Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pervasive robustness in biological systems

Key Points

  • The 'robustness' of a phenotypic trait is the absence or low level of variation when faced with a given incoming variation.

  • Analysis of the propagation of variation in a biological system has been approached differently in evolutionary quantitative genetics and in systems biology studies, but a new unifying approach is now possible.

  • The robustness of a downstream phenotype to a range of variation in an upstream component may be explained by pervasive nonlinearities and plateaus in quantitative relationships between system components.

  • Many recent reports of robustness-conferring genes do not distinguish between effects on phenotypic mean and variance, and therefore are just another way to refer to the low penetrance and condition-dependence of mutations.

  • A robust feature is not necessarily an evolutionary advantage and may have arisen under neutral evolution or through pleiotropy.

Abstract

Robustness is characterized by the invariant expression of a phenotype in the face of a genetic and/or environmental perturbation. Although phenotypic variance is a central measure in the mapping of the genotype and environment to the phenotype in quantitative evolutionary genetics, robustness is also a key feature in systems biology, resulting from nonlinearities in quantitative relationships between upstream and downstream components. In this Review, we provide a synthesis of these two lines of investigation, converging on understanding how variation propagates across biological systems. We critically assess the recent proliferation of studies identifying robustness-conferring genes in the context of the nonlinearity in biological systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Robustness of a phenotype to an incoming variation.
Figure 2: Nonlinear relationships between gene activity and phenotype.
Figure 3: Mechanisms of developmental robustness.
Figure 4: Two definitions of robustness-conferring genes, with and without change of the phenotypic mean.

Similar content being viewed by others

References

  1. Levy, S. F. & Siegal, M. L. in Evolutionary Systems Biology (ed. Soyer, O. S.) 431–452 (Springer, 2012).

    Google Scholar 

  2. Gibson, G. & Wagner, G. Canalization in evolutionary genetics: a stabilizing theory? Bioessays 22, 372–380 (2000).

    CAS  PubMed  Google Scholar 

  3. Debat, V. & David, P. Mapping phenotypes: canalization, plasticity and developmental stability. TREE 16, 555–561 (2001).

    Google Scholar 

  4. Meiklejohn, C. D. & Hartl, D. L. A single mode of canalization. TREE 17, 468–473 (2002).

    Google Scholar 

  5. de Visser, J. A. et al. Perspective: evolution and detection of genetic robustness. Evolution 57, 1959–1972 (2003).

    PubMed  Google Scholar 

  6. Dworkin, I. in Variation: A Central Concept in Biology (eds Hallgrimsson, B. & Hall, B. K.) 131–158 (Elsevier, 2005).

    Google Scholar 

  7. Flatt, T. The evolutionary genetics of canalization. Q. Rev. Biol. 80, 287–316 (2005).

    PubMed  Google Scholar 

  8. Lehner, B. Genotype to phenotype: lessons from model organisms for human genetics. Nat. Rev. Genet. 14, 168–178 (2013).

    CAS  PubMed  Google Scholar 

  9. Waddington, C. H. The strategy of the genes (Allen & Unwin, 1957).

    Google Scholar 

  10. Scharloo, W. Canalization: genetic and developmental aspects. Ann. Rev. Ecol. Syst. 22, 65–93 (1991).

    Google Scholar 

  11. Gibson, G. & Dworkin, I. Uncovering cryptic genetic variation. Nat. Rev. Genet. 5, 681–690 (2004).

    CAS  PubMed  Google Scholar 

  12. Wagner, A. Robustness and Evolvability in Living Systems (Princeton Univ. Press, 2005). This book represents the most detailed recent analysis related to definitions, mechanisms and evolution of biological robustness.

    Google Scholar 

  13. Masel, J. & Siegal, M. L. Robustness: mechanisms and consequences. Trends Genet. 25, 395–403 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Masel, J. & Trotter, M. V. Robustness and evolvability. Trends Genet. 26, 406–414 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Paaby, A. B. & Rockman, M. V. Cryptic genetic variation: evolution's hidden substrate. Nat. Rev. Genet. 15, 247–258 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Barkai, N. & Leibler, S. Robustness in simple biochemical networks. Nature 387, 913–917 (1997). This paper reports on modelling of signal transduction in bacterial chemotaxis, and provides one of the first examples of an analysis of the robustness of the response to changes in individual reaction rates.

    CAS  PubMed  Google Scholar 

  17. von Dassow, G., Meir, E., Munro, E. M. & Odell, G. M. The segment polarity network is a robust developmental module. Nature 406, 188–192 (2000). This computational study provides evidence that the segment polarity gene network topology in Drosophila melanogaster is the main source of the robustness of pattern formation to parameter change.

    CAS  PubMed  Google Scholar 

  18. Gutenkunst, R. N. et al. Universally sloppy parameter sensitivities in systems biology models. PLoS Comput. Biol. 3, e189 (2007).

    PubMed Central  Google Scholar 

  19. Whitacre, J. M. Biological robustness: paradigms, mechanisms, and systems principles. Front. Genet. 3, 67 (2012).

    PubMed  PubMed Central  Google Scholar 

  20. Eldar, A. et al. Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. Nature 419, 304–308 (2002).

    CAS  PubMed  Google Scholar 

  21. Carlson, J. M. & Doyle, J. Highly optimized tolerance: robustness and design in complex systems. Phys. Rev. Lett. 84, 2529–2532 (2000).

    CAS  PubMed  Google Scholar 

  22. Kitano, H. Biological robustness. Nat. Rev. Genet. 5, 826–837 (2004). This influential review on the biological robustness provides an alternative view on this topic, integrating principles from systems biology and engineering.

    CAS  PubMed  Google Scholar 

  23. Stelling, J. et al. Robustness of cellular functions. Cell 118, 675–685 (2004).

    CAS  PubMed  Google Scholar 

  24. Kacser, H. in The Strategy of the Genes (ed. Waddington, C. H.) 191–249 (Routledge Library Editions, 1957).

    Google Scholar 

  25. Rendel, J. M. Canalisation and Gene Control (Logos Press, 1967). Rendel's work anticipates key aspects of nonlinearity in genotype to phenotype mapping, before the molecular biology era.

    Google Scholar 

  26. Nijhout, H. F. The nature of robustness in development. Bioessays 24, 553–563 (2002).

    CAS  PubMed  Google Scholar 

  27. Siegal, M. L. & Bergman, A. Waddington's canalization revisited: developmental stability and evolution. Proc. Natl Acad. Sci. USA 99, 10528–10532 (2002).

    CAS  PubMed  Google Scholar 

  28. Landry, C. R. & Rifkin, S. A. in Evolutionary Systems Biology (ed. Soyer, O. S.) 371–398 (Springer, 2012).

    Google Scholar 

  29. Kaneko, K. in Evolutionary Systems Biology (ed. Soyer, O. S.) 249–278 (Springer, 2012).

    Google Scholar 

  30. Shinar, G., Milo, R., Martinez, M. R. & Alon, U. Input output robustness in simple bacterial signaling systems. Proc. Natl Acad. Sci. USA 104, 19931–19935 (2007).

    CAS  PubMed  Google Scholar 

  31. Hart, Y. & Alon, U. The utility of paradoxical components in biological circuits. Mol. Cell 49, 213–221 (2013).

    CAS  PubMed  Google Scholar 

  32. Anderson, D. F., Mattingly, J. C., Nijhout, H. F. & Reed, M. C. Propagation of fluctuations in biochemical systems, I: linear SSC networks. Bull. Math. Biol. 69, 1791–1813 (2007).

    CAS  PubMed  Google Scholar 

  33. Kitano, H. Towards a theory of biological robustness. Mol. Syst. Biol. 3, 137 (2007).

    PubMed  PubMed Central  Google Scholar 

  34. Kitano, H. Violations of robustness trade-offs. Mol. Syst. Biol. 6, 384 (2010).

    PubMed  PubMed Central  Google Scholar 

  35. Tsimring, L. S. Noise in biology. Rep. Prog. Phys. 77, 026601 (2014).

    PubMed  PubMed Central  Google Scholar 

  36. Leamy, L. J. & Klingenberg, C. P. The genetics and evolution of fluctuating asymmetry. Annu. Rev. Ecol. Evol. Syst. 36, 1–21 (2005).

    Google Scholar 

  37. Yvert, G. 'Particle genetics': treating every cell as unique. Trends Genet. 30, 49–56 (2014).

    CAS  PubMed  Google Scholar 

  38. Pare, G., Cook, N. R., Ridker, P. M. & Chasman, D. I. On the use of variance per genotype as a tool to identify quantitative trait interaction effects: a report from the Women's Genome Health Study. PLoS Genet. 6, e1000981 (2010).

    PubMed  PubMed Central  Google Scholar 

  39. Mather, K. Genetical control of stability in development. Heredity 7, 297–336 (1953).

    Google Scholar 

  40. Fraser, H. B. & Schadt, E. E. The quantitative genetics of phenotypic robustness. PLoS ONE 5, e8635 (2010).

    PubMed  PubMed Central  Google Scholar 

  41. Shen, X., Pettersson, M., Ronnegard, L. & Carlborg, O. Inheritance beyond plain heritability: variance-controlling genes in Arabidopsis thaliana . PLoS Genet. 8, e1002839 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fehrmann, S. et al. Natural sequence variants of yeast environmental sensors confer cell-to-cell expression variability. Mol. Syst. Biol. 9, 695 (2013). This study identifies, down to the nucleotide level, the natural genetic variation underlying reporter gene expression noise in yeast.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Ziv, N., Siegal, M. L. & Gresham, D. Genetic and nongenetic determinants of cell growth variation assessed by high-throughput microscopy. Mol. Biol. Evol. 30, 2568–2578 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Levy, S. F. & Siegal, M. L. Network hubs buffer environmental variation in Saccharomyces cerevisiae . PLoS Biol. 6, e264 (2008). This paper represents the most comprehensive survey of genetic loci buffering noise in yeast, using morphological phenotypes.

    PubMed  PubMed Central  Google Scholar 

  45. Rinott, R., Jaimovich, A. & Friedman, N. Exploring transcription regulation through cell-to-cell variability. Proc. Natl Acad. Sci. USA 108, 6329–6334 (2011).

    CAS  PubMed  Google Scholar 

  46. Takahashi, K. H. Multiple capacitors for natural genetic variation in Drosophila melanogaster . Mol. Ecol. 22, 1356–1365 (2012).

    PubMed  Google Scholar 

  47. Debat, V. et al. Developmental stability: a major role for cyclin G in Drosophila melanogaster . PLoS Genet. 7, e1002314 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hillenmeyer, M. E. et al. The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320, 362–365 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Martin, A. & Orgogozo, V. The loci of repeated evolution: a catalog of genetic hotspots of phenotypic variation. Evolution 67, 1235–1250 (2013).

    CAS  PubMed  Google Scholar 

  50. Stearns, S. C., Kaiscr, M. & Kawecki, T. J. The differential genetic and environmental canalization of fitness components in Drosophila melanogaster . J. Evol. Biol. 8, 539–557 (1995).

    Google Scholar 

  51. Dworkin, I. A study of canalization and developmental stability in the sternopleural bristle system of Drosophila melanogaster . Evolution 59, 1500–1509 (2005).

    PubMed  Google Scholar 

  52. Houle, D., Morikawa, B. & Lynch, M. Comparing mutational variabilities. Genetics 143, 1467–1483 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Braendle, C., Baer, C. F. & Félix, M.-A. Bias and evolution of the mutationally accessible phenotypic space in a developmental system. PLoS Genet. 6, e1000877 (2010).

    PubMed  PubMed Central  Google Scholar 

  54. Gibson, G., Wemple, M. & van Helden, S. Potential variance affecting homeotic Ultrabithorax and Antennapedia phenotypes in Drosophila melanogaster . Genetics 151, 1081–1091 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Milloz, J., Duveau, F., Nuez, I. & Félix, M.-A. Intraspecific evolution of the intercellular signaling network underlying a robust developmental system. Genes Dev. 22, 3064–3075 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Baer, C. F. Quantifying the decanalizing effects of spontaneous mutations in rhabditid nematodes. Am. Nat. 172, 272–281 (2008).

    PubMed  PubMed Central  Google Scholar 

  57. Richardson, J. B., Uppendahl, L. D., Traficante, M. K., Levy, S. F. & Siegal, M. L. Histone variant HTZ1 shows extensive epistasis with, but does not increase robustness to, new mutations. PLoS Genet. 9, e1003733 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Meir, E., von Dassow, G., Munro, E. & Odell, G. M. Robustness, flexibility, and the role of lateral inhibition in the neurogenic network. Curr. Biol. 12, 778–786 (2002).

    CAS  PubMed  Google Scholar 

  59. Li, F., Long, T., Lu, Y., Ouyang, Q. & Tang, C. The yeast cell-cycle network is robustly designed. Proc. Natl Acad. Sci. USA 101, 4781–4786 (2004).

    CAS  PubMed  Google Scholar 

  60. Eldar, A., Rosin, D., Shilo, B.-Z. & Barkai, N. Self-enhanced ligand degradation underlies robustness of morphogen gradients. Dev. Cell 5, 635–646 (2003).

    CAS  PubMed  Google Scholar 

  61. Debat, V., Debelle, A. & Dworkin, I. Plasticity, canalization, and developmental stability of the Drosophila wing: joint effects of mutations and developmental temperature. Evolution 63, 2864–2876 (2009).

    PubMed  Google Scholar 

  62. Lehner, B. Genes confer similar robustness to environmental, stochastic, and genetic perturbations in yeast. PLoS ONE 5, e9035 (2010).

    PubMed  PubMed Central  Google Scholar 

  63. Fontana, W. Modelling 'evo-devo' with RNA. Bioessays 24, 1164–1177 (2002). This review uses the example of RNA secondary structure to explore various aspects of the genotype–phenotype map, including robustness properties.

    CAS  PubMed  Google Scholar 

  64. Ciliberti, S., Martin, O. C. & Wagner, A. Robustness can evolve gradually in complex regulatory gene networks with varying topology. PLoS Comput. Biol. 3, e15 (2007).

    PubMed  PubMed Central  Google Scholar 

  65. Kaneko, K. Evolution of robustness to noise and mutation in gene expression dynamics. PLoS ONE 2, e434 (2007).

    PubMed  PubMed Central  Google Scholar 

  66. Fisher, R. A. The possible modification of the wild type to recurrent mutations. Am. Nat. 62, 115–126 (1928).

    Google Scholar 

  67. Wright, S. Molecular and evolutionary theories of dominance. Am. Nat. 63, 24–53 (1934).

    Google Scholar 

  68. Haldane, J. B. S. The theory of the evolution of dominance. J. Gen. 37, 365–374 (1939).

    Google Scholar 

  69. Kacser, H. & Burns, J. A. The molecular basis of dominance. Genetics 97, 639–666 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Bagheri, H. C. Unresolved boundaries of evolutionary theory and the question of how inheritance systems evolve: 75 years of debate on the evolution of dominance. J. Exp. Zool. Mol. Dev. Evol. 306, 329–359 (2006).

    Google Scholar 

  71. Nijhout, H. F. & Berg, A. M. A mechanistic study of evolvability using the mitogen-activated protein kinase cascade. Evol. Dev. 5, 281–294 (2003). This paper combines the modelling of a protein kinase cascade and the exploration of possible evolutionary variation in response phenotypes upon change in parameters.

    CAS  PubMed  Google Scholar 

  72. Prill, R. J., Iglesias, P. A. & Levchenko, A. Dynamic properties of network motifs contribute to biological network organization. PLoS Biol. 3, e343 (2005).

    PubMed  PubMed Central  Google Scholar 

  73. Ebert, M. S. & Sharp, P. A. Roles for microRNAs in conferring robustness to biological processes. Cell 149, 515–524 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lander, A. D. How cells know where they are. Science 339, 923–927 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Posadas, D. M. & Carthew, R. W. MicroRNAs and their roles in developmental canalization. Curr. Opin. Genet. Dev. 27, 1–6 (2014).

    CAS  PubMed  Google Scholar 

  76. Tsang, J., Zhu, J. & van Oudenaarden, A. MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol. Cell 26, 753–767 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hoyos, E. et al. Quantitative variation in autocrine signaling and pathway crosstalk in the Caenorhabditis vulval network. Curr. Biol. 21, 527–538 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Barkoulas, M., van Zon, J. S., Milloz, J., van Oudenaarden, A. & Félix, M.-A. Robustness and epistasis in the C. elegans vulval signaling network revealed by pathway dosage modulation. Dev. Cell 24, 64–75 (2013). This study quantifies the robustness of the C. elegans vulval cell fate pattern to the expression of its upstream inducer at the single-molecule level.

    CAS  PubMed  Google Scholar 

  79. Hopper, N. A., Lee, J. & Sternberg, P. W. ARK-1 inhibits EGFR signaling in C. elegans . Mol. Cell 6, 65–75 (2000).

    CAS  PubMed  Google Scholar 

  80. Ohmachi, M. et al. C. elegans ksr-1 and ksr-2 have both unique and redundant functions and are required for MPK-1 ERK phosphorylation. Curr. Biol. 12, 427–433 (2002).

    CAS  PubMed  Google Scholar 

  81. Rocheleau, C. E., Ronnlund, A., Tuck, S. & Sundaram, M. V. Caenorhabditis elegans CNK-1 promotes Raf activation but is not essential for Ras/Raf signaling. Proc. Natl Acad. Sci. USA 102, 11757–11762 (2005).

    CAS  PubMed  Google Scholar 

  82. Canevascini, S., Marti, M., Fröhli, E. & Hajnal, A. The Caenorhabditis elegans homologue of the proto-oncogene ect-2 positively regulates RAS signalling during vulval development. EMBO Rep. 6, 1169–1175 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Walser, C. B., Battu, G., Hoier, E. F. & Hajnal, A. Distinct roles of the Pumilio and FBF translational repressors during C. elegans vulval development. Development 133, 3461–3471 (2006).

    CAS  PubMed  Google Scholar 

  84. Nakdimon, I., Walser, M., Fröhli, E. & Hajnal, A. PTEN negatively regulates MAPK signaling during Caenorhabditis elegans vulval development. PLoS Genet. 8, e1002881 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Nowak, M. A., Boerlijst, M. C., Cooke, J. & Smith, J. M. Evolution of genetic redundancy. Nature 388, 167–171 (1997).

    CAS  PubMed  Google Scholar 

  86. Braendle, C. & Félix, M.-A. Plasticity and errors of a robust developmental system in different environments. Dev. Cell 15, 714–724 (2008).

    CAS  PubMed  Google Scholar 

  87. Delattre, M. & Félix, M.-A. The evolutionary context of robust and redundant cell biological mechanisms. Bioessays 31, 537–545 (2009).

    PubMed  Google Scholar 

  88. Perry, M. W., Boettiger, A. N., Bothma, J. P. & Levine, M. Shadow enhancers foster robustness of Drosophila gastrulation. Curr. Biol. 20, 1562–1567 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Perry, M. W., Boettiger, A. N. & Levine, M. Multiple enhancers ensure precision of gap gene-expression patterns in the Drosophila embryo. Proc. Natl Acad. Sci. USA 108, 13570–13575 (2011).

    CAS  PubMed  Google Scholar 

  90. Frankel, N. et al. Phenotypic robustness conferred by apparently redundant transcriptional enhancers. Nature 466, 490–493 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Oliveira, M. M., Shingleton, A. W. & Mirth, C. K. Coordination of wing and whole-body development at developmental milestones ensures robustness against environmental and physiological perturbations. PLoS Genet. 10, e1004408 (2014).

    PubMed  PubMed Central  Google Scholar 

  92. Gregor, T., Tank, D. W., Wieschaus, E. F. & Bialek, W. Probing the limits to positional information. Cell 130, 153–164 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Xiong, F. et al. Specified neural progenitors sort to form sharp domains after noisy Shh signaling. Cell 153, 550–561 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Dessaud, E. et al. Dynamic assignment and maintenance of positional identity in the ventral neural tube by the morphogen Sonic Hedgehog. PLoS Biol. 8, e1000382 (2010).

    PubMed  PubMed Central  Google Scholar 

  95. Srinivasan, S. et al. A BMP-FGF morphogen toggle switch drives the ultrasensitive expression of multiple genes in the developing forebrain. PLoS Comput. Biol. 10, e1003463 (2014).

    PubMed  PubMed Central  Google Scholar 

  96. Namba, R., Pazdera, T. M., Cerrone, R. L. & Minden, J. S. Drosophila embryonic pattern repair: how embryos respond to bicoid dosage alteration. Development 124, 1393–1403 (1997).

    CAS  PubMed  Google Scholar 

  97. Liu, F., Morrison, A. H. & Gregor, T. Dynamic interpretation of maternal inputs by the Drosophila segmentation gene network. Proc. Natl Acad. Sci. USA 110, 6724–6729 (2013).

    CAS  PubMed  Google Scholar 

  98. Lucas, T. et al. Live imaging of bicoid-dependent transcription in Drosophila embryos. Curr. Biol. 23, 2135–2139 (2013).

    CAS  PubMed  Google Scholar 

  99. Little, S. C., Tikhonov, M. & Gregor, T. Precise developmental gene expression arises from globally stochastic transcriptional activity. Cell 154, 789–800 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Gavin-Smyth, J., Wang, Y. C., Butler, I. & Ferguson, E. L. A genetic network conferring canalization to a bistable patterning system in Drosophila . Curr. Biol. 23, 2296–2302 (2013). This paper, describing a gene network affecting amnioserosa patterning in Drosophila spp. embryos, provides a good example of a study in which gene effects on trait mean and variance are distinguished.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Sanchez, A., Choubey, S. & Kondev, J. Regulation of noise in gene expression. Annu. Rev. Biophys. 42, 469–491 (2013).

    CAS  PubMed  Google Scholar 

  102. Dadiani, M. et al. Two DNA-encoded strategies for increasing expression with opposing effects on promoter dynamics and transcriptional noise. Genome Res. 23, 966–976 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Hooshangi, S., Thiberge, S. & Weiss, R. Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc. Natl Acad. Sci. USA 102, 3581–3586 (2005).

    CAS  PubMed  Google Scholar 

  104. Nijhout, H. F., Best, J. & Reed, M. C. Escape from homeostasis. Math. Biosci. 257, 104–110 (2014).

    CAS  PubMed  Google Scholar 

  105. Janssens, H. et al. Lack of tailless leads to an increase in expression variability in Drosophila embryos. Dev. Biol. 377, 305–317 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Surkova, S. et al. Quantitative dynamics and increased variability of segmentation gene expression in the Drosophila Krüppel and knirps mutants. Dev. Biol. 376, 99–112 (2013).

    CAS  PubMed  Google Scholar 

  107. Ji, N. et al. Feedback control of gene expression variability in the Caenorhabditis elegans Wnt pathway. Cell 155, 869–880 (2013). This article shows an example of how gene network architecture influences gene expression variability in C. elegans.

    CAS  PubMed  Google Scholar 

  108. Martinez-Arias, A. & Hayward, P. Filtering transcriptional noise during development: concepts and mechanisms. Nat. Rev. Genet. 7, 34–44 (2006).

    Google Scholar 

  109. Bergman, A. & Siegal, M. L. Evolutionary capacitance as a general feature of complex gene networks. Nature 424, 549–552 (2003).

    CAS  PubMed  Google Scholar 

  110. Wu, C. I., Shen, Y. & Tang, T. Evolution under canalization and the dual roles of microRNAs: a hypothesis. Genome Res. 19, 734–743 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hornstein, E. & Shomron, N. Canalization of development by microRNAs. Nat. Genet. 38 S20–S24 (2006).

    CAS  PubMed  Google Scholar 

  112. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Siciliano, V. et al. MiRNAs confer phenotypic robustness to gene networks by suppressing biological noise. Nat. Commun. 4, 2364 (2013).

    PubMed  Google Scholar 

  114. Lucchetta, E. M., Carthew, R. W. & Ismagilov, R. F. The endo-siRNA pathway is essential for robust development of the Drosophila embryo. PLoS ONE 4, e7576 (2009).

    PubMed  PubMed Central  Google Scholar 

  115. Li, X., Cassidy, J. J., Reinke, C. A., Fischboeck, S. & Carthew, R. W. A microRNA imparts robustness against environmental fluctuation during development. Cell 137, 273–282 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Cassidy, J. J. et al. miR-9a minimizes the phenotypic impact of genomic diversity by buffering a transcription factor. Cell 155, 1556–1567 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Bergonzi, S. et al. Mechanisms of age-dependent response to winter temperature in perennial flowering of Arabis alpina . Science 340, 1094–1097 (2013).

    CAS  PubMed  Google Scholar 

  118. Zhou, C. M. et al. Molecular basis of age-dependent vernalization in Cardamine flexuosa . Science 340, 1097–1100 (2013).

    CAS  PubMed  Google Scholar 

  119. Crocker, J. et al. Low affinity binding site clusters confer Hox specificity and regulatory robustness. Cell 160, 191–203 (2015).

    CAS  PubMed  Google Scholar 

  120. Rutherford, S. L. & Lindquist, S. Hsp90 as a capacitator for morphological evolution. Nature 396, 336–342 (1998).

    CAS  PubMed  Google Scholar 

  121. Takahashi, K. H., Okada, Y. & Teramura, K. Deficiency screening for genomic regions with effects on environmental sensitivity of the sensory bristles of Drosophila melanogaster . Evolution 66, 2878–2890 (2012).

    PubMed  Google Scholar 

  122. Box, G. E. P. & Cox, D. R. An analysis of transformations. J. Roy. Stat. Soc. B. 26, 211–252 (1964).

    Google Scholar 

  123. Schultz, B. B. Levene's test for relative variation. Syst. Zool. 34, 449–456 (1985).

    Google Scholar 

  124. Ronnegard, L. & Valdar, W. Recent developments in statistical methods for detecting genetic loci affecting phenotypic variability. BMC Genet. 13, 63 (2012). This article presents statistical methods for the detection of quantitative trait loci that affect the variance of a phenotype, and points to the relationship with epistatic effects.

    PubMed  PubMed Central  Google Scholar 

  125. Geiler-Samerotte, K. A. et al. The details in the distributions: why and how to study phenotypic variability. Curr. Opin. Biotechnol. 24, 752–759 (2013). This article highlights the importance of studying phenotypic distributions and reviews current statistical methods and experimental designs.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Lande, R. On comparing coefficients of variation. Syst. Zool. 26, 214–217 (1977).

    Google Scholar 

  127. Lynch, M. The evolution of genetic networks by non-adaptive processes. Nat. Rev. Genet. 8, 803–813 (2007).

    CAS  PubMed  Google Scholar 

  128. Proulx, S. R. & Phillips, P. C. The opportunity for canalization and the evolution of genetic networks. Am. Naturalist 165, 147–162 (2005).

    Google Scholar 

  129. Barrett, R. D. H. & Hoekstra, H. E. Molecular spandrels: tests of adaptation at the genetic level. Nat. Rev. Genet. 12, 767–780 (2011).

    CAS  PubMed  Google Scholar 

  130. Wagner, G. P., Booth, G. & Bagheri-Chaichian, H. A population genetic theory of canalization. Evolution 51, 329–347 (1997).

    PubMed  Google Scholar 

  131. Wagner, A. Robustness, evolvability, and neutrality. FEBS Lett. 579, 1772–1778 (2005).

    CAS  PubMed  Google Scholar 

  132. Wilke, C. O. Adaptive evolution on neutral networks. Bull. Math. Biol. 63, 715–730 (2001).

    CAS  PubMed  Google Scholar 

  133. Sanjuan, R., Cuevas, J. M., Furio, V., Holmes, E. C. & Moya, A. Selection for robustness in mutagenized RNA viruses. PLoS Genet. 3, e93 (2007).

    PubMed  PubMed Central  Google Scholar 

  134. Wilke, C. O. Quasispecies theory in the context of population genetics. BMC Evol. Biol. 5, 44 (2005).

    PubMed  PubMed Central  Google Scholar 

  135. Masel, J. & Maughan, H. Mutations leading to loss of sporulation ability in Bacillus subtilis are sufficiently frequent to favor genetic canalization. Genetics 175, 453–457 (2007).

    PubMed  PubMed Central  Google Scholar 

  136. Azevedo, R. B., Lohaus, R. Srinivasan, S., Dang, K. K. & Burch, C. L. Sexual reproduction selects for robustness and negative epistasis in artificial gene networks. Nature 440, 87–90 (2006).

    CAS  PubMed  Google Scholar 

  137. Kim, K. J. & Fernandes, V. M. Effects of ploidy and recombination on evolution of robustness in a model of the segment polarity network. PLoS Comput. Biol. 5, e1000296 (2009).

    PubMed  PubMed Central  Google Scholar 

  138. Queitsch, C., Sangster, T. A. & Lindquist, S. Hsp90 as a capacitor of phenotypic variation. Nature 417, 618–624 (2002).

    CAS  PubMed  Google Scholar 

  139. Milton, C. C., Huynh, B., Batterham, P., Rutherford, S. L. & Hoffmann, A. A. Quantitative trait symmetry independent of Hsp90 buffering: distinct modes of genetic canalization and developmental stability. Proc. Natl Acad. Sci. USA 100, 13396–13401 (2003).

    CAS  PubMed  Google Scholar 

  140. Milton, C. C., Batterham, P., McKenzie, J. A. & Hoffmann, A. A. Effect of E(sev) and Su(Raf) Hsp83 mutants and trans-heterozygotes on bristle trait means and variation in Drosophila melanogaster . Genetics 171, 119–130 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Milton, C. C., Ulane, C. M. & Rutherford, S. Control of canalization and evolvability by Hsp90. PLoS ONE 1, e75 (2006).

    PubMed  PubMed Central  Google Scholar 

  142. Debat, V., Milton, C. C., Rutherford, S., Klingenberg, C. P. & Hoffmann, A. A. Hsp90 and the quantitative variation of wing shape in Drosophila melanogaster . Evolution 60, 2529–2538 (2006).

    CAS  PubMed  Google Scholar 

  143. Rohner, N. et al. Cryptic variation in morphological evolution: HSP90 as a capacitor for loss of eyes in cavefish. Science 342, 1372–1375 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Fares, M. A., Ruiz-González, M. X., Moya, A., Elena, S. F. & Barrio, E. Endosymbiotic bacteria: groEL buffers against deleterious mutations. Nature 417, 398 (2002).

    CAS  PubMed  Google Scholar 

  145. Takahashi, K. H., Daborn, P. J., Hoffmann, A. A. & Takano-Shimizu, T. Environmental stress-dependent effects of deletions encompassing Hsp70Ba on canalization and quantitative trait asymmetry in Drosophila melanogaster . PLoS ONE 6, e17295 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. True, H. L. & Lindquist, S. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407, 477–483 (2000).

    CAS  PubMed  Google Scholar 

  147. Taipale, M., Jarosz, D. F. & Lindquist, S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat. Rev. Mol. Cell Biol. 11, 515–528 (2010).

    CAS  PubMed  Google Scholar 

  148. Taipale, M. et al. Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150, 987–1001 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Sawarkar, R., Sievers, C. & Paro, R. Hsp90 globally targets paused RNA polymerase to regulate gene expression in response to environmental stimuli. Cell 149, 807–818 (2012).

    CAS  PubMed  Google Scholar 

  150. Sollars, V. et al. Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nat. Genet. 33, 70–74 (2003).

    CAS  PubMed  Google Scholar 

  151. Specchia, V. et al. Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons. Nature 463, 662–665 (2010).

    CAS  PubMed  Google Scholar 

  152. Chen, G., Bradford, W. D., Seidel, C. W. & Li, R. Hsp90 stress potentiates rapid cellular adaptation through induction of aneuploidy. Nature 482, 246–250 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Chen, B. & Wagner, A. Hsp90 is important for fecundity, longevity, and buffering of cryptic deleterious variation in wild fly populations. BMC Evol. Biol. 12, 25 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Rendel, J. M. The relationship between gene and phenotype. J. Theor. Biol. 2, 296–308 (1962).

    Google Scholar 

  155. Rendel, J. M., Sheldon, B. L. & Finlay, D. E. Canalisation of development of scutellar bristles in Drosophila by control of the scute locus. Genetics 52, 1137–1151 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Dun, R. B. & Fraser, A. S. Selection for an invariant character, vibrissa number, in the house mouse. Austr. J. Biol. Sci. 12, 506–523 (1959).

    Google Scholar 

Download references

Acknowledgements

We thank P. Phillips, C. Braendle, V. Orgogozo, V. Debat, E. Andersen, F. Besnard and the reviewers for comments on the manuscript, N. Dostatni and H. Teotonio for discussions, and S. Rifkin for introducing us to Rendel. Work on developmental robustness in the Félix laboratory is funded by the Agence Nationale pour la Recherche (12-BSV2-0004-01) and a Coup d'Elan from the Bettencourt-Schueller Foundation; work in the Barkoulas laboratory is funded by the Biotechnology and Biological Sciences Research Council (BBSRC) in the UK (BB/L021455/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Anne Félix.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Robustness

Invariance or low variation of a given phenotype when faced with a given incoming variation. Used synonymously with insensitivity.

Sensitivity

Variation of a given phenotype when faced with a given incoming variation.

Variance

A measure of variation in a distribution, defined as the sum of squared deviations of individual points to the mean.

Stochastic variance

Variation of the phenotype when faced with uncontrollable noise; also called microenvironmental variance.

Genetic variance

Variation of the phenotype when faced with a given set of genetic variation.

Canalization

A process by which the phenotypic variance of a trait is reduced when faced with a given perturbation.

Variational features

A specific instance of the propagation of variation from an incoming variation to a given phenotype. The incoming variation may be stochastic, environmental or genetic.

Robust features

A particular case of variational feature where the phenotype is robust to the incoming variation.

Plasticity

Variation of a phenotype when faced with a given environmental variation.

Intermediate phenotype

Also known as endophenotype. An intermediate developmental trait in the construction of the phenotype of interest.

Standing genetic variation

Allelic variation that is currently segregating in a given population, in contrast to alleles that arise by new mutation events.

Incoming variation

The perturbation that is considered for a given variational feature.

Cryptic genetic variation

Genetic variation that is silent for the trait of interest but is not silent for some variables in the underlying system.

Fluctuating asymmetry

Measure of variation between the right and left sides of the body, taken as a measure of sensitivity to developmental noise.

Norm of reaction

(Also known as reaction norm). Function or plot linking the phenotype (y-axis) to the environmental variable (x-axis), for a given genotype.

Coefficient of variation

Dimensionless measure of variation in a distribution corresponding to the square root of the variance (standard deviation) over the mean.

Pleiotropy

Alteration of more than one phenotype by the same genetic variant.

Stabilizing selection

Selection that tends to eliminate extreme phenotypic variants. This results in reduced phenotypic variance and robustness of the trait under selection.

Mutational variance

A particular case of genetic variance, where the relevant genetic variation is a random mutation.

Epistasis

Non-additive effect of two genetic variations on the phenotype.

System parameter space

Multidimensional space of quantitative parameters characterizing a system.

Congruence

Similarity between the responses to different sources of variation — for example, environmental and genetic.

Nonlinearity

Relationship between two variables (input and output) that is not proportional.

Coherent feedforward motifs

Networks in which the downstream effects of a gene reinforce each other.

Incoherent feedforward motifs

Networks in which the downstream effects of a gene antagonize each other.

Paradoxical regulation

A two-component network in which the downstream effects of a gene antagonize each other.

Probit

Distance to the mean in standard deviations of a frequency distribution, computed as the inverse of the standard normal cumulative distribution function.

Phenodeviants

Individuals with a phenotype outside a defined normal range within a reference population.

Phenotypic capacitors

Genes that, when mutated or deleted, lead to an increase in phenotypic variance in response to a given perturbation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Félix, MA., Barkoulas, M. Pervasive robustness in biological systems. Nat Rev Genet 16, 483–496 (2015). https://doi.org/10.1038/nrg3949

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3949

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing