Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Determinants of the rate of protein sequence evolution

Key Points

  • Studying the rate of protein sequence evolution led to the foundation of the field of molecular evolution and continues to offer insights into the mechanism of evolution.

  • The evolutionary rate of a protein is only weakly influenced by the functional importance of the protein.

  • The expression level of a protein is a major determinant of its evolutionary rate.

  • Natural selection against molecular and cellular errors such as mistranslation, protein misfolding and protein misinteraction is a primary explanation of why highly expressed proteins evolve slowly.

  • The functional constraints on a protein include not only a constraint to maintain its physiological function but also a constraint to avoid toxicity, and both factors influence the evolutionary rate of the protein.

Abstract

The rate and mechanism of protein sequence evolution have been central questions in evolutionary biology since the 1960s. Although the rate of protein sequence evolution depends primarily on the level of functional constraint, exactly what determines functional constraint has remained unclear. The increasing availability of genomic data has enabled much needed empirical examinations on the nature of functional constraint. These studies found that the evolutionary rate of a protein is predominantly influenced by its expression level rather than functional importance. A combination of theoretical and empirical analyses has identified multiple mechanisms behind these observations and demonstrated a prominent role in protein evolution of selection against errors in molecular and cellular processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The negative correlation between gene expression level and protein evolutionary rate (E–R anticorrelation) exists in all three domains of life.
Figure 2: Natural selection against errors in protein translation, folding and interaction can explain the E–R anticorrelation.
Figure 3: The expression cost hypothesis of the E–R anticorrelation.

Similar content being viewed by others

References

  1. Zuckerkandl, E. & Pauling, L. in Horizons in Biochemistry (eds Kasha, M. & Pullman, B.) 189–225 (Academic Press, 1962).

    Google Scholar 

  2. Zuckerkandl, E. & Pauling, L. in Evolving Genes and Proteins (eds Bryson, V. & Vogel, H. J.) 97–166 (Academic Press, 1965).

    Google Scholar 

  3. Kimura, M. Evolutionary rate at the molecular level. Nature 217, 624–626 (1968).

    CAS  PubMed  Google Scholar 

  4. Kumar, S. Molecular clocks: four decades of evolution. Nat. Rev. Genet. 6, 654–662 (2005).

    CAS  PubMed  Google Scholar 

  5. Takahata, N. Molecular clock: an anti-neo-Darwinian legacy. Genetics 176, 1–6 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge Univ. Press, 1983).

    Google Scholar 

  7. Li, W. Molecular Evolution (Sinauer, 1997).

    Google Scholar 

  8. Wang, Z. & Zhang, J. Why is the correlation between gene importance and gene evolutionary rate so weak? PLoS Genet. 5, e1000329 (2009).

    PubMed  PubMed Central  Google Scholar 

  9. Pal, C., Papp, B. & Hurst, L. D. Highly expressed genes in yeast evolve slowly. Genetics 158, 927–931 (2001). This is the first report of the E–R anticorrelation.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Drummond, D. A., Bloom, J. D., Adami, C., Wilke, C. O. & Arnold, F. H. Why highly expressed proteins evolve slowly. Proc. Natl Acad. Sci. USA 102, 14338–14343 (2005). This paper proposes the translational robustness hypothesis of the E–R anticorrelation.

    CAS  PubMed  Google Scholar 

  11. Yang, J. R., Liao, B. Y., Zhuang, S. M. & Zhang, J. Protein misinteraction avoidance causes highly expressed proteins to evolve slowly. Proc. Natl Acad. Sci. USA 109, E831–E840 (2012). This paper proposes the protein misinteraction hypothesis of the E–R anticorrelation.

    CAS  PubMed  Google Scholar 

  12. Park, C., Chen, X., Yang, J. R. & Zhang, J. Differential requirements for mRNA folding partially explain why highly expressed proteins evolve slowly. Proc. Natl Acad. Sci. USA 110, E678–E686 (2013). This paper proposes the mRNA folding requirement hypothesis of the E–R anticorrelation.

    CAS  PubMed  Google Scholar 

  13. Yang, J. R., Zhuang, S. M. & Zhang, J. Impact of translational error-induced and error-free misfolding on the rate of protein evolution. Mol. Syst. Biol. 6, 421 (2010).

    PubMed  PubMed Central  Google Scholar 

  14. Drummond, D. A. & Wilke, C. O. Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell 134, 341–352 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang, J. R., Chen, X. & Zhang, J. Codon-by-codon modulation of translational speed and accuracy via mRNA folding. PLoS Biol. 12, e1001910 (2014). This paper explains the underlying cause of the mRNA folding requirement that partially accounts for the E–R anticorrelation.

    PubMed  PubMed Central  Google Scholar 

  16. Gout, J. F., Kahn, D. & Duret, L. The relationship among gene expression, the evolution of gene dosage, and the rate of protein evolution. PLoS Genet. 6, e1000944 (2010).

    PubMed  PubMed Central  Google Scholar 

  17. Cherry, J. L. Expression level, evolutionary rate, and the cost of expression. Genome Biol. Evol. 2, 757–769 (2010). References 16 and 17 independently propose the expression cost hypothesis of the E–R anticorrelation.

    PubMed  PubMed Central  Google Scholar 

  18. Yang, Z. Among-site rate variation and its impact on phylogenetic analyses. Trends Ecol. Evol. 11, 367–372 (1996).

    CAS  PubMed  Google Scholar 

  19. Hedges, S. B., Dudley, J. & Kumar, S. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22, 2971–2972 (2006).

    CAS  PubMed  Google Scholar 

  20. King, J. L. & Jukes, T. H. Non-Darwinian evolution. Science 164, 788–798 (1969).

    CAS  PubMed  Google Scholar 

  21. Zhang, J. in Evolution Since Darwin: The First 150 Years (eds Bell, M. A. et al.) 87–118 (Sinauer, 2010).

    Google Scholar 

  22. Karp, G. Cell and Molecular Biology (John Wiley & Sons, 2008).

    Google Scholar 

  23. Kimura, M. & Ohta, T. On some principles governing molecular evolution. Proc. Natl Acad. Sci. USA 71, 2848–2852 (1974). This paper proposes the role of protein functional importance and functional constraint in determining the rate of protein sequence evolution.

    CAS  PubMed  Google Scholar 

  24. Wilson, A. C., Carlson, S. S. & White, T. J. Biochemical evolution. Annu. Rev. Biochem. 46, 573–639 (1977).

    CAS  PubMed  Google Scholar 

  25. Hurst, L. D. & Smith, N. G. Do essential genes evolve slowly? Curr. Biol. 9, 747–750 (1999). This study was the first to test the relationship between protein functional importance and evolutionary rate based on a fairly large genomic data set.

    CAS  PubMed  Google Scholar 

  26. Winzeler, E. A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    CAS  PubMed  Google Scholar 

  27. Hirsh, A. E. & Fraser, H. B. Protein dispensability and rate of evolution. Nature 411, 1046–1049 (2001).

    CAS  PubMed  Google Scholar 

  28. Holstege, F. C. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998).

    CAS  PubMed  Google Scholar 

  29. Pal, C., Papp, B. & Hurst, L. D. Genomic function: rate of evolution and gene dispensability. Nature 421, 496–497 (2003).

    CAS  PubMed  Google Scholar 

  30. Zhang, J. & He, X. Significant impact of protein dispensability on the instantaneous rate of protein evolution. Mol. Biol. Evol. 22, 1147–1155 (2005).

    CAS  PubMed  Google Scholar 

  31. Wall, D. P. et al. Functional genomic analysis of the rates of protein evolution. Proc. Natl Acad. Sci. USA 102, 5483–5488 (2005).

    CAS  PubMed  Google Scholar 

  32. Liao, B. Y., Scott, N. M. & Zhang, J. Impacts of gene essentiality, expression pattern, and gene compactness on the evolutionary rate of mammalian proteins. Mol. Biol. Evol. 23, 2072–2080 (2006).

    CAS  PubMed  Google Scholar 

  33. Jordan, I. K., Rogozin, I. B., Wolf, Y. I. & Koonin, E. V. Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. Genome Res. 12, 962–968 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Rocha, E. P. & Danchin, A. An analysis of determinants of amino acids substitution rates in bacterial proteins. Mol. Biol. Evol. 21, 108–116 (2004).

    CAS  PubMed  Google Scholar 

  35. Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478, 476–482 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pennacchio, L. A. et al. In vivo enhancer analysis of human conserved non-coding sequences. Nature 444, 499–502 (2006).

    CAS  PubMed  Google Scholar 

  37. Krylov, D. M., Wolf, Y. I., Rogozin, I. B. & Koonin, E. V. Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution. Genome Res. 13, 2229–2235 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Greenbaum, D., Colangelo, C., Williams, K. & Gerstein, M. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. 4, 117 (2003).

    PubMed  PubMed Central  Google Scholar 

  39. Vogel, C. & Marcotte, E. M. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat. Rev. Genet. 13, 227–232 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Drummond, D. A., Raval, A. & Wilke, C. O. A single determinant dominates the rate of yeast protein evolution. Mol. Biol. Evol. 23, 327–337 (2006).

    CAS  PubMed  Google Scholar 

  41. Shen, Y. et al. Testing hypotheses on the rate of molecular evolution in relation to gene expression using microRNAs. Proc. Natl Acad. Sci. USA 108, 15942–15947 (2011).

    CAS  PubMed  Google Scholar 

  42. Managadze, D., Rogozin, I. B., Chernikova, D., Shabalina, S. A. & Koonin, E. V. Negative correlation between expression level and evolutionary rate of long intergenic noncoding RNAs. Genome Biol. Evol. 3, 1390–1404 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Geiler-Samerotte, K. A. et al. Misfolded proteins impose a dosage-dependent fitness cost and trigger a cytosolic unfolded protein response in yeast. Proc. Natl Acad. Sci. USA 108, 680–685 (2011).

    CAS  PubMed  Google Scholar 

  44. Drummond, D. A. & Wilke, C. O. The evolutionary consequences of erroneous protein synthesis. Nat. Rev. Genet. 10, 715–724 (2009).

    PubMed  PubMed Central  Google Scholar 

  45. Akashi, H. Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics 136, 927–935 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Cherry, J. L. Highly expressed and slowly evolving proteins share compositional properties with thermophilic proteins. Mol. Biol. Evol. 27, 735–741 (2010).

    CAS  PubMed  Google Scholar 

  47. Chakravarty, S. & Varadarajan, R. Residue depth: a novel parameter for the analysis of protein structure and stability. Structure 7, 723–732 (1999).

    CAS  PubMed  Google Scholar 

  48. Stambolsky, P. et al. Modulation of the vitamin D3 response by cancer-associated mutant p53. Cancer Cell 17, 273–285 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Vavouri, T., Semple, J. I., Garcia-Verdugo, R. & Lehner, B. Intrinsic protein disorder and interaction promiscuity are widely associated with dosage sensitivity. Cell 138, 198–208 (2009).

    CAS  PubMed  Google Scholar 

  50. Zhang, J., Maslov, S. & Shakhnovich, E. I. Constraints imposed by non-functional protein–protein interactions on gene expression and proteome size. Mol. Syst. Biol. 4, 210 (2008).

    PubMed  PubMed Central  Google Scholar 

  51. Levy, E. D., De, S. & Teichmann, S. A. Cellular crowding imposes global constraints on the chemistry and evolution of proteomes. Proc. Natl Acad. Sci. USA 109, 20461–20466 (2012).

    CAS  PubMed  Google Scholar 

  52. Zur, H. & Tuller, T. Strong association between mRNA folding strength and protein abundance in S. cerevisiae. EMBO Rep. 13, 272–277 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Akashi, H. & Gojobori, T. Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc. Natl Acad. Sci. USA 99, 3695–3700 (2002).

    CAS  PubMed  Google Scholar 

  54. Wolf, M. Y., Wolf, Y. I. & Koonin, E. V. Comparable contributions of structural-functional constraints and expression level to the rate of protein sequence evolution. Biol. Direct 3, 40 (2008).

    PubMed  PubMed Central  Google Scholar 

  55. Chen, S. C., Chuang, T. J. & Li, W. H. The relationships among microRNA regulation, intrinsically disordered regions, and other indicators of protein evolutionary rate. Mol. Biol. Evol. 28, 2513–2520 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Cheng, C., Bhardwaj, N. & Gerstein, M. The relationship between the evolution of microRNA targets and the length of their UTRs. BMC Genomics 10, 431 (2009).

    PubMed  PubMed Central  Google Scholar 

  57. He, X. & Zhang, J. Toward a molecular understanding of pleiotropy. Genetics 173, 1885–1891 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Fraser, H. B., Hirsh, A. E., Steinmetz, L. M., Scharfe, C. & Feldman, M. W. Evolutionary rate in the protein interaction network. Science 296, 750–752 (2002).

    CAS  PubMed  Google Scholar 

  59. Bloom, J. D. & Adami, C. Apparent dependence of protein evolutionary rate on number of interactions is linked to biases in protein–protein interactions data sets. BMC Evol. Biol. 3, 21 (2003).

    PubMed  PubMed Central  Google Scholar 

  60. Hughes, A. L. & Nei, M. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335, 167–170 (1988).

    CAS  PubMed  Google Scholar 

  61. Lee, Y. H., Ota, T. & Vacquier, V. D. Positive selection is a general phenomenon in the evolution of abalone sperm lysin. Mol. Biol. Evol. 12, 231–238 (1995).

    CAS  PubMed  Google Scholar 

  62. Dunn, J. G., Foo, C. K., Belletier, N. G., Gavis, E. R. & Weissman, J. S. Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster. eLife 2, e01179 (2013).

    PubMed  PubMed Central  Google Scholar 

  63. Raj, A. & van Oudenaarden, A. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135, 216–226 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Marinov, G. K. et al. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 24, 496–510 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang, Z., Qian, W. & Zhang, J. Positive selection for elevated gene expression noise in yeast. Mol. Syst. Biol. 5, 299 (2009).

    PubMed  PubMed Central  Google Scholar 

  66. Wang, Z. & Zhang, J. Impact of gene expression noise on organismal fitness and the efficacy of natural selection. Proc. Natl Acad. Sci. USA 108, E67–E76 (2011).

    PubMed  Google Scholar 

  67. Warnecke, T. & Hurst, L. D. Error prevention and mitigation as forces in the evolution of genes and genomes. Nat. Rev. Genet. 12, 875–881 (2011).

    CAS  PubMed  Google Scholar 

  68. Eldar, A. & Elowitz, M. B. Functional roles for noise in genetic circuits. Nature 467, 167–173 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Xu, G. & Zhang, J. Human coding RNA editing is generally nonadaptive. Proc. Natl Acad. Sci. USA 111, 3769–3774 (2014).

    CAS  PubMed  Google Scholar 

  70. Gregersen, N., Bross, P., Vang, S. & Christensen, J. H. Protein misfolding and human disease. Annu. Rev. Genom. Hum. Genet. 7, 103–124 (2006).

    CAS  Google Scholar 

  71. Wang, Z. & Moult, J. SNPs, protein structure, and disease. Hum. Mutat. 17, 263–270 (2001).

    PubMed  Google Scholar 

  72. Oren, M. & Rotter, V. Mutant p53 gain-of-function in cancer. Cold Spring Harb. Perspect Biol 2, a001107 (2010).

    PubMed  PubMed Central  Google Scholar 

  73. Wu, J., Li, Y. & Jiang, R. Integrating multiple genomic data to predict disease-causing nonsynonymous single nucleotide variants in exome sequencing studies. PLoS Genet. 10, e1004237 (2014).

    PubMed  PubMed Central  Google Scholar 

  74. Cooper, G. M. & Shendure, J. Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data. Nat. Rev. Genet. 12, 628–640 (2011).

    CAS  PubMed  Google Scholar 

  75. Orgel, L. E. The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc. Natl Acad. Sci. USA 49, 517–521 (1963).

    CAS  PubMed  Google Scholar 

  76. Silva, R. M. et al. The yeast PNC1 longevity gene is up-regulated by mRNA mistranslation. PLoS ONE 4, e5212 (2009).

    PubMed  PubMed Central  Google Scholar 

  77. Pandolfi, P. P. Aberrant mRNA translation in cancer pathogenesis: an old concept revisited comes finally of age. Oncogene 23, 3134–3137 (2004).

    CAS  PubMed  Google Scholar 

  78. Frank, S. A. Somatic mosaicism and disease. Curr. Biol. 24, R577–R581 (2014).

    CAS  PubMed  Google Scholar 

  79. Stiffler, M. A., Hekstra, D. R. & Ranganathan, R. Evolvability as a function of purifying selection in TEM-1 β-lactamase. Cell 160, 882–892 (2015).

    CAS  PubMed  Google Scholar 

  80. Podgornaia, A. I. & Laub, M. T. Pervasive degeneracy and epistasis in a protein–protein interface. Science 347, 673–677 (2015).

    CAS  PubMed  Google Scholar 

  81. Whitehead, D. J., Wilke, C. O., Vernazobres, D. & Bornberg-Bauer, E. The look-ahead effect of phenotypic mutations. Biol. Direct 3, 18 (2008).

    PubMed  PubMed Central  Google Scholar 

  82. Pal, C., Papp, B. & Lercher, M. J. An integrated view of protein evolution. Nat. Rev. Genet. 7, 337–348 (2006).

    CAS  PubMed  Google Scholar 

  83. Wolf, Y. I., Carmel, L. & Koonin, E. V. Unifying measures of gene function and evolution. Proc. Biol. Sci. 273, 1507–1515 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Xia, Y., Franzosa, E. A. & Gerstein, M. B. Integrated assessment of genomic correlates of protein evolutionary rate. PLoS Comput. Biol. 5, e1000413 (2009).

    PubMed  PubMed Central  Google Scholar 

  85. Du, X., Lipman, D. J. & Cherry, J. L. Why does a protein's evolutionary rate vary over time? Genome Biol. Evol. 5, 494–503 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Franzosa, E. A. & Xia, Y. Structural determinants of protein evolution are context-sensitive at the residue level. Mol. Biol. Evol. 26, 2387–2395 (2009).

    CAS  PubMed  Google Scholar 

  87. Yeh, S. W. et al. Site-specific structural constraints on protein sequence evolutionary divergence: local packing density versus solvent exposure. Mol. Biol. Evol. 31, 135–139 (2014).

    CAS  PubMed  Google Scholar 

  88. Zhang, J. & Gu, X. Correlation between the substitution rate and rate variation among sites in protein evolution. Genetics 149, 1615–1625 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Chen, F. C., Liao, B. Y., Pan, C. L., Lin, H. Y. & Chang, A. Y. Assessing determinants of exonic evolutionary rates in mammals. Mol. Biol. Evol. 29, 3121–3129 (2012).

    CAS  PubMed  Google Scholar 

  90. Nei, M. & Kumar, S. Molecular Evolution and Phylogenetics (Oxford Univ. Press, 2000).

    Google Scholar 

  91. Kim, N. & Jinks-Robertson, S. Transcription as a source of genome instability. Nat. Rev. Genet. 13, 204–214 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Hanawalt, P. C. & Spivak, G. Transcription-coupled DNA repair: two decades of progress and surprises. Nat. Rev. Mol. Cell Biol. 9, 958–970 (2008).

    CAS  PubMed  Google Scholar 

  93. Park, C., Qian, W. & Zhang, J. Genomic evidence for elevated mutation rates in highly expressed genes. EMBO Rep. 13, 1123–1129 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Chen, X. & Zhang, J. No gene-specific optimization of mutation rate in Escherichia coli. Mol. Biol. Evol. 30, 1559–1562 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Chen, X. & Zhang, J. Yeast mutation accumulation experiment supports elevated mutation rates at highly transcribed sites. Proc. Natl Acad. Sci. USA 111, E4062 (2014).

    CAS  PubMed  Google Scholar 

  96. Lind, P. A. & Andersson, D. I. Whole-genome mutational biases in bacteria. Proc. Natl Acad. Sci. USA 105, 17878–17883 (2008).

    CAS  PubMed  Google Scholar 

  97. Gottipati, P. & Helleday, T. Transcription-associated recombination in eukaryotes: link between transcription, replication and recombination. Mutagenesis 24, 203–210 (2009).

    CAS  PubMed  Google Scholar 

  98. Liao, B. Y. & Zhang, J. Low rates of expression profile divergence in highly expressed genes and tissue-specific genes during mammalian evolution. Mol. Biol. Evol. 23, 1119–1128 (2006).

    CAS  PubMed  Google Scholar 

  99. Park, C. & Zhang, J. High expression hampers horizontal gene transfer. Genome Biol. Evol. 4, 523–532 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang, L. & Li, W. H. Mammalian housekeeping genes evolve more slowly than tissue-specific genes. Mol. Biol. Evol. 21, 236–239 (2004).

    PubMed  Google Scholar 

  101. Piasecka, B., Lichocki, P., Moretti, S., Bergmann, S. & Robinson-Rechavi, M. The hourglass and the early conservation models — co-existing patterns of developmental constraints in vertebrates. PLoS Genet. 9, e1003476 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Chuang, T. J. & Chiang, T. W. Impacts of pretranscriptional DNA methylation, transcriptional transcription factor, and posttranscriptional microRNA regulations on protein evolutionary rate. Genome Biol. Evol. 6, 1530–1541 (2014).

    PubMed  PubMed Central  Google Scholar 

  103. Taipale, M. et al. Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150, 987–1001 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Bogumil, D. & Dagan, T. Chaperonin-dependent accelerated substitution rates in prokaryotes. Genome Biol. Evol. 2, 602–608 (2010).

    PubMed  PubMed Central  Google Scholar 

  105. Liao, B. Y., Weng, M. P. & Zhang, J. Impact of extracellularity on the evolutionary rate of mammalian proteins. Genome Biol. Evol. 2, 39–43 (2010).

    PubMed  PubMed Central  Google Scholar 

  106. Ran, W., Kristensen, D. M. & Koonin, E. V. Couping between protein level selection and codon usage optimization in the evolution of bacteria and archaea. mBio 5, e00956-14 (2014).

    PubMed  PubMed Central  Google Scholar 

  107. Sharp, P. M., Shields, D. C., Wolfe, K. H. & Li, W. H. Chromosomal location and evolutionary rate variation in enterobacterial genes. Science 246, 808–810 (1989).

    CAS  PubMed  Google Scholar 

  108. Flynn, K. M., Vohr, S. H., Hatcher, P. J. & Cooper, V. S. Evolutionary rates and gene dispensability associate with replication timing in the archaeon Sulfolobus islandicus. Genome Biol. Evol. 2, 859–869 (2010).

    PubMed  PubMed Central  Google Scholar 

  109. Hahn, M. W. & Kern, A. D. Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. Mol. Biol. Evol. 22, 803–806 (2005).

    CAS  PubMed  Google Scholar 

  110. Kim, P. M., Lu, L. J., Xia, Y. & Gerstein, M. B. Relating three-dimensional structures to protein networks provides evolutionary insights. Science 314, 1938–1941 (2006).

    CAS  PubMed  Google Scholar 

  111. Vitkup, D., Kharchenko, P. & Wagner, A. Influence of metabolic network structure and function on enzyme evolution. Genome Biol. 7, R39 (2006).

    PubMed  PubMed Central  Google Scholar 

  112. Jovelin, R. & Phillips, P. C. Evolutionary rates and centrality in the yeast gene regulatory network. Genome Biol. 10, R35 (2009).

    PubMed  PubMed Central  Google Scholar 

  113. Kryuchkova, N. & Robinson-Rechavi, M. Determinants of protein evolutionary rates in light of ENCODE functional genomics. BMC Bioinformatics 15 (Suppl. 3), A9 (2014).

    PubMed Central  Google Scholar 

  114. Bloom, J. D., Drummond, D. A., Arnold, F. H. & Wilke, C. O. Structural determinants of the rate of protein evolution in yeast. Mol. Biol. Evol. 23, 1751–1761 (2006).

    CAS  PubMed  Google Scholar 

  115. Brown, C. J. et al. Evolutionary rate heterogeneity in proteins with long disordered regions. J. Mol. Evol. 55, 104–110 (2002).

    CAS  PubMed  Google Scholar 

  116. Javier Zea, D., Miguel Monzon, A., Fornasari, M. S., Marino-Buslje, C. & Parisi, G. Protein conformational diversity correlates with evolutionary rate. Mol. Biol. Evol. 30, 1500–1503 (2013).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank X. Chen, W.-C. Ho, B. Moyers, J. Xu and three anonymous reviewers for comments. Research in the Zhang Lab on the topic reviewed here has been supported by the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhi Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (box)

E-R anticorrelation for RNA genes (PDF 120 kb)

Supplementary information S2 (box)

Data sources for Figure 1 (PDF 174 kb)

PowerPoint slides

Glossary

Neutral theory

A theory of molecular evolution asserting that most variations of DNA and protein sequences within and between species are selectively neutral rather than adaptive.

Functional constraint

The extent to which random mutations are purged by natural selection owing to their deleterious effects on protein function.

Functional importance

The fitness advantage to an organism conferred by the function of a protein.

Molecular clock hypothesis

The hypothesis that the same protein evolves with an approximately constant rate over time and across different organisms.

Dispensability

The degree to which an organism can survive and reproduce when a given gene is removed.

Orthologous gene

A gene from a different species that originated by vertical descent from a single gene of the last common ancestor of these species.

Effective population size

(Denoted as Ne). A measure of the strength of random genetic drift in a population. The lower the Ne, the stronger the genetic drift. Ne is influenced by the census population size, breeding system and sex ratio, among other factors.

Protein misfolding

The process by which a protein structure assumes a non-native shape or conformation, which not only diminishes the physiological function of the protein but may also create cytotoxicity.

Preferred codon

A codon that is used more frequently than its synonymous codons in a genome sequence.

Mistranslated proteins

Nascent proteins in which incorrect amino acids have been incorporated during synthesis, which may be caused by incorrect charging of tRNAs by aminoacyl tRNA synthetases or incorrect acceptance of tRNAs by ribosomes.

Protein misinteraction

A non-native interaction between protein molecules that not only reduces the concentrations of freely available protein molecules but may also be toxic.

mRNA folding strength

A measure of the reduction in free energy of a folded mRNA molecule compared to its unfolded form.

Pleiotropic

Pertaining to pleiotropy: the phenomenon whereby one gene or one mutation affects multiple traits.

Designability

The number of protein sequences that adopt a protein structure.

Protein conformational diversity

The degree of structural variations of various native states of a protein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Yang, JR. Determinants of the rate of protein sequence evolution. Nat Rev Genet 16, 409–420 (2015). https://doi.org/10.1038/nrg3950

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3950

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing