Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Phenotypic impact of genomic structural variation: insights from and for human disease

Key Points

  • Recent technological advances in array and sequencing approaches are starting to revolutionize our ability to identify structural variants underlying complex phenotypes.

  • Structural variants are now being associated with an increasing number of normal phenotypic variations, as well as common and rare human diseases.

  • Changes in copy number of genes are overall accompanied by similar changes in mRNA expression, although regulatory mechanisms such as epistasis and autoregulatory feedback mechanisms can buffer against such copy-number changes.

  • Structural variants that are associated with complex phenotypes, such as autism or schizophrenia, can affect both regions associated with variable phenotypes and loci associated with Mendelian disease, which often cause more 'hard-wired' phenotypes.

  • Mice are excellent model systems for delineating the phenotypic consequences of structural variants, owing to their high physiological similarity to (and extensive synteny with) humans, and the availability of advanced genetic tools. They can also be used to analyse developmental, cell-type-specific or tissue-specific phenotypes.

  • Novel integrative approaches, including the use of induced pluripotent stem cells (iPSCs), animal models and computational approaches, will enable the delineation of complex disease phenotypes that are caused by rare de novo structural variants with cell-type-specific effects.

Abstract

Genomic structural variants have long been implicated in phenotypic diversity and human disease, but dissecting the mechanisms by which they exert their functional impact has proven elusive. Recently however, developments in high-throughput DNA sequencing and chromosomal engineering technology have facilitated the analysis of structural variants in human populations and model systems in unprecedented detail. In this Review, we describe how structural variants can affect molecular and cellular processes, leading to complex organismal phenotypes, including human disease. We further present advances in delineating disease-causing elements that are affected by structural variants, and we discuss future directions for research on the functional consequences of structural variants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural variants: classes and formation mechanisms.
Figure 2: Functional consequences of structural variants.
Figure 3: From genotype to phenotype: buffering and feedback.
Figure 4: Reconstructing the genetic network in DiGeorge syndrome.

Similar content being viewed by others

References

  1. Feuk, L., Carson, A. R. & Scherer, S. W. Structural variation in the human genome. Nature Rev. Genet. 7, 85–97 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Hastings, P. J., Lupski, J. R., Rosenberg, S. M. & Ira, G. Mechanisms of change in gene copy number. Nature Rev. Genet. 10, 551–564 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Mills, R. E. et al. Mapping copy number variation by population-scale genome sequencing. Nature 470, 59–65 (2011). As part of the 1000 Genomes Project pilot phase, the authors mapped structural variants at fine resolution in 185 humans using high-throughput sequencing, thereby providing a highly resolved reference set of polymorphically occurring structural variants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Conrad, D. F. et al. Origins and functional impact of copy number variation in the human genome. Nature 464, 704–712 (2010). This paper presents a comprehensive map of over 10,000 copy-number variants in the human population, thus providing insights into the origin of structural variants and their contribution to complex traits.

    Article  CAS  PubMed  Google Scholar 

  5. Pang, A. W. et al. Towards a comprehensive structural variation map of an individual human genome. Genome Biol. 11, R52 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Turner, D. J. et al. Germline rates of de novo meiotic deletions and duplications causing several genomic disorders. Nature Genet. 40, 90–95 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Lee, C. & Scherer, S. W. The clinical context of copy number variation in the human genome. Expert Rev. Mol. Med. 12, e8 (2010).

    Article  PubMed  CAS  Google Scholar 

  8. Alkan, C., Coe, B. P. & Eichler, E. E. Genome structural variation discovery and genotyping. Nature Rev. Genet. 12, 15–18 (2011).

    Article  CAS  Google Scholar 

  9. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

  10. Sudmant, P. H. et al. Diversity of human copy number variation and multicopy genes. Science 330, 641–646 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. de Cid, R. et al. Deletion of the late cornified envelope LCE3B and LCE3C genes as a susceptibility factor for psoriasis. Nature Genet. 41, 211–215 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Fanciulli, M. et al. FCGR3B copy number variation is associated with susceptibility to systemic, but not organ-specific, autoimmunity. Nature Genet. 39, 721–723 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Hollox, E. J. et al. Psoriasis is associated with increased β-defensin genomic copy number. Nature Genet. 40, 23–25 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. McCarroll, S. A. et al. Donor-recipient mismatch for common gene deletion polymorphisms in graft-versus-host disease. Nature Genet. 41, 1341–1344 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Girirajan, S. et al. Relative burden of large CNVs on a range of neurodevelopmental phenotypes. PLoS Genet. 7, e1002334 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pinto, D. et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466, 368–372 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nobrega, M. A., Zhu, Y., Plajzer-Frick, I., Afzal, V. & Rubin, E. M. Megabase deletions of gene deserts result in viable mice. Nature 431, 988–993 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Shaffer, L. G. & Lupski, J. R. Molecular mechanisms for constitutional chromosomal rearrangements in humans. Annu. Rev. Genet. 34, 297–329 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Lupski, J. R. Genomic rearrangements and sporadic disease. Nature Genet. 39, S43–S47 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Lupski, J. R. Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet. 14, 417–422 (1998). This seminal paper introduced the concept of genomic disorders, which are diseases resulting from DNA rearrangements favoured by intrinsic structural features of the genome.

    Article  CAS  PubMed  Google Scholar 

  22. Sharp, A. J. et al. Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nature Genet. 38, 1038–1042 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Potocki, L. et al. Molecular mechanism for duplication 17p11.2- the homologous recombination reciprocal of the Smith-Magenis microdeletion. Nature Genet. 24, 84–87 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Sanders, S. J. et al. Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron 70, 863–885 (2011). Using high-resolution microarrays, the authors demonstrate a significant association between ASDs and rare de novo structural variants such as 7q11.23 duplication and 16p11.2 deletion and duplication, and provide evidence that the risk associated with large structural variants are due to their relatively high gene content.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kirov, G. et al. De novo CNV analysis implicates specific abnormalities of postsynaptic signalling complexes in the pathogenesis of schizophrenia. Mol. Psychiatry 17, 142–153 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Maynard, T. M., Haskell, G. T., Lieberman, J. A. & LaMantia, A. S. 22q11 DS: genomic mechanisms and gene function in DiGeorge/velocardiofacial syndrome. Int. J. Dev. Neurosci. 20, 407–419 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Merla, G. et al. Submicroscopic deletion in patients with Williams-Beuren syndrome influences expression levels of the nonhemizygous flanking genes. Am. J. Hum. Genet. 79, 332–341 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ricard, G. et al. Phenotypic consequences of copy number variation: insights from Smith-Magenis and Potocki-Lupski syndrome mouse models. PLoS Biol. 8, e1000543 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Firth, H. V. et al. DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Am. J. Hum. Genet. 84, 524–533 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bisgaard, A. M. et al. Chromosomal deletion unmasking a recessive disease: 22q13 deletion syndrome and metachromatic leukodystrophy. Clin. Genet. 75, 175–179 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Gothelf, D. et al. COMT genotype predicts longitudinal cognitive decline and psychosis in 22q11.2 deletion syndrome. Nature Neurosci. 8, 1500–1502 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Bartolomei, M. S. & Ferguson-Smith, A. C. Mammalian genomic imprinting. Cold Spring Harb. Perspect. Biol. 3, a002592 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Handsaker, R. E., Korn, J. M., Nemesh, J. & McCarroll, S. A. Discovery and genotyping of genome structural polymorphism by sequencing on a population scale. Nature Genet. 43, 269–276 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Craddock, N. et al. Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature 464, 713–720 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Williams, N. M. et al. Rare chromosomal deletions and duplications in attention-deficit hyperactivity disorder: a genome-wide analysis. Lancet 376, 1401–1408 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McCarroll, S. A. et al. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease. Nature Genet. 40, 1107–1112 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Elia, J. et al. Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder. Nature Genet. 44, 78–84 (2012).

    Article  CAS  Google Scholar 

  38. Stefansson, H. et al. Large recurrent microdeletions associated with schizophrenia. Nature 455, 232–236 (2008). The authors reported recurrent microdeletions at 1q21.1, 15q11.2 and 15q13.3 to be associated with schizophrenia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science 316, 445–449 (2007). One of the first papers to provide compelling evidence for the importance of rare de novo copy-number variants in a complex disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Walsh, T. et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320, 539–543 (2008). This study, using high-resolution microarrays, was the first to map and causally link small de novo gene- affecting copy-number variants to schizophrenia.

    Article  CAS  PubMed  Google Scholar 

  41. Malhotra, D. et al. High frequencies of de novo CNVs in bipolar disorder and schizophrenia. Neuron 72, 951–963 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brunetti-Pierri, N. et al. Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities. Nature Genet. 40, 1466–1471 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Jacquemont, S. et al. Mirror extreme BMI phenotypes associated with gene dosage at the chromosome 16p11.2 locus. Nature 478, 97–102 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Inoue, K. & Lupski, J. R. Molecular mechanisms for genomic disorders. Annu. Rev. Genom. Hum. Genet. 3, 199–242 (2002).

    Article  CAS  Google Scholar 

  45. Keller, M. P. & Chance, P. F. Inherited peripheral neuropathy. Semin. Neurol. 19, 353–362 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Greenway, S. C. et al. De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nature Genet. 41, 931–935 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Klopocki, E. et al. Complex inheritance pattern resembling autosomal recessive inheritance involving a microdeletion in thrombocytopenia-absent radius syndrome. Am. J. Hum. Genet. 80, 232–240 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Albers, C. A. et al. Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome. Nature Genet. 44, 435–439 (2012). This work showed that the phenotypic consequences of a rare structural variant depend on the presence of a low-frequency common regulatory polymorphism affecting the other allele, thus illustrating that structural variants can unmask the detrimental effect of alleles that are otherwise phenotypically silent.

    Article  CAS  PubMed  Google Scholar 

  49. Badano, J. L. et al. Dissection of epistasis in oligogenic Bardet-Biedl syndrome. Nature 439, 326–330 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Zuk, O., Hechter, E., Sunyaev, S. R. & Lander, E. S. The mystery of missing heritability: Genetic interactions create phantom heritability. Proc. Natl Acad. Sci. USA 109, 1193–1198 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Eichler, E. E. et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nature Rev. Genet. 11, 446–450 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Devlin, B. & Scherer, S. W. Genetic architecture in autism spectrum disorder. Curr. Opin. Genet. Dev. 22, 229–237 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Stenberg, P. et al. Buffering of segmental and chromosomal aneuploidies in Drosophila melanogaster. PLoS Genet. 5, e1000465 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Chaignat, E. et al. Copy number variation modifies expression time courses. Genome Res. 21, 106–113 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Henrichsen, C. N. et al. Segmental copy number variation shapes tissue transcriptomes. Nature Genet. 41, 424–429 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Orozco, L. D. et al. Copy number variation influences gene expression and metabolic traits in mice. Hum. Mol. Genet. 18, 4118–4129 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schlattl, A., Anders, S., Waszak, S. M., Huber, W. & Korbel, J. O. Relating CNVs to transcriptome data at fine resolution: assessment of the effect of variant size, type, and overlap with functional regions. Genome Res. 21, 2004–2013 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vazquez-Mena, O. et al. Amplified genes may be overexpressed, unchanged, or downregulated in cervical cancer cell lines. PLoS ONE 7, e32667 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ait Yahya-Graison, E. et al. Classification of human chromosome 21 gene-expression variations in Down syndrome: impact on disease phenotypes. Am. J. Hum. Genet. 81, 475–491 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Straub, T. & Becker, P. B. Dosage compensation: the beginning and end of generalization. Nature Rev. Genet. 8, 47–57 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Keane, T. M. et al. Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477, 289–294 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yalcin, B. et al. Sequence-based characterization of structural variation in the mouse genome. Nature 477, 326–329 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stranger, B. E. et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315, 848–853 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cahan, P., Li, Y., Izumi, M. & Graubert, T. A. The impact of copy number variation on local gene expression in mouse hematopoietic stem and progenitor cells. Nature Genet. 41, 430–437 (2009). Together with reference 55, the authors analysed transcriptomes in different mouse strains and tissues with respect to structural variants. These two studies revealed a general correlation between gene copy number and expression levels, tissue-specific consequences of structural variants on gene expression, and that these effects can extend far beyond the structural variant breakpoints.

    Article  CAS  PubMed  Google Scholar 

  65. Kleinjan, D. A. & van Heyningen, V. Long-range control of gene expression: emerging mechanisms and disruption in disease. Am. J. Hum. Genet. 76, 8–32 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Kioussis, D., Vanin, E., deLange, T., Flavell, R. A. & Grosveld, F. G. β-globin gene inactivation by DNA translocation in γβ-thalassaemia. Nature 306, 662–666 (1983).

    Article  CAS  PubMed  Google Scholar 

  67. Belloni, E. et al. Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly. Nature Genet. 14, 353–356 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Benko, S. et al. Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence. Nature Genet. 41, 359–364 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Capdevila, J. & Izpisua Belmonte, J. C. Patterning mechanisms controlling vertebrate limb development. Annu. Rev. Cell Dev. Biol. 17, 87–132 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Dathe, K. et al. Duplications involving a conserved regulatory element downstream of BMP2 are associated with brachydactyly type A2. Am. J. Hum. Genet. 84, 483–492 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kurth, I. et al. Duplications of noncoding elements 5′ of SOX9 are associated with brachydactyly-anonychia. Nature Genet. 41, 862–863 (2009). This study and reference 68 underscore the contribution of non-coding structural variants to human genetic diseases. The distinct phenotypes associated with such structural variants in the vicinity of the pleiotropic SOX9 gene depend on the tissue-specific activities of the affected remote cis -regulatory elements, as well as on the size and nature (deletion or duplication) of the structural variants.

    Article  CAS  PubMed  Google Scholar 

  72. Klopocki, E. et al. Copy-number variations involving the IHH locus are associated with syndactyly and craniosynostosis. Am. J. Hum. Genet. 88, 70–75 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Klopocki, E. et al. A microduplication of the long range SHH limb regulator (ZRS) is associated with triphalangeal thumb-polysyndactyly syndrome. J. Med. Genet. 45, 370–375 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Sun, M. et al. Triphalangeal thumb-polysyndactyly syndrome and syndactyly type IV are caused by genomic duplications involving the long range, limb-specific SHH enhancer. J. Med. Genet. 45, 589–595 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Lettice, L. A. et al. Opposing functions of the ETS factor family define Shh spatial expression in limb buds and underlie polydactyly. Dev. Cell 22, 459–467 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jaeger, E. et al. Hereditary mixed polyposis syndrome is caused by a 40-kb upstream duplication that leads to increased and ectopic expression of the BMP antagonist GREM1. Nature Genet. 44, 699–703 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Lettice, L. A. et al. Enhancer-adoption as a mechanism of human developmental disease. Hum. Mutat. 32, 1492–1499 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Spitz, F., Gonzalez, F. & Duboule, D. A global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell 113, 405–417 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Schrimpf, S. P. et al. Comparative functional analysis of the Caenorhabditis elegans and Drosophila melanogaster proteomes. PLoS Biol. 7, e48 (2009).

    Article  PubMed  CAS  Google Scholar 

  80. Vogel, C. et al. Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol. Syst. Biol. 6, 400 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Schwanhausser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011). Using large-scale measurements of mRNA and protein abundance and turnover the authors dissected the contribution of transcription, translation and half-life to the correlation between mRNA and protein levels.

    Article  PubMed  CAS  Google Scholar 

  82. Ghazalpour, A. et al. Comparative analysis of proteome and transcriptome variation in mouse. PLoS Genet. 7, e1001393 (2011). A transcriptome and proteome analysis of a large inbred mouse panel revealed a generally weak correlation between mRNA and protein levels, and that genetic regulation of mRNA and protein levels involves different loci.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rausch, T. et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148, 59–71 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu, P. et al. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146, 889–903 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kloosterman, W. P. et al. Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms. Cell Rep. 1, 648–655 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Korbel, J. O. et al. Paired-end mapping reveals extensive structural variation in the human genome. Science 318, 420–426 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Abyzov, A., Urban, A. E., Snyder, M. & Gerstein, M. CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 21, 974–984 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Perry, G. H. et al. Diet and the evolution of human amylase gene copy number variation. Nature Genet. 39, 1256–1260 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Korbel, J. O. et al. The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies. Proc. Natl Acad. Sci. USA 106, 12031–12036 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lana-Elola, E., Watson-Scales, S. D., Fisher, E. M. & Tybulewicz, V. L. Down syndrome: searching for the genetic culprits. Dis. Model. Mech. 4, 586–595 (2011). An excellent review teasing apart the genetic causes of individual phenotypes in Down syndrome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Koolen, D. A. et al. Mutations in the chromatin modifier gene KANSL1 cause the 17q21.31 microdeletion syndrome. Nature Genet. 44, 639–641 (2012).

    Article  CAS  PubMed  Google Scholar 

  92. Talkowski, M. E. et al. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell 149, 525–537 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Berglund, J. et al. Novel origins of copy number variation in the dog genome. Genome Biol. 13, R73 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hou, Y. et al. Genomic regions showing copy number variations associate with resistance or susceptibility to gastrointestinal nematodes in Angus cattle. Funct. Integr. Genomics 12, 81–92 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. de Mollerat, X. J. et al. A genomic rearrangement resulting in a tandem duplication is associated with split hand-split foot malformation 3 (SHFM3) at 10q24. Hum. Mol. Genet. 12, 1959–1971 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Lyle, R. et al. Split-hand/split-foot malformation 3 (SHFM3) at 10q24, development of rapid diagnostic methods and gene expression from the region. Am. J. Med. Genet. A 140, 1384–1395 (2006).

    Article  PubMed  CAS  Google Scholar 

  97. Sidow, A. et al. A novel member of the F-box/WD40 gene family, encoding dactylin, is disrupted in the mouse dactylaplasia mutant. Nature Genet. 23, 104–107 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Friedli, M. et al. Characterization of mouse Dactylaplasia mutations: a model for human ectrodactyly SHFM3. Mamm. Genome 19, 272–278 (2008).

    Article  PubMed  Google Scholar 

  99. Moy, S. S. & Nadler, J. J. Advances in behavioral genetics: mouse models of autism. Mol. Psychiatry 13, 4–26 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Jones, C. A., Watson, D. J. & Fone, K. C. Animal models of schizophrenia. Br. J. Pharmacol. 164, 1162–1194 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Brault, V., Pereira, P., Duchon, A. & Herault, Y. Modeling chromosomes in mouse to explore the function of genes, genomic disorders, and chromosomal organization. PLoS Genet. 2, e86 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Walz, K. et al. Modeling del(17)(p11.2p11.2) and dup(17)(p11.2p11.2) contiguous gene syndromes by chromosome engineering in mice: phenotypic consequences of gene dosage imbalance. Mol. Cell. Biol. 23, 3646–3655 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Merscher, S. et al. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell 104, 619–629 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Zhang, Z. & Baldini, A. In vivo response to high-resolution variation of Tbx1 mRNA dosage. Hum. Mol. Genet. 17, 150–157 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Moon, A. M. et al. Crkl deficiency disrupts Fgf8 signaling in a mouse model of 22q11 deletion syndromes. Dev. Cell 10, 71–80 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Abu-Issa, R., Smyth, G., Smoak, I., Yamamura, K. & Meyers, E. N. Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse. Development 129, 4613–4625 (2002).

    CAS  PubMed  Google Scholar 

  107. Hu, T. et al. Tbx1 regulates fibroblast growth factors in the anterior heart field through a reinforcing autoregulatory loop involving forkhead transcription factors. Development 131, 5491–5502 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Guo, C. et al. A Tbx1-Six1/Eya1-Fgf8 genetic pathway controls mammalian cardiovascular and craniofacial morphogenesis. J. Clin. Invest. 121, 1585–1595 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ivins, S. et al. Microarray analysis detects differentially expressed genes in the pharyngeal region of mice lacking Tbx1. Dev. Biol. 285, 554–569 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Liao, J. et al. Identification of downstream genetic pathways of Tbx1 in the second heart field. Dev. Biol. 316, 524–537 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Guris, D. L., Duester, G., Papaioannou, V. E. & Imamoto, A. Dose-dependent interaction of Tbx1 and Crkl and locally aberrant RA signaling in a model of del22q11 syndrome. Dev. Cell 10, 81–92 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Aggarwal, V. S. et al. Mesodermal Tbx1 is required for patterning the proximal mandible in mice. Dev. Biol. 344, 669–681 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Choi, M. & Klingensmith, J. Chordin is a modifier of tbx1 for the craniofacial malformations of 22q11 deletion syndrome phenotypes in mouse. PLoS Genet. 5, e1000395 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Golzio, C. et al. KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant. Nature 485, 363–367 (2012). This study demonstrates the utility of zebrafish for identifying the genes within structural variant regions that are causal for an observed phenotype.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yan, J. et al. Reduced penetrance of craniofacial anomalies as a function of deletion size and genetic background in a chromosome engineered partial mouse model for Smith-Magenis syndrome. Hum. Mol. Genet. 13, 2613–2624 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Yan, J., Bi, W. & Lupski, J. R. Penetrance of craniofacial anomalies in mouse models of Smith-Magenis syndrome is modified by genomic sequence surrounding Rai1: not all null alleles are alike. Am. J. Hum. Genet. 80, 518–525 (2007). By studying mice with different engineered deletions in the Smith–Magenis structural variant region, the authors delineated how genetic background and deletion size influence the phenotypic manifestation of craniofacial traits.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Keller, S. A. et al. Kidney and retinal defects (Krd), a transgene-induced mutation with a deletion of mouse chromosome 19 that includes the Pax2 locus. Genomics 23, 309–320 (1994).

    Article  CAS  PubMed  Google Scholar 

  118. Chamberlain, S. J. et al. Evidence for genetic modifiers of postnatal lethality in PWS-IC deletion mice. Hum. Mol. Genet. 13, 2971–2977 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Wallace, H. A. et al. Manipulating the mouse genome to engineer precise functional syntenic replacements with human sequence. Cell 128, 197–209 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Devoy, A., Bunton-Stasyshyn, R. K., Tybulewicz, V. L., Smith, A. J. & Fisher, E. M. Genomically humanized mice: technologies and promises. Nature Rev. Genet. 13, 14–20 (2012).

    Article  CAS  Google Scholar 

  121. O'Doherty, A. et al. An aneuploid mouse strain carrying human chromosome 21 with Down syndrome phenotypes. Science 309, 2033–2037 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Huang, N., Lee, I., Marcotte, E. M. & Hurles, M. E. Characterising and predicting haploinsufficiency in the human genome. PLoS Genet. 6, e1001154 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Webber, C. et al. Forging links between human mental retardation-associated CNVs and mouse gene knockout models. PLoS Genet. 5, e1000531 (2009). The authors investigated how systematic analyses of mouse gene knockout models can be exploited to identify genes and pathways enriched in structural variants that are associated with mental retardation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Shaikh, T. H., Haldeman-Englert, C., Geiger, E. A., Ponting, C. P. & Webber, C. Genes and biological processes commonly disrupted in rare and heterogeneous developmental delay syndromes. Hum. Mol. Genet. 20, 880–893 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Gilman, S. R. et al. Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron 70, 898–907 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Kou, Y., Betancur, C., Xu, H., Buxbaum, J. D. & Ma'ayan, A. Network- and attribute-based classifiers can prioritize genes and pathways for autism spectrum disorders and intellectual disability. Am. J. Med. Genet. C Semin. Med. Genet. 160C, 130–142 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Glessner, J. T. et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 459, 569–573 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Onishi-Seebacher, M. & Korbel, J. O. Challenges in studying genomic structural variant formation mechanisms: the short-read dilemma and beyond. Bioessays 33, 840–850 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Ruf, S. et al. Large-scale analysis of the regulatory architecture of the mouse genome with a transposon-associated sensor. Nature Genet. 43, 379–386 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bernstein, B. E. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Article  CAS  Google Scholar 

  132. Brennand, K. J. et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 473, 221–225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Park, I. H. et al. Disease-specific induced pluripotent stem cells. Cell 134, 877–886 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Wu, S., Ying, G., Wu, Q. & Capecchi, M. R. Toward simpler and faster genome-wide mutagenesis in mice. Nature Genet. 39, 922–930 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Lee, H. J., Kweon, J., Kim, E., Kim, S. & Kim, J. S. Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases. Genome Res. 22, 539–548 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Deutschbauer, A. M. et al. Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169, 1915–1925 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Lindsley, D. L. et al. Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics 71, 157–184 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Hodgkin, J. Karyotype, ploidy, and gene dosage. WormBook 1–9 (2005).

  139. Delneri, D. et al. Identification and characterization of high-flux-control genes of yeast through competition analyses in continuous cultures. Nature Genet. 40, 113–117 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. MacArthur, D. G. et al. A systematic survey of loss-of-function variants in human protein-coding genes. Science 335, 823–828 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Cheung, S. W. et al. Development and validation of a CGH microarray for clinical cytogenetic diagnosis. Genet. Med. 7, 422–432 (2005).

    Article  PubMed  Google Scholar 

  142. Dang, V. T., Kassahn, K. S., Marcos, A. E. & Ragan, M. A. Identification of human haploinsufficient genes and their genomic proximity to segmental duplications. Eur. J. Hum. Genet. 16, 1350–1357 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Agrelo, R. & Wutz, A. X inactivation and disease. Semin. Cell Dev. Biol. 21, 194–200 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Balaskas, N. et al. Gene regulatory logic for reading the Sonic Hedgehog signaling gradient in the vertebrate neural tube. Cell 148, 273–284 (2012). By combining experimental work and systems modelling, the authors show how the overall structure of a transcriptional circuit can confer robustness to fluctuations in expression levels. This work emphasizes that detailed knowledge of gene regulatory networks is essential to predict the outcome of gene copy-number variations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hastings, P. J., Ira, G. & Lupski, J. R. A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet. 5, e1000327 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Lee, J. A., Carvalho, C. M. & Lupski, J. R. A. DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 131, 1235–1247 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Ahmed, M. M., Sturgeon, X., Ellison, M., Davisson, M. T. & Gardiner, K. J. Loss of correlations among proteins in brains of the Ts65Dn mouse model of Down syndrome. J. Proteome Res. 11, 1251–1263 (2012).

    Article  CAS  PubMed  Google Scholar 

  148. de la Chapelle, A., Herva, R., Koivisto, M. & Aula, P. A deletion in chromosome 22 can cause DiGeorge syndrome. Hum. Genet. 57, 253–256 (1981).

    Article  CAS  PubMed  Google Scholar 

  149. Shaikh, T. H. et al. Chromosome 22-specific low copy repeats and the 22q11.2 deletion syndrome: genomic organization and deletion endpoint analysis. Hum. Mol. Genet. 9, 489–501 (2000).

    Article  CAS  PubMed  Google Scholar 

  150. Urban, A. E. et al. High-resolution mapping of DNA copy alterations in human chromosome 22 using high-density tiling oligonucleotide arrays. Proc. Natl Acad. Sci. USA 103, 4534–4539 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lindsay, E. A. et al. Tbx1 haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 410, 97–101 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Weatheritt for critical discussion of the manuscript. We apologize to all colleagues whose contributions could not be cited or highlighted owing to space limitations. J.O.K. was supported by an Emmy Noether Fellowship from the German Research Foundation (Deutsche Forschungsgemeinschaft). O.S. was supported by the Louis-Jeantet Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to François Spitz or Jan O. Korbel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Supplementary information

Supplementary information S1 (table)

Overview of prototypic SV-associated human diseases and traits. (PDF 270 kb)

Supplementary information S2 (table)

Animal models of human disease-causing structural variants (PDF 216 kb)

Glossary

Microarray-based comparative genome hybridization

A technique that allows the detection of copy-number changes. It involves hybridizing differentially labelled test sample DNAs and reference DNAs to microarray slides with genomic probes, and measuring the intensity difference between the two samples.

Paired-end DNA sequencing

A method whereby DNA is fragmented and sequenced from both ends. If the DNA fragments are size-selected, discrepancies in the distance and/or orientation of the two ends compared with a reference genome can reveal the presence of deletions, duplications, inversions and translocations.

Karyotyping

Determining the number, form and size of chromosomes in the nucleus of a cell. Chromosomes are visualised by photomicrographs of isolated and stained chromosomes in metaphase.

Genomic disorders

Diseases that are associated with specific genomic architectures that favour recurrent genomic rearrangements, leading to abnormal dosage or dysregulation of the affected genes.

Positional effects

The effects on expression of a gene or gene region when its genomic context is changed, such as by translocation to another chromosome.

Imprinted gene

A gene for which expression is determined by the parent that contributed it.

Imputation

A technique whereby a genomic variant is not directly genotyped, but instead its presence or absence is inferred on the basis of its association (co-occurrence) with another, genotyped variant.

Epistatic interactions

Modification of the expressivity of an allele by one or several other genes (known as 'modifier genes'). In Crohn's disease, epistatic interactions may explain up to 80% of the so-called 'missing heritability'.

cis-regulatory elements

Genomic regions (for example, enhancers) that regulate the expression of genes on the same chromosome.

Expression quantitative trait locus (eQTL)

A genomic locus that regulates the mRNA expression level of a gene.

Effect size

The percentage of phenotypic variance that can be attributed to a given genomic variant.

Synteny

Shared genomic organization between related species. It is usually seen as a shared relative order of genes or other functional elements on a portion of a chromosome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weischenfeldt, J., Symmons, O., Spitz, F. et al. Phenotypic impact of genomic structural variation: insights from and for human disease. Nat Rev Genet 14, 125–138 (2013). https://doi.org/10.1038/nrg3373

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3373

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing