infect. 80, 255–263 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. McMillan, A., van Voorst Vader, P. C., de Vries, H. J., International Union against Sexually Transmitted Infections–World Health Organization: the 2007 European Guideline (International Union against Sexually Transmitted Infections/World Health Organization) on the management of proctitis, proctocolitis and enteritis caused by sexually transmissible pathogens. Int. J. STD AIDS 18, 514–520 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. British association for sexual health and HIV [online], (2009).

  123. Kent, C. K. et al. Prevalence of rectal, urethral, and pharyngeal chlamydia and gonorrhea detected in 2 clinical settings among men who have sex with men: San Francisco, California, 2003. Clin. Infect. Dis. 41, 67–74 (2005).

    Article  PubMed  Google Scholar 

  124. Schachter, J., Moncada, J., Liska, S., Shayevich, C. & Klausner, J. D. Nucleic acid amplification tests in the diagnosis of chlamydial and gonococcal infections of the oropharynx and rectum in men who have sex with men. Sex. Transm. Dis. 35, 637–642 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Gunn, R. A., O'Brien, C. J., Lee, M. A. & Gilchick, R. A. Gonorrhea screening among men who have sex with men: value of multiple anatomic site testing, San Diego, California, 1997–2003. Sex. Transm. Dis. 35, 845–848 (2008).

    Article  PubMed  Google Scholar 

  126. Klausner, J. D., Kohn, R. & Kent, C. Etiology of clinical proctitis among men who have sex with men. Clin. Infect. Dis. 38, 300–302 (2004).

    Article  PubMed  Google Scholar 

  127. Baker, R. W. & Peppercorn, M. A. Gastrointestinal ailments of homosexual men. Medicine (Baltimore) 61, 390–405 (1982).

    Article  CAS  Google Scholar 

  128. William, D. C., Felman, Y. M. & Riccardi, N. B. The utility of anoscopy in the rapid diagnosis of symptomatic anorectal gonorrhea in men. Sex. Transm. Dis. 8, 16–17 (1981).

    Article  CAS  PubMed  Google Scholar 

  129. Schwarcz, S. K. et al. National surveillance of antimicrobial resistance in Neisseria gonorrheae. The Gonococcal Isolate Surveillance Project. JAMA 264, 1413–1417 (1990).

    Article  CAS  PubMed  Google Scholar 

  130. Martin, I. M., Hoffmann, S. & Ison, C. A. European Surveillance of Sexually Transmitted Infections (ESSTI): the first combined antimicrobial susceptibility data for Neisseria gonorrheae in Western Europe. J. Antimicrob. Chemother. 58, 587–593 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Klein, E. J., Fisher, L. S., Chow, A. W. & Guze, L. B. Anorectal gonococcal infection. Ann. Intern. Med. 86, 340–346 (1977).

    Article  CAS  PubMed  Google Scholar 

  132. Craib, K. J. et al. Rectal gonorrhea as an independent risk factor for HIV infection in a cohort of homosexual men 1. Genitourin. Med. 71, 150–154 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Perine, P. L. & Stamm, W. E. Lymphogranuloma venereum. In Sexually Transmitted Diseases 3rd edn (eds Holmes, K. K. et al.) 423–432 (McGraw-Hill, New York, 1999).

    Google Scholar 

  134. Quinn, T. C. et al. Chlamydia trachomatis proctitis. N. Engl. J. Med. 305, 195–200 (1981).

    Article  CAS  PubMed  Google Scholar 

  135. Papagrigoriadis, S. & Rennie, J. A. Lymphogranuloma venereum as a cause of rectal strictures. Postgrad. Med. J. 74, 168–169 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ward, H. et al. The prevalence of lymphogranuloma venereum (LGV) infection in men who have sex with men: results of a multi-center case finding study. Sex. Transm. Infect. 85, 173–175 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Schachter, J. Chlamydial infections (first of three parts). N. Engl. J. Med. 298, 428–435 (1978).

    Article  CAS  PubMed  Google Scholar 

  138. Schachter, J. Chlamydial infections (second of three parts). N. Engl. J. Med. 298, 490–495 (1978).

    Article  CAS  PubMed  Google Scholar 

  139. Nieuwenhuis, R. F. et al. Resurgence of lymphogranuloma venereum in western Europe: an outbreak of Chlamydia trachomatis serovar L2 proctitis in The Netherlands among men who have sex with men. Clin. Infect. Dis. 39, 996–1003 (2004).

    Article  PubMed  Google Scholar 

  140. Herida, M. et al. Rectal lymphogranuloma venereum surveillance in France 2004–2005. Euro. Surveill. 11, 155–156 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Ward, H. et al. Lymphogranuloma venereum in the United Kingdom. Clin. Infect. Dis. 44, 26–32 (2007).

    Article  PubMed  Google Scholar 

  142. Krosigk, A. et al. Dramatic increase in lymphogranuloma venereum among homosexual men in Hamburg [German]. J. Dtsch. Dermatol. Ges. 2, 676–680 (2004).

    Google Scholar 

  143. van de Laar, M. J., Koedijk, F. D., Gotz, H. M. & de Vries, H. J. A slow epidemic of LGV in The Netherlands in 2004 and 2005. Euro. Surveill. 11, 150–152 (2006).

    CAS  PubMed  Google Scholar 

  144. Spaargaren, J., Fennema, H. S., Morre, S. A., de Vries, H. J. & Coutinho, R. A. New lymphogranuloma venereum Chlamydia trachomatis variant, Amsterdam. Emerg. Infect. Dis. 11, 1090–1092 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Berglund, T. et al. Two cases of lymphogranuloma venereum (LGV) in homosexual men in Stockholm. Euro. Surveill. 10, E050303 (2005).

    PubMed  Google Scholar 

  146. Gebhardt, M. & Goldenberger, D. Lymphogranuloma venereum (LGV) serotype L2 in Switzerland, 2003–2005. Euro. Surveill. 10, E051222 (2005).

    PubMed  Google Scholar 

  147. Vandenbruaene, M. et al. Lymphogranuloma venereum outbreak in men who have sex with men (MSM) in Belgium, January 2004 to July 2005. Euro. Surveill. 10, E050929 (2005).

    PubMed  Google Scholar 

  148. Bremer, V., Meyer, T., Marcus, U. & Hamouda, O. Lymphogranuloma venereum emerging in men who have sex with men in Germany. Euro. Surveill. 11, 152–154 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Stark, D., van, H. S., Hillman, R., Harkness, J. & Marriott, D. Lymphogranuloma venereum in Australia: anorectal Chlamydia trachomatis serovar L2b in men who have sex with men. J. Clin. Microbiol. 45, 1029–1031 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kropp, R. Y. & Wong, T. Emergence of lymphogranuloma venereum in Canada. CMAJ 172, 1674–1676 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Stary, G. & Stary, A. Lymphogranuloma venereum outbreak in Europe. J. Dtsch. Dermatol. Ges. 6, 935–940 (2008).

    Article  PubMed  Google Scholar 

  152. Stolte, I. G., Dukers, N. H., Geskus, R. B., Coutinho, R. A. & de Wit, J. B. Homosexual men change to risky sex when perceiving less threat of HIV/AIDS since availability of highly active antiretroviral therapy: a longitudinal study. AIDS 18, 303–309 (2004).

    Article  PubMed  Google Scholar 

  153. Davaro, R. E. & Himlan, P. H. Immune restoration disorders following HAART. AIDS Read. 9, 167–169 (1999).

    CAS  PubMed  Google Scholar 

  154. Cohen, M. S. Sexually transmitted diseases enhance HIV transmission: no longer a hypothesis. Lancet 351 (Suppl. 3), 5–7 (1998).

    Article  PubMed  Google Scholar 

  155. Meyer, T., Arndt, R., von, K. A. & Plettenberg, A. Repeated detection of lymphogranuloma venereum caused by Chlamydia trachomatis L2 in homosexual men in Hamburg. Sex. Transm. Infect. 81, 91–92 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Spaargaren, J. et al. Slow epidemic of lymphogranuloma venereum L2b strain. Emerg. Infect. Dis. 11, 1787–1788 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Stary, G. et al. New Chlamydia trachomatis L2 strains identified in a recent outbreak of lymphogranuloma venereum in Vienna, Austria. Sex. Transm. Dis. 35, 377–382 (2008).

    Article  CAS  PubMed  Google Scholar 

  158. van der Snoek, E. M., Ossewaarde, J. M., van der Meijden, W. I., Mulder, P. G. & Thio, H. B. The use of serological titers of IgA and IgG in (early) discrimination between rectal infection with non-lymphogranuloma venereum and lymphogranuloma venereum serovars of Chlamydia trachomatis. Sex. Transm. Infect. 83, 330–334 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Thomson, N. R. et al. Chlamydia trachomatis: genome sequence analysis of lymphogranuloma venereum isolates. Genome Res. 18, 161–171 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. de Vries, H. J. et al. Delayed microbial cure of lymphogranuloma venereum proctitis with doxycycline treatment. Clin. Infect. Dis. 48, e53–e56 (2009).

    Article  CAS  PubMed  Google Scholar 

  161. Solomon, L. et al. Epidemiology of recurrent genital herpes simplex virus types 1 and 2. Sex. Transm. Infect. 79, 456–459 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Goodell, S. E. et al. Herpes simplex virus proctitis in homosexual men. Clinical, sigmoidoscopic and histopathological features. N. Engl. J. Med. 308, 868–871 (1983).

    Article  CAS  PubMed  Google Scholar 

  163. Catterall, R. D. Sexually transmitted diseases of the anus and rectum. Clin. Gastroenterol. 4, 659–669 (1975).

    Article  CAS  PubMed  Google Scholar 

  164. Douglas, J. M. et al. A double-blind study of oral acyclovir for suppression of recurrences of genital herpes simplex virus infection. N. Engl. J. Med. 310, 1551–1556 (1984).

    Article  CAS  PubMed  Google Scholar 

  165. Straus, S. E. et al. Suppression of frequently recurring genital herpes: a placebo-controlled double-blind trial of oral acyclovir. N. Engl. J. Med. 310, 1545–1550 (1984).

    Article  CAS  PubMed  Google Scholar 

  166. Stamm, W. E. et al. The association between genital ulcer disease and acquisition of HIV infection in homosexual men. JAMA 260, 1429–1433 (1988).

    Article  CAS  PubMed  Google Scholar 

  167. Holmberg, S. D. et al. Prior herpes simplex virus type 2 infection as a risk factor for HIV infection. JAMA 259, 1048–1050 (1988).

    Article  CAS  PubMed  Google Scholar 

  168. Anderson, J., Mindel, A., Tovey, S. J. & Williams, P. Primary and secondary syphilis, 20 years' experience. 3: Diagnosis, treatment, and follow up. Genitourin. Med. 65, 239–243 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Goh, B. T. Syphilis in adults. Sex. Transm. Infect. 81, 448–452 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. French, P. et al. IUSTI: 2008 European guidelines on the management of syphilis. Int. J. STD AIDS 20, 300–309 (2009).

    Article  CAS  PubMed  Google Scholar 

  171. Kingston, M. et al. UK national guidelines on the management of syphilis, 2008. Int. J. STD AIDS 19, 729–740 (2008).

    Article  CAS  PubMed  Google Scholar 

  172. 172. WHO. Global prevalence and incidence of selected curable sexually transmitted infections: overview and estimates. (WHO, Geneva, 2001).

  173. Righarts, A. A., Simms, I., Wallace, L., Solomou, M. & Fenton, K. A. Syphilis surveillance and epidemiology in the United Kingdom. Euro. Surveill. 9, 21–25 (2004).

    Article  CAS  PubMed  Google Scholar 

  174. Simms, I. et al. The re-emergence of syphilis in the United Kingdom: the new epidemic phases. Sex. Transm. Dis. 32, 220–226 (2005).

    Article  PubMed  Google Scholar 

  175. Phipps, W., Kent, C. K., Kohn, R. & Klausner, J. D. Risk factors for repeat syphilis in men who have sex with men, San Francisco. Sex. Transm. Dis. 36, 331–335 (2009).

    Article  PubMed  Google Scholar 

  176. Cole, M. J., Chisholm, S., Palmer, H. M., Wallace, L. A. & Ison, C. A. Molecular epidemiology of syphilis in Scotland. Sex. Transm. Infect. (2009).

  177. Walsh, J. A. Prevalence of Entamoeba histolytica infection. In Amebiasis: Human Infection by Entamoeba histolytica (ed. Ravdin, J. I.) 93–105 (Churchill Livingstone, New York, 1988).

    Google Scholar 

  178. Kao, S., Chiu, H. H. & Liu, Y. W. Education and imaging: gastrointestinal: amebic colitis. J. Gastroenterol. Hepatol. 24, 167 (2009).

    Article  CAS  PubMed  Google Scholar 

  179. Gatti, S., Cevini, C., Bruno, A., Novati, S. & Scaglia, M. Transmission of Entamoeba histolytica within a family complex. Trans. R. Soc. Trop. Med. Hyg. 89, 403–405 (1995).

    Article  CAS  PubMed  Google Scholar 

  180. Sexton, D. J. et al. Amebiasis in a mental institution: serologic and epidemiologic studies. Am. J. Epidemiol. 100, 414–423 (1974).

    Article  CAS  PubMed  Google Scholar 

  181. Ortega, H. B., Borchardt, K. A., Hamilton, R., Ortega, P. & Mahood, J. Enteric pathogenic protozoa in homosexual men from San Francisco. Sex. Transm. Dis. 11, 59–63 (1984).

    Article  CAS  PubMed  Google Scholar 

  182. Stanley, S. L. Jr . Amoebiasis. Lancet 361, 1025–1034 (2003).

    Article  CAS  PubMed  Google Scholar 

  183. Walsh, J. A. Problems in recognition and diagnosis of amebiasis: estimation of the global magnitude of morbidity and mortality. Rev. Infect. Dis. 8, 228–238 (1986).

    Article  CAS  PubMed  Google Scholar 

  184. Cuna-Soto, R., Maguire, J. H. & Wirth, D. F. Gender distribution in asymptomatic and invasive amebiasis. Am. J. Gastroenterol. 95, 1277–1283 (2000).

    Article  Google Scholar 

  185. Reed, S. L., Wessel, D. W. & Davis, C. E. Entamoeba histolytica infection and AIDS. Am. J. Med. 90, 269–271 (1991).

    Article  CAS  PubMed  Google Scholar 

  186. Jessurun, J., Barron-Rodriguez, L. P., Fernandez-Tinoco, G. & Hernandez-Avila, M. The prevalence of invasive amebiasis is not increased in patients with AIDS. AIDS 6, 307–309 (1992).

    Article  CAS  PubMed  Google Scholar 

  187. Campos-Rodriguez, R. & Jarillo-Luna, A. The pathogenicity of Entamoeba histolytica is related to the capacity of evading innate immunity. Parasite Immunol. 27, 1–8 (2005).

    Article  Google Scholar 

  188. Hung, C. C. et al. Invasive amebiasis as an emerging parasitic disease in patients with human immunodeficiency virus type 1 infection in Taiwan. Arch. Intern. Med. 165, 409–415 (2005).

    Article  PubMed  Google Scholar 

  189. Hung, C. C. et al. Increased risk for Entamoeba histolytica infection and invasive amebiasis in HIV seropositive men who have sex with men in Taiwan. PLoS. Negl. Trop. Dis. 2, e175 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Park, W. B. et al. Amebic liver abscess in HIV-infected patients, Republic of Korea. Emerg. Infect. Dis. 13, 516–517 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Singh, A., Houpt, E. & Petri, W. A. Rapid diagnosis of intestinal parasitic protozoa, with a focus on Entamoeba histolytica. Interdiscip. Perspect. Infect. Dis. 2009, 547090 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Gonzales, M. L., Dans, L. F. & Martinez, E. G. Antiamoebic drugs for treating amoebic colitis. Cochrane. Database of Systematic Reviews Issue 2. Art. No.: CD006085. doi: 10.1002/14651858.CD006085.pub2 (2009).

    Google Scholar 

  193. Lejeune, M., Rybicka, J. M. & Chadee, K. Recent discoveries in the pathogenesis and immune response toward Entamoeba histolytica. Future Microbiol. 4, 105–118 (2009).

    Article  CAS  PubMed  Google Scholar 

  194. Ravdin, J. I. & Guerrant, R. L. Role of adherence in cytopathogenic mechanisms of Entamoeba histolytica. Study with mammalian tissue culture cells and human erythrocytes. J. Clin. Invest. 68, 1305–1313 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kammanadiminti, S. J., Mann, B. J., Dutil, L. & Chadee, K. Regulation of Toll-like receptor-2 expression by the Gal lectin of Entamoeba histolytica. FASEB J. 18, 155–157 (2004).

    Article  CAS  PubMed  Google Scholar 

  196. Arellano, J. et al. Increased frequency of HLA-DR3 and complotype SCO1 in Mexican mestizo children with amoebic abscess of the liver. Parasite Immunol. 18, 491–498 (1996).

    Article  CAS  PubMed  Google Scholar 

  197. Kotloff, K. L. et al. Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull. World Health Organ. 77, 651–666 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Dupont, H. L., Levine, M. M., Hornick, R. B. & Formal, S. B. Inoculum size in shigellosis and implications for expected mode of transmission. J. Infect. Dis. 159, 1126–1128 (1989).

    Article  CAS  PubMed  Google Scholar 

  199. Chaisson, R. E. Infections due to encapsulated bacteria, Salmonella, Shigella, and Campylobacter. Infect. Dis. Clin. North Am. 2, 475–484 (1988).

    Article  CAS  PubMed  Google Scholar 

  200. Dritz, S. K. & Back, A. F. Letter: Shigella enteritis venereally transmitted. N. Engl. J. Med. 291, 1194 (1974).

    CAS  PubMed  Google Scholar 

  201. Bader, M., Pedersen, A. H., Williams, R., Spearman, J. & Anderson, H. Venereal transmission of shigellosis in Seattle, King county. Sex. Transm. Dis. 4, 89–91 (1977).

    Article  CAS  PubMed  Google Scholar 

  202. Drusin, L. M., Genvert, G., Topf-Olstein, B. & Levy-Zombek, E. Shigellosis: another sexually transmitted disease? Br. J. Vener. Dis. 52, 348–350 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Aragon, T. J. et al. Case–control study of shigellosis in San Francisco: the role of sexual transmission and HIV infection. Clin. Infect. Dis. 44, 327–334 (2007).

    Article  PubMed  Google Scholar 

  204. Baer, J. T. et al. HIV infection as a risk factor for shigellosis. Emerg. Infect. Dis. 5, 820–823 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Daskalakis, D. C. & Blaser, M. J. Another perfect storm: Shigella, men who have sex with men, and HIV. Clin. Infect. Dis. 44, 335–337 (2007).

    Article  PubMed  Google Scholar 

  206. Nagler, J., Brown, M. & Soave, R. Blastocystis hominis in inflammatory bowel disease. J. Clin. Gastroenterol 16, 109–112 (1993).

    Article  CAS  PubMed  Google Scholar 

  207. Albrecht, H., Stellbrink, H. J., Koperski, K. & Greten, H. Blastocystis hominis in human immunodeficiency virus-related diarrhea. Scand. J. Gastroenterol. 30, 909–914 (1995).

    Article  CAS  PubMed  Google Scholar 

  208. Tan, K. S. Blastocystis in humans and animals: new insights using modern methodologies. Vet. Parasitol. 126, 121–144 (2004).

    Article  PubMed  Google Scholar 

  209. Weisheit, B., Bethke, B. & Stolte, M. Human intestinal spirochetosis: analysis of the symptoms of 209 patients. Scand. J. Gastroenterol. 42, 1422–1427 (2007).

    Article  PubMed  Google Scholar 

  210. Hoofnagle, J. H. Hepatitis C: the clinical spectrum of disease. Hepatology 26, 15S–20S (1997).

    Article  CAS  PubMed  Google Scholar 

  211. Gotz, H. M. et al. A cluster of acute hepatitis C virus infection among men who have sex with men—results from contact tracing and public health implications. AIDS 19, 969–974 (2005).

    Article  PubMed  Google Scholar 

  212. Danta, M. et al. Recent epidemic of acute hepatitis C virus in HIV-positive men who have sex with men linked to high-risk sexual behaviors. AIDS 21, 983–991 (2007).

    Article  PubMed  Google Scholar 

  213. Serpaggi, J. et al. Sexually transmitted acute infection with a clustered genotype 4 hepatitis C virus in HIV-1-infected men and inefficacy of early antiviral therapy. AIDS 20, 233–240 (2006).

    Article  PubMed  Google Scholar 

  214. Browne, R. et al. Increased numbers of acute hepatitis C infections in HIV positive homosexual men; is sexual transmission feeding the increase? Sex. Transm. Infect. 80, 326–327 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Gambotti, L. et al. Acute hepatitis C infection in HIV positive men who have sex with men in Paris, France, 2001–2004 Euro. Surveill. 10, 115–117 (2005).

    Article  CAS  PubMed  Google Scholar 

  216. Luetkemeyer, A. et al. Clinical presentation and course of acute hepatitis C infection in HIV-infected patients. J. Acquir. Immune Defic. Syndr. 41, 31–36 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Matthews, G. V., Hellard, M., Kaldor, J., Lloyd, A. & Dore, G. J. Further evidence of HCV sexual transmission among HIV-positive men who have sex with men: response to Danta et al. AIDS 21, 2112–2113 (2007).

    Article  PubMed  Google Scholar 

  218. Danta, M. & Dusheiko, G. M. Acute HCV in HIV-positive individuals—a review. Curr. Pharm. Des. 14, 1690–1697 (2008).

    Article  CAS  PubMed  Google Scholar 

  219. Van de Laar, T. et al. Evidence of a large, international network of international HCV transmission in HIV-positive men who have sex with men. Gastroenterology 136, 1609–1617 (2009).

    Article  PubMed  Google Scholar 

  220. Danta, M. et al. Impact of HIV on host-virus interactions during early hepatitis C virus infection. J. Infect. Dis. 197, 1558–1566 (2008).

    Article  CAS  PubMed  Google Scholar 

  221. Roe, B. & Hall, W. W. Cellular and molecular interactions in coinfection with hepatitis C virus and human immunodeficiency virus. Expert Rev. Mol. Med. 10, e30 (2008).

    Article  PubMed  Google Scholar 

  222. Brejt, N., Gilleece, Y. & Fisher, M. Acute hepatitis C: changing epidemiology and association with HIV infection. J. HIV Ther. 12, 3–6 (2007).

    PubMed  Google Scholar 

  223. Graham, C. S. et al. Influence of human immunodeficiency virus infection on the course of hepatitis C virus infection: a meta-analysis. Clin. Infect. Dis. 33, 562–569 (2001).

    Article  CAS  PubMed  Google Scholar 

  224. Greub, G. et al. Clinical progression, survival, and immune recovery during antiretroviral therapy in patients with HIV-1 and hepatitis C virus coinfection: the Swiss HIV Cohort Study. Lancet 356, 1800–1805 (2000).

    Article  CAS  PubMed  Google Scholar 

  225. Nattermann, J. et al. The transforming growth factor-β high-producer genotype is associated with response to hepatitis C virus-specific therapy in HIV-positive patients with acute hepatitis C. AIDS 22, 1287–1292 (2008).

    Article  CAS  PubMed  Google Scholar 

  226. Nattermann, J. et al. Effect of the interleukin-6 C174G gene polymorphism on treatment of acute and chronic hepatitis C in human immunodeficiency virus coinfected patients. Hepatology 46, 1016–1025 (2007).

    Article  CAS  PubMed  Google Scholar 

  227. Larrea, E. et al. Altered expression and activation of signal transducers and activators of transcription (STATs) in hepatitis C virus infection: in vivo and in vitro studies. Gut 55, 1188–1196 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Zhu, H., Shang, X., Terada, N. & Liu, C. STAT3 induces anti-hepatitis C viral activity in liver cells. Biochem. Biophys. Res. Commun. 324, 518–528 (2004).

    Article  CAS  PubMed  Google Scholar 

  229. Blindenbacher, A. et al. Expression of hepatitis C virus proteins inhibits interferon α signaling in the liver of transgenic mice. Gastroenterology 124, 1465–1475 (2003).

    Article  CAS  PubMed  Google Scholar 

  230. Geijtenbeek, T. B. et al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100, 587–597 (2000).

    Article  CAS  PubMed  Google Scholar 

  231. Amerongen, H. M. et al. Transepithelial transport of HIV-1 by intestinal M cells: a mechanism for transmission of AIDS. J. Acquir. Immune Defic. Syndr. 4, 760–765 (1991).

    CAS  PubMed  Google Scholar 

  232. Bomsel, M. Transcytosis of infectious human immunodeficiency virus across a tight human epithelial cell line barrier. Nat. Med. 3, 42–47 (1997).

    Article  CAS  PubMed  Google Scholar 

  233. Meng, G. et al. Primary intestinal epithelial cells selectively transfer R5 HIV-1 to CCR5+ cells. Nat. Med. 8, 150–156 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Gazzard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, S., Gazzard, B. Advances in sexually transmitted infections of the gastrointestinal tract. Nat Rev Gastroenterol Hepatol 6, 592–607 (2009). https://doi.org/10.1038/nrgastro.2009.143

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrgastro.2009.143

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing