Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chromatin and the genome integrity network

Key Points

  • Three pathways for maintaining genomic integrity are influenced by chromatin: DNA damage repair, DNA replication and chromosome segregation.

  • At DNA double-strand breaks (DSBs), only limited chromatin structure alterations have been defined. Nucleosomes do not appear to be completely lost from DSB ends, even following extensive end processing.

  • A subset of histone post-translational modifications may control the efficiency of DNA repair as well as the cell cycle checkpoint by regulating chromatin higher-order structure

  • Induction of a chromosomal DSB can enhance the nuclear mobility of chromatin, and this appears to play a key part in the repair of euchromatic DSBs in yeast and heterochromatic DSBs in Drosophila melanogaster. Enhanced chromosome mobility may require the action of ATP-dependent chromatin-remodelling enzymes.

  • Histone post-translational modifications and histone variants create a complex signalling platform that controls the robustness of the cell cycle checkpoint response and appears also to integrate the DDR pathway with other cellular events.

  • Chromatin-remodelling enzymes appear to have complex roles in facilitating DNA replication through chromatin structures and stabilizing the replisome. Currently, however, mechanistic studies are limiting our understanding.

  • Histone post-translational modifications can regulate the binding of non-histone proteins to kinetochores, regulating chromosome segregation. Chromatin-remodelling enzymes can control the distribution of centromere-specific histone variants and appear to have other undefined roles in the fidelity of chromosome segregation.

Abstract

The maintenance of genome integrity is essential for organism survival and for the inheritance of traits to offspring. Genomic instability is caused by DNA damage, aberrant DNA replication or uncoordinated cell division, which can lead to chromosomal aberrations and gene mutations. Recently, chromatin regulators that shape the epigenetic landscape have emerged as potential gatekeepers and signalling coordinators for the maintenance of genome integrity. Here, we review chromatin functions during the two major pathways that control genome integrity: namely, repair of DNA damage and DNA replication. We also discuss recent evidence that suggests a novel role for chromatin-remodelling factors in chromosome segregation and in the prevention of aneuploidy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The role of the genome stability network in cell homeostasis.
Figure 2: Two primary pathways for double-strand break repair.
Figure 3: Chromatin dynamics in double-strand break checkpoint response in S. cerevisiae.
Figure 4: Chromatin dynamics in checkpoint signalling in mammalian cells.
Figure 5: Chromatin-remodelling activities at the replication fork.

Similar content being viewed by others

References

  1. Ciccia, A. & Elledge, S. J. The DNA damage response: making it safe to play with knives. Mol. Cell 40, 179–204 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Branzei, D. & Foiani, M. Maintaining genome stability at the replication fork. Nature Rev. Mol. Cell Biol. 11, 208–219 (2010).

    Article  CAS  Google Scholar 

  3. Gordon, D. J., Resio, B. & Pellman, D. Causes and consequences of aneuploidy in cancer. Nature Rev. Genet. 13, 189–203 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Symington, L. S. & Gautier, J. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45, 247–271 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Green, C. M. & Almouzni, G. When repair meets chromatin. EMBO Rep. 3, 28–33 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kent, N. A., Chambers, A. L. & Downs, J. A. Dual chromatin remodeling roles for RSC during DNA double strand break induction and repair at the yeast MAT locus. J. Biol. Chem. 282, 27693–27701 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Shim, E. Y. et al. RSC mobilizes nucleosomes to improve accessibility of repair machinery to the damaged chromatin. Mol. Cell. Biol. 27, 1602–1613 (2007). This work demonstrates a role for the RSC complex in chromatin-remodelling nucleosomes that are proximal to a DSB.

    Article  CAS  PubMed  Google Scholar 

  8. Berkovich, E., Monnat, R. J. Jr & Kastan, M. B. Roles of ATM and NBS1 in chromatin structure modulation and DNA double-strand break repair. Nature Cell Biol. 9, 683–690 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Tsukuda, T. et al. INO80-dependent chromatin remodeling regulates early and late stages of mitotic homologous recombination. DNA Repair 8, 360–369 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Shim, E. Y., Ma, J. L., Oum, J. H., Yanez, Y. & Lee, S. E. The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breaks. Mol. Cell. Biol. 25, 3934–3944 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chai, B., Huang, J., Cairns, B. R. & Laurent, B. C. Distinct roles for the RSC and SWI/SNF ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev. 19, 1656–1661 (2005). In this paper, it is shown that the SWI/SNF complex is essential for homologous recombination in heterochromatin in vivo , and a late role for the RSC enzyme during homologous recombination is suggested.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Papamichos-Chronakis, M., Krebs, J. E. & Peterson, C. L. Interplay between INO80 and SWR1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage. Genes Dev. 20, 2437–2449 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Neumann, F. R. et al. Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination. Genes Dev. 26, 369–383 (2012). In this intriguing work, it is indicated that the INO80 chromatin-remodelling enzyme can promote large-scale chromosome movements when tethered to a DNA locus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. van Attikum, H., Fritsch, O., Hohn, B. & Gasser, S. M. Recruitment of the INO80 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell 119, 777–788 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Chen, X. et al. The Fun30 nucleosome remodeller promotes resection of DNA double-strand break ends. Nature 489, 576–580 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eapen, V. V., Sugawara, N., Tsabar, M., Wu, W. H. & Haber, J. E. The Saccharomyces cerevisiae chromatin remodeler Fun30 regulates DNA end-resection and checkpoint deactivation. Mol. Cell. Biol. 32, 4727–4740 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fritsch, O., Benvenuto, G., Bowler, C., Molinier, J. & Hohn, B. The INO80 protein controls homologous recombination in Arabidopsis thaliana. Mol. Cell 16, 479–485 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. van Attikum, H., Fritsch, O. & Gasser, S. M. Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks. EMBO J. 26, 4113–4125 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kalocsay, M., Hiller, N. J. & Jentsch, S. Chromosome-wide Rad51 spreading and SUMO-H2A.Z-dependent chromosome fixation in response to a persistent DNA double-strand break. Mol. Cell 33, 335–343 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Xu, Y. et al. The p400 ATPase regulates nucleosome stability and chromatin ubiquitination during DNA repair. J. Cell Biol. 191, 31–43 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kruhlak, M. J. et al. Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks. J. Cell Biol. 172, 823–834 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakamura, K. et al. Regulation of homologous recombination by RNF20-dependent H2B ubiquitination. Mol. Cell 41, 515–528 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Fierz, B. et al. Histone H2B ubiquitylation disrupts local and higher-order chromatin compaction. Nature Chem. Biol. 7, 113–119 (2011). This elegant biochemical study demonstrates that H2Bub disrupts chromatin higher-order folding.

    Article  CAS  Google Scholar 

  24. Ogiwara, H. et al. Histone acetylation by CBP and p300 at double-strand break sites facilitates SWI/SNF chromatin remodeling and the recruitment of non-homologous end joining factors. Oncogene 30, 2135–2146 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Sanchez-Molina, S. et al. Role for hACF1 in the G2/M damage checkpoint. Nucleic Acids Res. 39, 8445–8456 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moyal, L. et al. Requirement of ATM-dependent monoubiquitylation of histone H2B for timely repair of DNA double-strand breaks. Mol. Cell 41, 529–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Richardson, C., Moynahan, M. E. & Jasin, M. Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev. 12, 3831–3842 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Inbar, O. & Kupiec, M. Homology search and choice of homologous partner during mitotic recombination. Mol. Cell. Biol. 19, 4134–4142 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sinha, M. & Peterson, C. L. Chromatin dynamics during repair of chromosomal DNA double-strand breaks. Epigenomics 1, 371–385 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Sinha, M., Watanabe, S., Johnson, A., Moazed, D. & Peterson, C. L. Recombinational repair within heterochromatin requires ATP-dependent chromatin remodeling. Cell 138, 1109–1121 (2009). In this paper, a reconstitution of a homologous recombination reaction with heterochromatin arrays defines a new role for the SWI/SNF complex.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mine-Hattab, J. & Rothstein, R. Increased chromosome mobility facilitates homology search during recombination. Nature Cell Biol. 14, 510–517 (2012). This outstanding study is the first to demonstrate DSB-induced chromosome mobility and its role in the homology search process.

    Article  CAS  PubMed  Google Scholar 

  32. Dion, V., Kalck, V., Horigome, C., Towbin, B. D. & Gasser, S. M. Increased mobility of double-strand breaks requires Mec1, Rad9 and the homologous recombination machinery. Nature Cell Biol. 14, 502–509 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Soutoglou, E. et al. Positional stability of single double-strand breaks in mammalian cells. Nature Cell Biol. 9, 675–682 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Hewitt, S. L. et al. RAG-1 and ATM coordinate monoallelic recombination and nuclear positioning of immunoglobulin loci. Nature Immunol. 10, 655–664 (2009).

    Article  CAS  Google Scholar 

  35. Chiolo, I. et al. Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 144, 732–744 (2011). In this study, regulated DSB mobilization suggests a new level of regulation for recombinational repair in heterochromatin domains.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Torres-Rosell, J. et al. The Smc5–Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nature Cell Biol. 9, 923–931 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Abraham, R. T. Cell cycle checkpoint signaling through the ATM & ATR kinases. Genes Dev. 15, 2177–2196 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Durocher, D. in The DNA Damage Response: Implications on Cancer Formation and Treatment Ch. 1 (ed. Khanna, K. K., Yosef, S.) 1–24 (Springer, 2009).

    Book  Google Scholar 

  39. Zou, L. & Elledge, S. J. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300, 1542–1548 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Bartek, J. & Lukas, J. DNA damage checkpoints: from initiation to recovery or adaptation. Curr. Opin. Cell Biol. 19, 238–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. West, M. H. & Bonner, W. M. Histone 2A, a heteromorphous family of eight protein species. Biochemistry 19, 3238–3245 (1980).

    Article  CAS  PubMed  Google Scholar 

  42. Lee, H. S., Park, J. H., Kim, S. J., Kwon, S. J. & Kwon, J. A cooperative activation loop among SWI/SNF, gamma-H2AX and H3 acetylation for DNA double-strand break repair. EMBO J. 29, 1434–1445 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shogren-Knaak, M. et al. Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311, 844–847 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Li, X. et al. MOF and H4 K16 acetylation play important roles in DNA damage repair by modulating recruitment of DNA damage repair protein Mdc1. Mol. Cell. Biol. 30, 5335–5347 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sharma, G. G. et al. MOF and histone H4 acetylation at lysine 16 are critical for DNA damage response and double-strand break repair. Mol. Cell. Biol. 30, 3582–3595 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Miller, K. M. et al. Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nature Struct. Mol. Biol. 17, 1144–1151 (2010).

    Article  CAS  Google Scholar 

  47. Hammet, A., Magill, C., Heierhorst, J. & Jackson, S. P. Rad9 BRCT domain interaction with phosphorylated H2AX regulates the G1 checkpoint in budding yeast. EMBO Rep. 8, 851–857 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Javaheri, A. et al. Yeast G1 DNA damage checkpoint regulation by H2A phosphorylation is independent of chromatin remodeling. Proc. Natl Acad. Sci. USA 103, 13771–13776 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xie, A. et al. Control of sister chromatid recombination by histone H2AX. Mol. Cell 16, 1017–1025 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Helmink, B. A. et al. H2AX prevents CtIP-mediated DNA end resection and aberrant repair in G1-phase lymphocytes. Nature 469, 245–249 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Celeste, A. et al. Genomic instability in mice lacking histone H2AX. Science 296, 922–927 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huen, M. S. et al. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 131, 901–914 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kolas, N. K. et al. Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science 318, 1637–1640 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mailand, N. et al. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 131, 887–900 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Doil, C. et al. RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell 136, 435–446 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Stewart, G. S. et al. The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell 136, 420–434 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Luijsterburg, M. S. et al. A new non-catalytic role for ubiquitin ligase RNF8 in unfolding higher-order chromatin structure. EMBO J. 31, 2511–2527 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chou, D. M. et al. A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage. Proc. Natl Acad. Sci. USA 107, 18475–18480 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Botuyan, M. V. et al. Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell 127, 1361–1373 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Huyen, Y. et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432, 406–411 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Sanders, S. L. et al. Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell 119, 603–614 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Pei, H. et al. MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites. Nature 470, 124–128 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Roos, W. P. & Kaina, B. DNA damage-induced cell death by apoptosis. Trends Mol. Med. 12, 440–450 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Cook, P. J. et al. Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature 458, 591–596 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xiao, A. et al. WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature 457, 57–62 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Singh, N. et al. Dual recognition of phosphoserine and phosphotyrosine in histone variant H2A.X by DNA damage response protein MCPH1. Proc. Natl Acad. Sci. USA 109, 14381–14386 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shanbhag, N. M., Rafalska-Metcalf, I. U., Balane-Bolivar, C., Janicki, S. M. & Greenberg, R. A. ATM-dependent chromatin changes silence transcription in cis to DNA double-strand breaks. Cell 141, 970–981 (2010). The elegant approach used here provides molecular insight into the crosstalk between DDR and transcription.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang, H. et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873–878 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Iacovoni, J. S. et al. High-resolution profiling of γH2AX around DNA double strand breaks in the mammalian genome. EMBO J. 29, 1446–1457 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Papamichos-Chronakis, M., Watanabe, S., Rando, O. J. & Peterson, C. L. Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity. Cell 144, 200–213 (2011). This paper defines a new histone variant exchange activity for INO80 and provides evidence that aberrant distribution of H2A.Z has a negative impact on genome stability.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chowdhury, D. et al. Gamma-H2AX dephosphorylation by protein phosphatase 2A facilitates DNA double-strand break repair. Mol. Cell 20, 801–809 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Nakada, S., Chen, G. I., Gingras, A. C. & Durocher, D. PP4 is a gamma H2AX phosphatase required for recovery from the DNA damage checkpoint. EMBO Rep. 9, 1019–1026 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Keogh, M. C. et al. A phosphatase complex that dephosphorylates γH2AX regulates DNA damage checkpoint recovery. Nature 439, 497–501 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Chen, C. C. et al. Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell 134, 231–243 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Branzei, D. & Foiani, M. The checkpoint response to replication stress. DNA Repair 8, 1038–1046 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. De Piccoli, G. et al. Replisome stability at defective DNA replication forks is independent of S phase checkpoint kinases. Mol. Cell 45, 696–704 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Cobb, J. A. et al. Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations. Genes Dev. 19, 3055–3069 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Baker, S. P. et al. Histone H3 Thr 45 phosphorylation is a replication-associated post-translational modification in S. cerevisiae. Nature Cell Biol. 12, 294–298 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Levesque, N., Leung, G. P., Fok, A. K., Schmidt, T. I. & Kobor, M. S. Loss of H3 K79 trimethylation leads to suppression of Rtt107-dependent DNA damage sensitivity through the translesion synthesis pathway. J. Biol. Chem. 285, 35113–35122 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Conde, F. & San-Segundo, P. A. Role of Dot1 in the response to alkylating DNA damage in Saccharomyces cerevisiae: regulation of DNA damage tolerance by the error-prone polymerases Polzeta/Rev1. Genetics 179, 1197–1210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wysocki, R. et al. Role of Dot1-dependent histone H3 methylation in G1 and S phase DNA damage checkpoint functions of Rad9. Mol. Cell. Biol. 25, 8430–8443 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Murakami-Sekimata, A., Huang, D., Piening, B. D., Bangur, C. & Paulovich, A. G. The Saccharomyces cerevisiae RAD9, RAD17 and RAD24 genes are required for suppression of mutagenic post-replicative repair during chronic DNA damage. DNA Repair 9, 824–834 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Li, Q. et al. Acetylation of histone H3 lysine 56 regulates replication-coupled nucleosome assembly. Cell 134, 244–255 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Groth, A. et al. Regulation of replication fork progression through histone supply and demand. Science 318, 1928–1931 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Smith, D. J. & Whitehouse, I. Intrinsic coupling of lagging-strand synthesis to chromatin assembly. Nature 483, 434–438 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Burgess, R. J., Zhou, H., Han, J. & Zhang, Z. A role for Gcn5 in replication-coupled nucleosome assembly. Mol. Cell 37, 469–480 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Corpet, A. & Almouzni, G. Making copies of chromatin: the challenge of nucleosomal organization and epigenetic information. Trends Cell Biol. 19, 29–41 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Au, T. J., Rodriguez, J., Vincent, J. A. & Tsukiyama, T. ATP-dependent chromatin remodeling factors tune S phase checkpoint activity. Mol. Cell. Biol. 31, 4454–4463 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Papamichos-Chronakis, M. & Peterson, C. L. The INO80 chromatin-remodeling enzyme regulates replisome function and stability. Nature Struct. Mol. Biol. 15, 338–345 (2008).

    Article  CAS  Google Scholar 

  90. Shimada, K. et al. INO80 chromatin remodeling complex promotes recovery of stalled replication forks. Curr. Biol. 18, 566–575 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Hur, S. K. et al. Roles of human INO80 chromatin remodeling enzyme in DNA replication and chromosome segregation suppress genome instability. Cell. Mol. Life Sci. 67, 2283–2296 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Falbo, K. B. et al. Involvement of a chromatin remodeling complex in damage tolerance during DNA replication. Nature Struct. Mol. Biol. 16, 1167–1172 (2009).

    Article  CAS  Google Scholar 

  93. Boerkoel, C. F. et al. Mutant chromatin remodeling protein SMARCAL1 causes Schimke immuno-osseous dysplasia. Nature Genet. 30, 215–220 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Ciccia, A. et al. The SIOD disorder protein SMARCAL1 is an RPA-interacting protein involved in replication fork restart. Genes Dev. 23, 2415–2425 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bansbach, C. E., Betous, R., Lovejoy, C. A., Glick, G. G. & Cortez, D. The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks. Genes Dev. 23, 2405–2414 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yuan, J., Ghosal, G. & Chen, J. The annealing helicase HARP protects stalled replication forks. Genes Dev. 23, 2394–2399 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yusufzai, T., Kong, X., Yokomori, K. & Kadonaga, J. T. The annealing helicase HARP is recruited to DNA repair sites via an interaction with RPA. Genes Dev. 23, 2400–2404 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yusufzai, T. & Kadonaga, J. T. HARP is an ATP-driven annealing helicase. Science 322, 748–750 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Driscoll, R. & Cimprich, K. A. HARPing on about the DNA damage response during replication. Genes Dev. 23, 2359–2365 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Betous, R. et al. SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication. Genes Dev. 26, 151–162 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Vincent, J. A., Kwong, T. J. & Tsukiyama, T. ATP-dependent chromatin remodeling shapes the DNA replication landscape. Nature Struct. Mol. Biol. 15, 477–484 (2008).

    Article  CAS  Google Scholar 

  102. Collins, N. et al. An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nature Genet. 32, 627–632 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Poot, R. A. et al. The Williams syndrome transcription factor interacts with PCNA to target chromatin remodelling by ISWI to replication foci. Nature Cell Biol. 6, 1236–1244 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Whitehouse, I., Rando, O. J., Delrow, J. & Tsukiyama, T. Chromatin remodelling at promoters suppresses antisense transcription. Nature 450, 1031–1035 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Fyodorov, D. V., Blower, M. D., Karpen, G. H. & Kadonaga, J. T. Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo. Genes Dev. 18, 170–183 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Rowbotham, S. P. et al. Maintenance of silent chromatin through replication requires SWI/SNF-like chromatin remodeler SMARCAD1. Mol. Cell 42, 285–296 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Stralfors, A., Walfridsson, J., Bhuiyan, H. & Ekwall, K. The FUN30 chromatin remodeler, Fft3, protects centromeric and subtelomeric domains from euchromatin formation. PLoS Genet. 7, e1001334 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Storchova, Z. & Pellman, D. From polyploidy to aneuploidy, genome instability and cancer. Nature Rev. Mol. Cell Biol. 5, 45–54 (2004).

    Article  CAS  Google Scholar 

  109. Talbert, P. B. & Henikoff, S. Histone variants—ancient wrap artists of the epigenome. Nature Rev. Mol. Cell Biol. 11, 264–275 (2010).

    Article  CAS  Google Scholar 

  110. Verdaasdonk, J. S. & Bloom, K. Centromeres: unique chromatin structures that drive chromosome segregation. Nature Rev. Mol. Cell Biol. 12, 320–332 (2011).

    Article  CAS  Google Scholar 

  111. Kim, H. S. et al. An acetylated form of histone H2A.Z regulates chromosome architecture in Schizosaccharomyces pombe. Nature Struct. Mol. Biol. 16, 1286–1293 (2009).

    Article  CAS  Google Scholar 

  112. Krogan, N. J. et al. Regulation of chromosome stability by the histone H2A variant Htz1, the Swr1 chromatin remodeling complex, and the histone acetyltransferase NuA4. Proc. Natl Acad. Sci. USA 101, 13513–13518 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Perez-Cadahia, B., Drobic, B. & Davie, J. R. H3 phosphorylation: dual role in mitosis and interphase. Biochem. Cell Biol. 87, 695–709 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Kawashima, S. A., Yamagishi, Y., Honda, T., Ishiguro, K. & Watanabe, Y. Phosphorylation of H2A by Bub1 prevents chromosomal instability through localizing shugoshin. Science 327, 172–177 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Kelly, A. E. et al. Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase Aurora B. Science 330, 235–239 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Yamagishi, Y., Honda, T., Tanno, Y. & Watanabe, Y. Two histone marks establish the inner centromere and chromosome bi-orientation. Science 330, 239–243 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Tada, K., Susumu, H., Sakuno, T. & Watanabe, Y. Condensin association with histone H2A shapes mitotic chromosomes. Nature 474, 477–483 (2011).

    Article  CAS  PubMed  Google Scholar 

  118. Hsu, J. M., Huang, J., Meluh, P. B. & Laurent, B. C. The yeast RSC chromatin-remodeling complex is required for kinetochore function in chromosome segregation. Mol. Cell. Biol. 23, 3202–3215 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ogiwara, H., Enomoto, T. & Seki, M. The INO80 chromatin remodeling complex functions in sister chromatid cohesion. Cell Cycle 6, 1090–1095 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Xue, Y. et al. The human SWI/SNF-B chromatin-remodeling complex is related to yeast RSC and localizes at kinetochores of mitotic chromosomes. Proc. Natl Acad. Sci. USA 97, 13015–13020 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gkikopoulos, T. et al. The SWI/SNF complex acts to constrain distribution of the centromeric histone variant Cse4. EMBO J. 30, 1919–1927 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wu, S. et al. A YY1-INO80 complex regulates genomic stability through homologous recombination-based repair. Nature Struct. Mol. Biol. 14, 1165–1172 (2007).

    Article  CAS  Google Scholar 

  123. Campsteijn, C., Wijnands-Collin, A. M. & Logie, C. Reverse genetic analysis of the yeast RSC chromatin remodeler reveals a role for RSC3 and SNF5 homolog 1 in ploidy maintenance. PLoS Genet. 3, e92 (2007). This comprehensive genetic analysis of RSC led to the discovery of new role for RSC in the control of ploidy.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Steigemann, P. et al. Aurora B-mediated abscission checkpoint protects against tetraploidization. Cell 136, 473–484 (2009).

    Article  PubMed  CAS  Google Scholar 

  125. Norden, C. et al. The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage. Cell 125, 85–98 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Baumann, C., Korner, R., Hofmann, K. & Nigg, E. A. PICH, a centromere-associated SNF2 family ATPase, is regulated by Plk1 and required for the spindle checkpoint. Cell 128, 101–114 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Chan, K. L., North, P. S. & Hickson, I. D. BLM is required for faithful chromosome segregation and its localization defines a class of ultrafine anaphase bridges. EMBO J. 26, 3397–3409 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chan, K. L., Palmai-Pallag, T., Ying, S. & Hickson, I. D. Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nature Cell Biol. 11, 753–760 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Sillibourne, J. E., Delaval, B., Redick, S., Sinha, M. & Doxsey, S. J. Chromatin remodeling proteins interact with pericentrin to regulate centrosome integrity. Mol. Biol. Cell 18, 3667–3680 (2007). This intriguing work suggests a novel role for chromatin-remodelling enzymes in centrosome assembly and function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Vaze, M. B. et al. Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase. Mol. Cell 10, 373–385 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Shroff, R. et al. Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. Curr. Biol. 14, 1703–1711 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Korber, P., Luckenbach, T., Blaschke, D. & Horz, W. Evidence for histone eviction in trans upon induction of the yeast PHO5 promoter. Mol. Cell. Biol. 24, 10965–10974 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Klopf, E. et al. Cooperation between the INO80 complex and histone chaperones determines adaptation of stress gene transcription in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 29, 4994–5007 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank L. Prendergast and members of the Peterson laboratory for helpful comments and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig L. Peterson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplemental information S1 (table)

Chromatin regulatory factors functionally or physically associated with genome stability pathways. Note: '/?' in row 3 means 'another unknown in vivo function' (PDF 397 kb)

Related links

Related links

FURTHER INFORMATION

Manolis Papamichos-Chromatis's homepage

Craig L. Peterson's homepage

Glossary

Holliday junction

An intermediate in homologous recombination comprised of four DNA strands.

V(D)J recombination

A somatic recombination event in lymphoid cells in which different variable, diverse and joining gene segments are combined as a part of the process to form diverse immunoglobulins and T cell receptors.

Resection

Exonucleolytic processing of the 5′ DNA strand at double-strand breaks, resulting in a 3 ssDNA 'tail'.

DNA base adducts

DNA bases that contain a covalently bound chemical, often induced by cellular exposure to carcinogens.

Translesion synthesis

(TLS). A DNA tolerance pathway that allows replication to proceed through DNA lesions. This pathway involves fork-associated switching of a normal polymerase for a specialized translesion polymerase.

Chromosomal instability

(CIN). A cellular phenotype characterized by high rates of chromosome mis-segregation, leading to loss or gain of whole chromosomes.

Cytokinesis

A late stage of mitosis in which a cell divides to form two daughter cells

Midbody

A transient structure found in mammalian cells that connects two daughter cells at the end of cytokinesis. The midbody is important for the final abscission (cleavage) event.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papamichos-Chronakis, M., Peterson, C. Chromatin and the genome integrity network. Nat Rev Genet 14, 62–75 (2013). https://doi.org/10.1038/nrg3345

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3345

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing