Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Human genetics and disease

Mechanisms and consequences of somatic mosaicism in humans

Key Points

  • Mechanisms of mosaicism (the presence of genetically distinct populations of cells in a given organism) include DNA structural abnormalities, epigenetic changes, and the abnormal distribution of chromosomes and mitochondria in daughter cells.

  • Somatic and germ-line mosaicism can coexist in an individual.

  • Several, otherwise lethal, genetic mutations are revealed only in the somatic mosaic state.

  • The Bloom syndrome helicase and the mismatch-repair system are important in the generation of somatic genetic variability.

  • Spontaneous reversions of inherited mutations can occur by homologous recombination, site-specific correction and second-site suppressor mutations.

  • The extent of somatic mosaicism is determined most crucially by selection.

  • Treatment of a genetic disorder can influence the degree of mosaicism and the frequency or maintenance of reverted cell populations.

Abstract

Somatic mosaicism — the presence of genetically distinct populations of somatic cells in a given organism — is frequently masked, but it can also result in major phenotypic changes and reveal the expression of otherwise lethal genetic mutations. Mosaicism can be caused by DNA mutations, epigenetic alterations of DNA, chromosomal abnormalities and the spontaneous reversion of inherited mutations. In this review, we discuss the human disorders that result from somatic mosaicism, as well as the molecular genetic mechanisms by which they arise. Specifically, we emphasize the role of selection in the phenotypic manifestations of mosaicism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Variable manifestations of somatic mosaicism.
Figure 2: Diagnostic methods for somatic and germ-line mosaicism.
Figure 3: Model for how new mutations are selected in the generation of mosaic phenotypes.

Similar content being viewed by others

References

  1. Gottlieb, B., Beitel, L. K. & Trifiro, M. A. Somatic mosaicism and variable expressivity. Trends Genet. 17, 79–82 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Wallace, D. C. & Lott, M. in Principles and Practice of Medical Genetics 4th Edn (eds Rimoin, D. L., Connor, J. M., Pyeritz, R. E. & Korf, B. R.) 299–409 (Churchill Livingstone, Edinburgh, 2002).

    Google Scholar 

  3. Hall, J. G. Twinning: mechanisms and genetic implications. Curr. Opin. Genet. Dev. 6, 343–347 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Boveri, T. The Origin of Malignant Tumors (Williams & Wilkins, Baltimore, Maryland, 1929).A timeless classic on somatic mutations and the pathogenesis of cancer.

    Google Scholar 

  5. Jackson, A. L. & Loeb, L. A. The mutation rate and cancer. Genetics 148, 1483–1490 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human cancers. Nature 396, 643–649 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Hall, J. G. Review and hypotheses: somatic mosaicism: observations related to clinical genetics. Am. J. Hum. Genet. 43, 355–363 (1988).An excellent synthesis of observations from clinical genetics that relate to germinal and somatic mosaicism.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Youssoufian, H. Natural gene therapy and the Darwinian legacy. Nature Genet. 13, 255–256 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Hall, J. G. & Byers, P. H. Genetics of tuberous sclerosis. Lancet 1, 751 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Van Dijk, B. A., Boomsma, D. I. & De Man, A. J. M. Blood group chimerism in human multiple births is not rare. Am. J. Med. Genet. 61, 264–268 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Bianchi, D. W. & Lo, Y. M. Fetomaternal cellular and plasma DNA trafficking: the Yin and the Yang. Ann. NY Acad. Sci. 945, 119–131 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Quaini, F. et al. Chimersim of the transplanted heart. N. Engl. J. Med. 346, 5–15 (2002).

    Article  PubMed  Google Scholar 

  13. Spangrude, G. J., Torok-Storb, B. & Little, M.-T. Chimerism of the transplanted heart. N. Engl. J. Med. 346, 1410–1412 (2002).

    Article  PubMed  Google Scholar 

  14. Bianchi, D. W., Johnson, K. L. & Salem, D. Chimerism of the transplanted heart. N. Engl. J. Med. 346, 1410–1411 (2002).

    Article  PubMed  Google Scholar 

  15. Glaser, R., Lu, M. M., Narula, N. & Epstein, J. A. Smooth muscle cells, but not myocytes, of host origin in transplanted hearts. Circulation 106, 17–19 (2002).

    Article  PubMed  Google Scholar 

  16. Ellis, N. A. et al. Somatic intragenic recombination within the mutated locus BLM can correct the high sister-chromatid exchange phenotype of Bloom syndrome cells. Am. J. Hum. Genet. 57, 1019–1027 (1995).A landmark study on the mechanisms of somatic reversion that facilitated the cloning of the gene that is defective in Bloom syndrome.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kvittingen, E. A., Rootwelt, H., Berger, R. & Brandtzaeg, P. Self-induced correction of the genetic defect in tyrosinemia type I. J. Clin. Invest. 94, 1657–1661 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Arredondo-Vega, F. X. et al. Adenosine deaminase deficiency with mosaicism for a 'second-site suppressor' of a splicing mutation: decline in revertant T lymphocytes during enzyme replacement therapy. Blood 99, 1005–1013 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Gregory, J. J. et al. Somatic mosaicism in Fanconi anemia: evidence of genotypic reversion in lymphohematopoietic stem cells. Proc. Natl Acad. Sci. USA 98, 2532–2537 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kazazian, H. H. Retrotransposon insertions in germ cells and somatic cells. Dev. Biol. 106, 307–313 (2001).

    CAS  Google Scholar 

  21. Whitelaw, E. & Martin, D. I. K. Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nature Genet. 27, 361–365 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Poudrier, J., Lettre, F., Scriver, C. R., Larochelle, J. & Tanguay, R. M. Different clinical forms of hereditary tyrosinemia (type I) in patients with identical genotypes. Mol. Genet. Metab. 64, 119–125 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Kvittingen, E. A., Rootwelt, H., Brandtzaeg, P., Bergan, A. & Berger, R. Hereditary tyrosinemia type I. Self-induced correction of the fumarylacetoacetase defect. J. Clin. Invest. 91, 1816–1821 (1993).One of the earliest and most complete descriptions of molecular reversion of an inherited mutation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang, T. P. et al. Spontaneous reversion of novel Lesch–Nyhan mutation by HPRT gene rearrangement. Somat. Cell Mol. Genet. 14, 293–303 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Has, C. et al. The Conradi–Hunermann–Happle syndrome (CDPX2) and emopamil binding protein: novel mutations, and somatic and gonadal mosaicism. Hum. Mol. Genet. 9, 1951–1955 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Ferguson, H. L. et al. Mosaicism in pseudoachondroplasia. Am. J. Med. Genet. 70, 287–291 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Montgomery, R. A. et al. Multiple molecular mechanisms underlying subdiagnostic variants of Marfan syndrome. Am. J. Hum. Genet. 63, 1703–1711 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Burrow, K. L. et al. Dystrophin expression and somatic reversion in prednisone-treated and untreated Duchenne dystrophy. Neurology 41, 661–668 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Smith, T. A. et al. Identification and quantification of somatic mosaicism for a point mutation in a Duchenne muscular dystrophy family. J. Med. Genet. 36, 313–315 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Costa, J.-M. et al. Somatic mosaicism and compound heterozygosity in female hemophilia B. Blood 96, 1585–1587 (2000).

    CAS  PubMed  Google Scholar 

  31. Leuer, M. et al. Somatic mosaicism in hemophilia A: a fairly common event. Am. J. Hum. Genet. 69, 75–87 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ainsworth, P. J. et al. Example of somatic mosaicism in a series of de novo neurofibromatosis type 1 cases due to a maternally derived deletion. Hum. Mutat. 9, 452–457 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Sippel, K. C. et al. Frequency of somatic and germline mosaicism in retinoblastoma: implications for genetic counseling. Am. J. Hum. Genet. 62, 610–619 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Evans, D. G. R. et al. Somatic mosaicism: a common cause of classic disease in tumor-prone syndromes? Lessons from type 2 neurofibromatosis. Am. J. Hum. Genet. 63, 727–736 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Verhoef, S. et al. High rate of mosaicism in tuberous sclerosis complex. Am. J. Hum. Genet. 64, 1632–1637 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Murgia, A. et al. Somatic mosaicism in von Hippel–Lindau disease. Hum. Mutat. 15, 114 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. German, J. & Ellis, N. A. in The Metabolic and Molecular Bases of Inherited Disease 8th Edn (eds Scriver, C., Beaudet, A. L., Sly, W. S. & Valle, D.) 733–752 (McGraw–Hill, New York, 2001).

    Google Scholar 

  38. Ellis, N. A. et al. The Bloom's syndrome gene product is homologous to RecQ helicases. Cell 83, 655–666 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. German, J., Ellis, N. A. & Proytcheva, M. Bloom's syndrome. XIX. Cytogenetic and population evidence for genetic heterogeneity. Clin. Genet. 49, 223–231 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Ellis, N. A., Ciocci, S. & German, J. Back mutation can produce phenotype reversion in Bloom syndrome somatic cells. Hum. Genet. 108, 167–173 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Auerbach, A. D., Buchwald, M. & Joenje, H. in Genetic Basis of Human Cancer (eds Vogelstein, B. & Kinzler, K. W.) 317–332 (McGraw–Hill, New York, 1998).

    Google Scholar 

  42. Cumming, R. C. et al. Redox regulation of GSTP1 by the Fanconi anemia group C protein prevents apoptosis in hematopoietic cells. Nature Med. 7, 814–820 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Joenje, H. & Patel, K. J. The emerging genetic and molecular basis of Fanconi anaemia. Nature Rev. Genet. 2, 446–457 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Kwee, M. L. et al. Unusual response to bifunctional alkylating agents in a case of Fanconi anaemia. Hum. Genet. 64, 384–387 (1983).

    Article  CAS  PubMed  Google Scholar 

  45. Auerbach, A. D. Fanconi anemia diagnosis and the diepoxybutane (DEB) test. Exp. Hematol. 21, 731–733 (1993).

    CAS  PubMed  Google Scholar 

  46. Lo Ten Foe, J. R. et al. Somatic mosaicism in Fanconi anemia: molecular basis and clinical significance. Eur. J. Hum. Genet. 5, 137–148 (1997).

    CAS  PubMed  Google Scholar 

  47. Waisfisz, Q. et al. Spontaneous functional correction of homozygous Fanconi anaemia alleles reveals novel mechanistic basis for reverse mosaicism. Nature Genet. 22, 379–383 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Timmers, C. et al. Positional cloning of a novel Fanconi anemia gene, FANCD2. Mol. Cell 7, 241–248 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Machin, G. A. Some causes of genotypic and phenotypic discordance in monozygotic twin pairs. Am. J. Med. Genet. 61, 216–228 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Dipple, K. M. & McCabe, R. B. Phenotypes of patients with 'simple' Mendelian disorders are complex traits: thresholds, modifiers, and systems dynamics. Am. J. Hum. Genet. 66, 1729–1735 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Vijg, J. Somatic mutations and aging: a re-evaluation. Mutat. Res. 447, 117–135 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Bernards, A. & Gusella, J. F. The importance of genetic mosaicism in human disease. N. Engl. J. Med. 331, 1447–1449 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Cavenee, W. K. et al. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305, 779–784 (1983).

    Article  CAS  PubMed  Google Scholar 

  54. Lasko, D., Cavenee, W. & Nordenskjold, M. Loss of constitutional heterozygosity in human cancer. Annu. Rev. Genet. 25, 281–314 (1991).

    Article  CAS  PubMed  Google Scholar 

  55. Gupta, P. K. et al. High frequency in vivo loss of heterozygosity is primarily a consequence of mitotic recombination in normal T lymphocytes of human APRT heterozygotes. Cancer Res. 57, 1188–1193 (1997).

    CAS  PubMed  Google Scholar 

  56. De Nooij-Van Dalen, A. G., Morolli, B., van der Marel, A., Lohman, P. H. & Giphart-Gassler, M. Intrinsic genetic instability of normal human lymphocytes and its implication for loss of heterozygosity. Genes Chromosom. Cancer 30, 323–335 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Tobais, E. S. & Black, D. M. in Principles and Practice of Medical Genetics 4th edn (Eds Rimoin, D. L., Connor, J. M., Pyeritz, R. E. & Korf, B. R.) 514–570 (Churchill Livingstone, Edinburgh, 2002).

    Google Scholar 

  58. Aaltonen, L. A. et al. Clues to the pathogenesis of familial colorectal cancer. Science 260, 812–816 (1993).

    Article  CAS  PubMed  Google Scholar 

  59. Kane, M. F. et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 57, 4749–4756 (1997).

    Google Scholar 

  60. Wong, L.-J. C., Wong, H. & Liu, A. Intergenerational transmission of pathogenic heteroplasmic mitochondrial DNA. Genet. Med. 4, 78–83 (2002).

    Article  PubMed  Google Scholar 

  61. Orstavik, R. E., Tommerup, N., Eiklid, K. & Orstavik, K. H. Non-random X chromosome inactivation in an affected twin in a monozygotic twin pair discordant for Weidemann–Beckwith syndrome. Am. J. Med. Genet. 56, 210–214 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. Trejo, V., Derom, C., Vlietinck, R. & Ollier, W. X-chromosome inactivation patterns correspond with fetal–placental anatomy in monozygotic twin pairs: implications for immune relatedness and concordance for autoimmunity. Mol. Med. 1, 62–70 (1995).

    Article  Google Scholar 

  63. Bailey, W., Popovich, B. & Jones, K. L. Monozygotic twins discordant for the Russell–Silver syndrome. Am. J. Med. Genet. 58, 101–105 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. Kotzot, D. et al. Uniparental disomy 7 in Silver–Russell syndrome and primordial growth retardation. Hum. Mol. Genet. 4, 583–587 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Steinmetz, H., Herzog, A., Huang, Y. & Hacklander, T. Discordant brain-surface anatomy in monozygotic twins. N. Engl. J. Med. 331, 952–953 (1994).

    Article  CAS  PubMed  Google Scholar 

  66. Wolf, H. M. et al. Twin boys with major histocompatibility complex class II deficiency but inducible immune responses. N. Engl. J. Med. 332, 86–90 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Berger, R. & Jonveaux, P. Clonal chromosome abnormalities in Fanconi anemia. Hematol. Cell. Ther. 38, 291–296 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Alter, B. P. et al. Fanconi anemia: myelodysplasia as a predictor of outcome. Cancer Genet. Cytogenet. 117, 125–131 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Wallerstein, R. et al. Common trisomy mosaicism diagnosed in amniocytes involving chromosomes 13, 18, 20 and 21: karyotype–phenotype correlations. Prenat. Diagn. 20, 103–122 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Tomie, J. L. in Principles and Practice of Medical Genetics 4th edn (Eds Rimoin, D. L., Connor, J. M., Pyeritz, R. E. & Korf, B. R.) 1129–1182 (Churchill Livingstone, Edinburgh, 2002).

    Google Scholar 

  71. Bamforth, J. S. & Lin, C. C. DK phocomelia phenotype (von Voss–Cherstvoy syndrome) caused by somatic mosaicism for del (13q). Am. J. Med. Genet. 74, 408–411 (1997).An excellent illustration of how phenotypic information that is obtained from clinical genetics can be exploited to identify somatic mosaicism.

    Article  Google Scholar 

  72. Schinzel, A. Tetrasomy 12p (Pallister–Killian syndrome). J. Med. Genet. 28, 122–125 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tolmie, J. L. in Principles and Practice of Medical Genetics 4th Edn (eds Rimoin, D. L., Connor, J. M., Pyeritz, R. E. & Korf, B. R.) 1129–1183 (Churchill Livingstone, Edinburgh, 2002).

    Google Scholar 

  74. Zaragoza, M. et al. Nondisjunction of human acrocentric chromosomes. Studies of 432 fetuses and liveborns. Hum. Genet. 94, 411–417 (1994).

    Article  CAS  PubMed  Google Scholar 

  75. Allanson, J. E. & Graham, G. E. in Principles and Practice of Medical Genetics 4th Edn (eds Rimoin, D. L., Connor, J. M., Pyeritz, R. E. & Korf, B. R.) 1184–1201 (Churchill Livingstone, Edinburgh, 2002).

    Google Scholar 

  76. Robinson, W. P. Molecular studies of chromosomal mosaicism: relative frequency of chromosome gain or loss and possible role of cell selection. Am. J. Hum. Genet. 56, 444–451 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Karadima, G. et al. Origins of nondisjunction in trisomy 8 and trisomy 8 mosaicism. Eur. J. Hum. Genet. 6, 432–438 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Sparkes, R. et al. The validation of a 7-locus multiplex STR test for use in forensic casework. I. Mixtures, ageing, degradation and species studies. Int. J. Legal Med. 109, 186–194 (1996).

    Article  CAS  PubMed  Google Scholar 

  79. Miyamoto, T., Weissman, I. L. & Akashi, K. AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc. Natl Acad. Sci. USA 97, 7521–7526 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Arredondo-Vega, F. X. et al. Correct splicing despite mutation of the invariant first nucleotide of a 5′ splice site: a possible basis for disparate clinical phenotypes in siblings with adenosine deaminase deficiency. Am. J. Hum. Genet. 54, 820–830 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hirschhorn, R. et al. Spontaneous in vivo reversion to normal of an inherited mutation in a patient with adenosine deaminase deficiency. Nature Genet. 13, 290–295 (1996).

    Article  CAS  PubMed  Google Scholar 

  82. Wada, T. et al. Somatic mosaicism in Wiskott–Aldrich syndrome suggests in vivo reversion by a DNA slippage mechanism. Proc. Natl Acad. Sci. USA 98, 8697–8702 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Stephan, V. et al. Atypical X-linked severe combined immunodeficiency due to possible spontaneous reversion of the genetic defect in T cells. N. Engl. J. Med. 335, 1563–1567 (1996).

    Article  CAS  PubMed  Google Scholar 

  84. Joseph, J. T. et al. Congenital myotonic dystrophy pathology and somatic mosaicism. Neurology 49, 1457–1460 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Van der Maarel, S. M. et al. De novo fascioscapulohumeral muscular dystrophy: frequent somatic mosaicism, sex-dependent phenotype, and the role of mitotic transchromosomal repeat interaction between chromosomes 4 and 10. Am. J. Hum. Genet. 66, 26–35 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Jonkman, M. F. et al. Revertant mosaicism in epidermolysis bullosa caused by mitotic gene conversion. Cell 88, 543–551 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Itin, P. H., Buchner, S. A. & Happle, R. Segmental manifestations of Darier disease. What is the genetic background in type 1 and type 2 mosaic phenotypes? Dermatology 200, 254–257 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Nomura, K., Umeki, K., Hatayama, I. & Kuronuma, T. Phenotypic heterogeneity in bullous congenital ichthyosiform erythroderma: possible somatic mosaicism for keratin gene mutation in the mildly affected mother of the proband. Arch. Dermatol. 137, 1192–1195 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. The International IP Consortium. Survival of male patients with incontinentia pigmenti carrying a lethal mutation can be explained by somatic mosaicism or Klinefelter syndrome. Am. J. Hum. Genet. 69, 1210–1217 (2001).This study illustrates the unmasking of lethal genetic mutations in the somatic mosaic state.

  90. Holterhus, P. M. et al. Clinical and molecular spectrum of somatic mosaicism in androgen insensitivity syndrome. Eur. J. Pediatr. 158, 702–706 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Liehr, T. et al. Mosaicism for the Charcot–Marie–Tooth disease type 1A duplication suggests somatic reversion. Hum. Genet. 98, 22–28 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Klopstock, T. et al. Markedly different course of Friedreich's ataxia in sib pairs with similar GAA repeat expansions in the frataxin gene. Acta Neuropathol. 97, 139–142 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Gleeson, G. L. et al. Somatic and germline mosaic mutations in the doublecortin gene are associated with variable phenotypes. Am. J. Hum. Genet. 67, 574–581 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Armstrong, J., Pineda, M., Aibar, E., Gean, E. & Monros, E. Classic Rett syndrome in a boy as a result of somatic mosaicism for a MECP2 mutation. Ann. Neurol. 50, 692 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Hashida, H. et al. Single cell analysis of CAG repeat in brains of dentatorubral–pallidoluysian atrophy (DRPLA). J. Neurol. Sci. 190, 87–93 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Kato, M. et al. Mutation of the doublecortin gene in male patients with double cortex syndrome: somatic mosaicism detected by hair root analysis. Ann. Neurol. 50, 547–551 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Darling, T. N., Yee, C., Bauer, J. W., Hintner, H. & Yancey, K. B. Revertant mosaicism: partial correction of a germ-line mutation in COL17A1 by a frame-restoring mutation. J. Clin. Invest. 103, 1371–1377 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Scheuerle, A. E. Male cases of incontinentia pigmenti: case report and review. Am. J. Med. Genet. 77, 201–218 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Parrish, J. E., Scheuerle, A. E., Lewis, R. A., Levy, M. L. & Nelson, D. L. Selection against mutant alleles in blood leukocytes is a consistent feature in incontinentia pigmenti type 2. Hum. Mol. Genet. 5, 1777–1783 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Rudolph, D. et al. Severe liver degeneration and lack of NF-κB activation in NEMO/IKKγ-deficient mice. Genes Dev. 14, 854–862 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Happle, R. The McCune–Albright syndrome: a lethal gene surviving by mosaicism. Clin. Genet. 29, 321–324 (1986).

    Article  CAS  PubMed  Google Scholar 

  102. Weinstein, L. S. et al. Activating mutations of the stimulatory G protein in the McCune–Albright syndrome. N. Engl. J. Med. 325, 1688–1695 (1991).

    Article  CAS  PubMed  Google Scholar 

  103. Aldred, M. A. & Trembath, R. C. Activating and inactivating mutations in the human GNAS1 gene. Hum. Mutat. 16, 183–189 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Bianco, P. et al. Reproduction of human fibrous dysplasia of bone in immunocompromised mice by transplanted mosaics of normal and Gsα-mutated skeletal progenitor cells. J. Clin. Invest. 101, 1737–1744 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cohen, M. M. Jr. Proteus syndrome: clinical evidence for somatic mosaicism and selective review. Am. J. Med. Genet. 47, 645–652 (1993).

    Article  PubMed  Google Scholar 

  106. Biesecker, L. G. The multifaceted challenges of Proteus syndrome. JAMA 285, 2240–2243 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Stern, C. Somatic crossing over and segregation in Drosophila melanogaster. Genetics 21, 625–730 (1936).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Harrison, B. J. & Carpenter. R. Somatic crossing-over in Antirrhinum majus. Heredity 38, 169–189 (1977).

    Article  Google Scholar 

  109. Lupski, J. R., Roth, J. R. & Weinstock, G. M. Chromosomal duplications in bacteria, fruit flies, and humans. Am. J. Hum. Genet. 58, 21–27 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Van Sloun, P. P. H. et al. Determination of spontaneous loss of heterozygosity mutation in Aprt heterozygous mice. Nucleic Acids Res. 26, 4888–4894 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shao, C. et al. Mitotic recombination produces the majority of the recessive fibroblast variants in heterozygous mice. Proc. Natl Acad. Sci. USA 96, 9230–9235 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Liang, L., Deng, L., Shao, C., Stambrook, P. J. & Tischfield, J. A. In vivo loss of heterozygosity in T cells of B6C3F1 Aprt+/− mice. Environ. Mol. Mutagen. 35, 150–157 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Shao, C., Stambrook, P. J. & Tischfield, J. A. Mitotic recombination is suppressed by chromosomal divergence in hybrids of distantly related mouse strains. Nature Genet. 28, 169–172 (2001).An important mechanistic study on somatic mitotic recombination and its implications for tumorigenesis.

    Article  CAS  PubMed  Google Scholar 

  114. Vrieling, H. Mitotic maneuvers in the light. Nature Genet. 28, 101–102 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Johnson, R. D. & Jasin, M. Double-strand-break-induced homologous recombination in mammalian cells. Biochem. Soc. Trans. 29, 196–201 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Luo, G. et al. Cancer predisposition caused by elevated mitotic recombination in Bloom mice. Nature Genet. 26, 424–429 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Wu, L. & Hickson, I. D. RecQ helicases and topoisomerases: components of a conserved complex for the regulation of genetic recombination. Cell Mol. Life Sci. 58, 894–901 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. De Wind, N., Dekker, M., Berns, A., Radman, M. & te Riele, H. Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 82, 321–330 (1995).

    Article  CAS  PubMed  Google Scholar 

  119. Shen, P. & Huang, H. V. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 112, 441–457 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Rayssiguier, C., Thaler, D. S. & Radman, M. The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 342, 396–401 (1989).Important mechanistic study of recombination that revealed a role for mismatch repair in prokaryotes.

    Article  CAS  PubMed  Google Scholar 

  121. Datta, A., Hendrix, M., Lipsitch, M. & Jinks-Robertson, S. Dual role for DNA sequence identity and the mismatch repair system in the regulation of mitotic crossing-over in yeast. Proc. Natl Acad. Sci. USA 94, 9757–9762 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chen, W. & Jinks-Robertson, S. The role of the mismatch repair machinery in regulating mitotic and meiotic recombination between diverged sequences in yeast. Genetics 151, 1299–1313 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Waldman, A. S. & Liskay, R. M. Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology. Mol. Cell. Biol. 8, 5350–5357 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Manley, K., Shirley, T. L., Flaherty, L. & Messer, A. MSH2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease and transgenic mice. Nature Genet. 23, 471–473 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Kovtun, I. V. & McMurray, C. T. Trinucleotide expansion in haploid germ cells by gap repair. Nature Genet. 27, 407–411 (2001).

    Article  CAS  PubMed  Google Scholar 

  126. Battaile, K. P. et al. In vivo selection of wild-type hematopoietic stem cells in a murine model of Fanconi anemia. Blood 94, 2151–2158 (1999).

    CAS  PubMed  Google Scholar 

  127. Haneline, L. S. et al. Loss of FancC function results in decreased hematopoietic stem cell repopulating ability. Blood 94, 1–8 (1999).

    CAS  PubMed  Google Scholar 

  128. Soriano, P. & Jaenisch, R. Retroviruses as probes for mammalian development: allocation of cells to the somatic and germ cell lineages. Cell 46, 19–29 (1986).

    Article  CAS  PubMed  Google Scholar 

  129. Cohn, D. H., Starman, B. J., Blumberg, B. & Byers, P. H. Recurrence of lethal osteogenesis imperfecta due to parental mosaicism for a dominant mutation in a human type I collagen gene (COL1A1). Am. J. Hum. Genet. 46, 591–601 (1990).An excellent study that combines clinical observation and molecular analysis, and that quantifies the embryonic cellular contribution to the emerging somatic-cell lineages.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Wiemels, J. L. et al. In utero origin of t(8;21) AML1ETO translocations in childhood acute myeloid leukemia. Blood 99, 3801–3805 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Flannery, D. B. in Human Malformations and Related Anomalies, Vol. II. Oxford Monographs on Medical Genetics (eds Stevenson, R. E., Hall, J. G. & Goodman, R. M.) 907–930 (Oxford Univ. Press, New York, 1993).

    Google Scholar 

Download references

Acknowledgements

We dedicate this review to our mentor and friend, Dr Victor A. McKusick. We would like to thank Andrew Shenker and Robert Tanguny for providing the photos in Figure 1a and 1b, respectively

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hagop Youssoufian.

Related links

Related links

DATABASES

Cancer.gov

colorectal cancer

LocusLink

adenosine deaminase

Aprt

BLM

dystrophin

FAH

FANCA

FANCC

GNAS1

IL2RG

MLH1

Msh2

NEMO

NF1

WASP

OMIM

acute myeloid leukaemia

adenosine deaminase deficiency

Bloom syndrome

DK-phocomelia

Duchenne muscular dystrophy

Fanconi anaemia

hereditary nonpolyposis colorectal cancer

hereditary tyrosinaemia type I

incontinentia pigmenti

McCune–Albright syndrome

neurofibromatosis type I

Proteus syndrome

Rett syndrome

Russell–Silver syndrome

Turner syndrome

Wiskott–Aldrich syndrome

Glossary

EXPRESSIVITY

The extent to which a particular organ or structure is affected by a particular genotype.

MCCUNE–ALBRIGHT SYNDROME

A human syndrome in which polyostotic lesions affect the skeleton and are patchily distributed. Irregular café au lait hyperpigmented macules affect the skin. Several endocrinopathies are typically present, causing variable hypercortisolism, hyperthyroidism, pituitary gigantism and sexual precocity in girls.

HEREDITARY TYROSINAEMIA TYPE I

An autosomal-recessive disorder of tyrosine metabolism that is due to deficiency of the enzyme fumarylacetoacetate hydrolase. The disorder typically causes liver and renal problems early in life and is associated with neurological deterioration and hepatoma.

ALLOGENEIC ORGAN TRANSPLANTATION

The use of an organ or tissue from any human other than self or a monozygotic twin.

SEGMENTAL NEUROFIBROMATOSIS TYPE I

A form of neurofibromatosis type I in which pigmented skin macules, subcutaneous benign tumors (neurofibroma) or large plexiform neurofibroma are limited to one region of the body. Segmental neurofibromatosis type II also occurs, typically with unilateral vestibular schwannoma or meningioma.

TUBEROUS SCLEROSIS

An autosomal-dominant disorder with a varied phenotype. Severely affected individuals have seizures, mental retardation and fatty tumours of the kidneys. Mildly affected individuals might only show small, depigmented skin macules and small nodules under the nails and on the face.

ASCERTAINMENT BIAS

Any tendency for an inference to be non-representative of the true population, because individuals of a particular class are more likely to be sampled.

COMPOUND HETEROZYGOTE

The occurrence of mutations in each of the two alleles of an autosomal gene.

GENE CONVERSION

A non-reciprocal recombination process that results in an alteration of the sequence of a gene to that of its homologue during meiosis.

COMPLEMENTATION GROUP C

Subclassification of cells from Fanconi anaemia patients on the basis of somatic-cell hybrid analysis or mutation analysis.

CHORIONIC VILLUS SAMPLING

A prenatal diagnostic procedure that involves removal of cells from the finger-like projections (villi) of the chorion (the tissue surrounding the fetus) to obtain chromosomes and cell products for diagnosis.

AMNIOCENTESIS

Prenatal diagnosis method in which cells of the amniotic fluid are used to determine the number and kind of chromosomes of the fetus and for biochemical studies.

DK-PHOCOMELIA

A rare condition that is characterized by maldevelopment of the proximal portions of limbs, urogenital defects and failure of closure of the posterior skull (occipital encephalocoele).

PALLISTER–KILLIAN SYNDROME

A severe congenital malformation syndrome that includes mental retardation, postnatal growth deficiency, progressive coarsening of the facial features, and sparse eyebrows and hair over the temples. It is due to tetrasomy of the short arm of human chromosome 12.

ISODISOMY

A euploid cell in which one of the chromosome pairs consists of identical chromosomes inherited from one parent; this is due to non-disjunction in meiosis II in one parent, formation of a triploid zygote and loss of the chromosome provided by the parent in which non-disjunction did not occur.

MULTIPLEX PCR

Simultaneous analysis of multiple genetic loci by PCR.

PROTEUS SYNDROME

A congenital malformation disorder in which overgrowth of any organ or tissue can occur, but invariably in a patchy distribution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Youssoufian, H., Pyeritz, R. Mechanisms and consequences of somatic mosaicism in humans. Nat Rev Genet 3, 748–758 (2002). https://doi.org/10.1038/nrg906

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg906

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing