Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The Notch signalling system: recent insights into the complexity of a conserved pathway

Key Points

  • The highly pleiotropic Notch signalling pathway functions to control cell-fate determination in nearly every tissue and organ by influencing differentiation, proliferation or apoptotic events.

  • Notch pathway activity is highly dosage-sensitive and is regulated at different points along the signal transduction pathway by multiple mechanisms, including transcriptional control, endosomal trafficking and various post-translational modifications and microRNAs.

  • The developmental action of Notch links the fate of one cell to that of its immediate cellular neighbour, and recent genome-scale studies in Drosophila melanogaster indicate a complex network of hundreds of genes can affect Notch activity.

  • Multiple independent genome-wide screens in different developmental contexts in D. melanogaster indicate that a large proportion of the D. melanogaster genome is capable of affecting or modulating Notch activity and, by extension, other signalling pathways.

  • Positioning the vast number of genetic modifiers onto a single-protein complex map allows these genes to be connected into one unified network that provides a potential functional framework for modifying proteins in the context of all protein interactions within a cell, thereby generating numerous testable hypotheses.

Abstract

Notch signalling links the fate of one cell to that of an immediate neighbour and consequently controls differentiation, proliferation and apoptotic events in multiple metazoan tissues. Perturbations in this pathway activity have been linked to several human genetic disorders and cancers. Recent genome-scale studies in Drosophila melanogaster have revealed an extraordinarily complex network of genes that can affect Notch activity. This highly interconnected network contrasts our traditional view of the Notch pathway as a simple linear sequence of events. Although we now have an unprecedented insight into the way in which such a fundamental signalling mechanism is controlled by the genome, we are faced with serious challenges in analysing the underlying molecular mechanisms of Notch signal control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Summary of the main features of Notch signalling.
Figure 2: Overlap of Notch genetic modifiers from different genome-wide screens in Drosophila melanogaster.
Figure 3: Summary of crosstalk between Notch and other signalling pathways.
Figure 4: Mapping genetic modifiers on proteome map.

Similar content being viewed by others

References

  1. Dexter, J. S. The analysis of a case of continuous variation in Drosophila by a study of its linkage relations. Am. Nat. 48, 712–758 (1914).

    Article  Google Scholar 

  2. Morgan, T. H. & Bridges, C. B. Sex-Linked Inheritance in Drosophila (Carnegie Institute of Washington, 1916).

    Book  Google Scholar 

  3. Mohr, O. L. Character changes caused by mutation of an entire region of a chromosome in Drosophila. Genetics 4, 275–282 (1919).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Artavanis-Tsakonas, S. & Muskavitch, M. A. Notch: the past, the present, and the future. Curr. Top. Dev. Biol. 92, 1–29 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Thorig, G. E., Heinstra, P. W. & Scharloo, W. The action of the notch locus in Drosophila melanogaster. II. Biochemical effects of recessive lethals on mitochondrial enzymes. Genetics 99, 65–74 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Thorig, G. E., Heinstra, P. W. & Scharloo, W. The action of the notch locus in Drosophila melanogaster. I. Effects of the Notch8 deficiency on mitochondrial enzymes. Mol. Gen. Genet. 182, 31–38 (1981).

    Article  CAS  PubMed  Google Scholar 

  7. Wharton, K. A., Johansen, K. M., Xu, T. & Artavanis-Tsakonas, S. Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43, 567–581 (1985). This was the original description of the molecular cloning and structure of the Notch receptor in D. melanogaster that revealed an epidermal growth factor (EGF)-repeat-containing transmembrane protein, suggesting a role for Notch in intracellular communication.

    Article  CAS  PubMed  Google Scholar 

  8. Bray, S. J. Notch signalling: a simple pathway becomes complex. Nature Rev. Mol. Cell Biol. 7, 678–689 (2006).

    Article  CAS  Google Scholar 

  9. Kopan, R. & Ilagan, M. X. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kopan, R. (ed.) Notch Signaling 1st edn (Academic Press, 2010).

    Google Scholar 

  11. Fortini, M. E. Introduction—Notch in development and disease. Semin. Cell Dev. Biol. 23, 419–420 (2012).

    Article  PubMed  Google Scholar 

  12. Bigas, A. & Espinosa, L. Hematopoietic stem cells: to be or Notch to be. Blood 119, 3226–3235 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Liu, J., Sato, C., Cerletti, M. & Wagers, A. Notch signaling in the regulation of stem cell self-renewal and differentiation. Curr. Top. Dev. Biol. 92, 367–409 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Artavanis-Tsakonas, S. The molecular biology of the Notch locus and the fine tuning of differentiation in Drosophila. Trends Genet. 4, 95–100 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Gridley, T. Notch signaling and inherited disease syndromes. Hum. Mol. Genet. 12 (Suppl. 1), R9–R13 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Louvi, A. & Artavanis-Tsakonas, S. Notch and disease: a growing field. Semin. Cell Dev. Biol. 23, 473–480 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ranganathan, P., Weaver, K. L. & Capobianco, A. J. Notch signalling in solid tumours: a little bit of everything but not all the time. Nature Rev. Cancer 11, 338–351 (2011).

    Article  CAS  Google Scholar 

  19. Dorer, D. R. & Christensen, A. C. A recombinational hotspot at the triplo-lethal locus of Drosophila melanogaster. Genetics 122, 397–401 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Mazzone, M. et al. Dose-dependent induction of distinct phenotypic responses to Notch pathway activation in mammary epithelial cells. Proc. Natl Acad. Sci. USA 107, 5012–5017 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Oda, T. et al. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nature Genet. 16, 235–242 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. McDaniell, R. et al. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am. J. Hum. Genet. 79, 169–173 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Garg, V. et al. Mutations in NOTCH1 cause aortic valve disease. Nature 437, 270–274 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Park, J. T. et al. Notch3 gene amplification in ovarian cancer. Cancer Res. 66, 6312–6318 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Lee, S. Y. et al. Gain-of-function mutations and copy number increases of Notch2 in diffuse large B-cell lymphoma. Cancer Sci. 100, 920–926 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Roy, M., Pear, W. S. & Aster, J. C. The multifaceted role of Notch in cancer. Curr. Opin. Genet. Dev. 17, 52–59 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Greenwald, I. & Rubin, G. M. Making a difference: the role of cell–cell interactions in establishing separate identities for equivalent cells. Cell 68, 271–281 (1992).

    Article  CAS  PubMed  Google Scholar 

  28. Seugnet, L., Simpson, P. & Haenlin, M. Transcriptional regulation of Notch and Delta: requirement for neuroblast segregation in Drosophila. Development 124, 2015–2025 (1997). This study evaluated the role of transcriptional regulation during lateral inhibition within the proneural group and how one cell overcomes Notch-mediated repression.

    CAS  PubMed  Google Scholar 

  29. Kooh, P. J., Fehon, R. G. & Muskavitch, M. A. Implications of dynamic patterns of Delta and Notch expression for cellular interactions during Drosophila development. Development 117, 493–507 (1993).

    CAS  PubMed  Google Scholar 

  30. Kopczynski, C. C. & Muskavitch, M. A. Complex spatio-temporal accumulation of alternative transcripts from the neurogenic gene Delta during Drosophila embryogenesis. Development 107, 623–636 (1989).

    CAS  PubMed  Google Scholar 

  31. D'Souza, B., Meloty-Kapella, L. & Weinmaster, G. Canonical and non-canonical Notch ligands. Curr. Top. Dev. Biol. 92, 73–129 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fehon, R. G. et al. Molecular interactions between the protein products of the neurogenic loci Notch and Delta, two EGF-homologous genes in Drosophila. Cell 61, 523–534 (1990). This paper was the first to show that the Notch and Delta proteins physically interact at the cell surface through their extracellular domains in a calcium-dependent manner.

    Article  CAS  PubMed  Google Scholar 

  33. Sprinzak, D. et al. Cis-interactions between Notch and Delta generate mutually exclusive signalling states. Nature 465, 86–90 (2010). This study showed that cis interaction of Notch–Delta generates an ultrasensitive switch between mutually exclusive (sending versus receiving) signalling states and results in the amplification of small differences in expression levels between neighbouring cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Glittenberg, M., Pitsouli, C., Garvey, C., Delidakis, C. & Bray, S. Role of conserved intracellular motifs in Serrate signalling, cis-inhibition and endocytosis. EMBO J. 25, 4697–4706 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cordle, J. et al. A conserved face of the Jagged/Serrate DSL domain is involved in Notch trans-activation and cis-inhibition. Nature Struct. Mol. Biol. 15, 849–857 (2008).

    Article  CAS  Google Scholar 

  36. Kankel, M. W. et al. Investigating the genetic circuitry of mastermind in Drosophila, a notch signal effector. Genetics 177, 2493–2505 (2007). This was the first large-scale genetic screen for Notch pathway modifiers in D. melanogaster using the Exelixis mutant collection, more than doubling the number of genes known to interact with Notch, revealing that a highly complex network of genes and functionalities are involved in mediating Notch activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shalaby, N. A. et al. A screen for modifiers of notch signaling uncovers Amun, a protein with a critical role in sensory organ development. Genetics 182, 1061–1076 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Saj, A. et al. A combined ex vivo and in vivo RNAi screen for notch regulators in Drosophila reveals an extensive Notch interaction network. Dev. Cell 18, 862–876 (2010). A comprehensive, genome-wide cell-based RNAi screen dissecting Notch regulation and its connections to cellular pathways identified candidate Notch regulators. Many candidates were validated in vivo by using transgenic D. melanogaster RNAi strains.

    Article  CAS  PubMed  Google Scholar 

  39. Mummery-Widmer, J. L. et al. Genome-wide analysis of Notch signalling in Drosophila by transgenic RNAi. Nature 458, 987–992 (2009). This was the first genome-wide RNAi screen for Notch pathway modifiers during external sensory organ development in D. melanogaster , uncovering hundreds of genes involved in lateral inhibition and asymmetric cell division.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kovall, R. A. & Blacklow, S. C. Mechanistic insights into Notch receptor signaling from structural and biochemical studies. Curr. Top. Dev. Biol. 92, 31–71 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Stanley, P. & Okajima, T. Roles of glycosylation in Notch signaling. Curr. Top. Dev. Biol. 92, 131–164 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Le Bras, S., Loyer, N. & Le Borgne, R. The multiple facets of ubiquitination in the regulation of notch signaling pathway. Traffic 12, 149–161 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Fortini, M. E. Notch signaling: the core pathway and its posttranslational regulation. Dev. Cell 16, 633–647 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Staub, O. & Rotin, D. Role of ubiquitylation in cellular membrane transport. Physiol. Rev. 86, 669–707 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Yamamoto, S., Charng, W. L. & Bellen, H. J. Endocytosis and intracellular trafficking of Notch and its ligands. Curr. Top. Dev. Biol. 92, 165–200 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bernard, F., Krejci, A., Housden, B., Adryan, B. & Bray, S. J. Specificity of Notch pathway activation: twist controls the transcriptional output in adult muscle progenitors. Development 137, 2633–2642 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang, H. et al. Genome-wide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells. Proc. Natl Acad. Sci. USA 108, 14908–14913 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, Y., Hibbs, M. A., Gard, A. L., Shylo, N. A. & Yun, K. Genome-wide analysis of N1ICD/RBPJ targets in vivo reveals direct transcriptional regulation of Wnt, SHH, and hippo pathway effectors by Notch1. Stem Cells 30, 741–752 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Artavanis-Tsakonas, S. Accessing the Exelixis collection. Nature Genet. 36, 207 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–156 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Mourikis, P., Lake, R. J., Firnhaber, C. B. & DeDecker, B. S. Modifiers of notch transcriptional activity identified by genome-wide RNAi. BMC Dev. Biol. 10, 107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lai, E. C., Tam, B. & Rubin, G. M. Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes Dev. 19, 1067–1080 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, Z. et al. Cross-talk between miRNA and Notch signaling pathways in tumor development and progression. Cancer Lett. 292, 141–148 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Inui, M., Martello, G. & Piccolo, S. MicroRNA control of signal transduction. Nature Rev. Mol. Cell Biol. 11, 252–263 (2010).

    Article  CAS  Google Scholar 

  55. Ichimura, A., Ruike, Y., Terasawa, K. & Tsujimoto, G. miRNAs and regulation of cell signaling. FEBS J. 278, 1610–1618 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Greenwald, I. LIN-12/Notch signaling in C. elegans. WormBook 8 Aug 2005 (doi:10.1895/wormbook.1.10.1).

  57. Levitan, D. & Greenwald, I. Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer's disease gene. Nature 377, 351–354 (1995). By screening for suppressors of a Notch gain-of-function mutation in C. elegans , presenilin was identified as a regulator of Notch activity and was thus the first study to link the presenilin complex — which is implicated in Alzheimer's disease — with Notch signalling.

    Article  CAS  PubMed  Google Scholar 

  58. Kopan, R. & Goate, A. A common enzyme connects Notch signaling and Alzheimer's disease. Genes Dev. 14, 2799–2806 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Sherrington, R. et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 375, 754–760 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Li, X. & Greenwald, I. HOP-1, a Caenorhabditis elegans presenilin, appears to be functionally redundant with SEL-12 presenilin and to facilitate LIN-12 and GLP-1 signaling. Proc. Natl Acad. Sci. USA 94, 12204–12209 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Westlund, B., Parry, D., Clover, R., Basson, M. & Johnson, C. D. Reverse genetic analysis of Caenorhabditis elegans presenilins reveals redundant but unequal roles for sel-12 and hop-1 in Notch-pathway signaling. Proc. Natl Acad. Sci. USA 96, 2497–2502 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kopan, R. & Ilagan, M. X. γ-secretase: proteasome of the membrane? Nature Rev. Mol. Cell Biol. 5, 499–504 (2004).

    Article  CAS  Google Scholar 

  63. Lehner, B., Crombie, C., Tischler, J., Fortunato, A. & Fraser, A. G. Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nature Genet. 38, 896–903 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Mukherjee, A. et al. Regulation of Notch signalling by non-visual β-arrestin. Nature Cell Biol. 7, 1191–1201 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Krauss, G. Biochemistry of Signal Transduction and Regulation 3rd edn (Wiley-VCH, 2003).

    Book  Google Scholar 

  66. Hurlbut, G. D., Kankel, M. W. & Artavanis-Tsakonas, S. Nodal points and complexity of Notch–Ras signal integration. Proc. Natl Acad. Sci. USA 106, 2218–2223 (2009). A microarray-based approach indicating the integration of Notch signals with other major signalling pathways is described in this paper. Importantly, this study also showed that most genes that are responsive to RTK signalling are also responsive to Notch signalling, showing that the Notch and RTK pathways are highly interconnected.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Flaherty, M. S., Zavadil, J., Ekas, L. A. & Bach, E. A. Genome-wide expression profiling in the Drosophila eye reveals unexpected repression of Notch signaling by the JAK/STAT pathway. Dev. Dynam. 238, 2235–2253 (2009).

    Article  CAS  Google Scholar 

  68. Krejci, A., Bernard, F., Housden, B. E., Collins, S. & Bray, S. J. Direct response to Notch activation: signalling crosstalk and incoherent logic. Sci. Signal. 2, ra1 (2009). This study catalogued the immediate cellular consequences of Notch activation in cultured cells using mRNA expression and CBF1–SU(H)–LAG1 (CSL) occupancy at enhancers.

    Article  CAS  PubMed  Google Scholar 

  69. Hegde, A. et al. Genomewide expression analysis in zebrafish Mind bomb alleles with pancreas defects of different severity identifies putative Notch responsive genes. PLoS ONE 3, e1479 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hamidi, H., Gustafason, D., Pellegrini, M. & Gasson, J. Identification of novel targets of CSL-dependent Notch signaling in hematopoiesis. PLoS ONE 6, e20022 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. South, A. P., Cho, R. J. & Aster, J. C. The double-edged sword of Notch signaling in cancer. Semin. Cell Dev. Biol. 23, 458–464 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hurlbut, G. D., Kankel, M. W., Lake, R. J. & Artavanis-Tsakonas, S. Crossing paths with Notch in the hyper-network. Curr. Opin. Cell Biol. 19, 166–175 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Fortini, M. E., Rebay, I., Caron, L. A. & Artavanis-Tsakonas, S. An activated Notch receptor blocks cell-fate commitment in the developing Drosophila eye. Nature 365, 555–557 (1993).

    Article  CAS  PubMed  Google Scholar 

  74. Rones, M. S., McLaughlin, K. A., Raffin, M. & Mercola, M. Serrate and Notch specify cell fates in the heart field by suppressing cardiomyogenesis. Development 127, 3865–3876 (2000).

    CAS  PubMed  Google Scholar 

  75. Yeo, S. Y. Zebrafish CiA interneurons are late-born primary neurons. Neurosci. Lett. 466, 131–134 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Sundaram, M. V. The love–hate relationship between Ras and Notch. Genes Dev. 19, 1825–1839 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Rebay, I. Keeping the receptor tyrosine kinase signaling pathway in check: lessons from Drosophila. Dev. Biol. 251, 1–17 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Doroquez, D. B. & Rebay, I. Signal integration during development: mechanisms of EGFR and Notch pathway function and cross-talk. Crit. Rev. Biochem. Mol. Biol. 41, 339–385 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Voas, M. G. & Rebay, I. Signal integration during development: insights from the Drosophila eye. Dev. Dynam. 229, 162–175 (2004).

    Article  CAS  Google Scholar 

  80. Culi, J., Martin-Blanco, E. & Modolell, J. The EGF receptor and N signalling pathways act antagonistically in Drosophila mesothorax bristle patterning. Development 128, 299–308 (2001).

    CAS  PubMed  Google Scholar 

  81. zur Lage, P. & Jarman, A. P. Antagonism of EGFR and notch signalling in the reiterative recruitment of Drosophila adult chordotonal sense organ precursors. Development 126, 3149–3157 (1999).

    CAS  PubMed  Google Scholar 

  82. Carmena, A. et al. Reciprocal regulatory interactions between the Notch and Ras signaling pathways in the Drosophila embryonic mesoderm. Dev. Biol. 244, 226–242 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Price, J. V., Savenye, E. D., Lum, D. & Breitkreutz, A. Dominant enhancers of EGFR in Drosophila melanogaster: genetic links between the Notch and EGFR signaling pathways. Genetics 147, 1139–1153 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Sundaram, M. V. Vulval development: the battle between Ras and Notch. Curr. Biol. 14, R311–R313 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Charlton-Perkins, M. et al. Prospero and Pax2 combinatorially control neural cell fate decisions by modulating Ras- and Notch-dependent signaling. Neural Dev. 6, 20 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Roemer, K. Notch and the p53 clan of transcription factors. Adv. Exp. Med. Biol. 727, 223–240 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Dang, T. P. Notch, apoptosis and cancer. Adv. Exp. Med. Biol. 727, 199–209 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Guo, S., Liu, M. & Gonzalez-Perez, R. R. Role of Notch and its oncogenic signaling crosstalk in breast cancer. Biochim. Biophys. Acta 1815, 197–213 (2011).

    CAS  PubMed  Google Scholar 

  89. Fuxe, J., Vincent, T. & Garcia de Herreros, A. Transcriptional crosstalk between TGF-β and stem cell pathways in tumor cell invasion: role of EMT promoting Smad complexes. Cell Cycle 9, 2363–2374 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Ristorcelli, E. & Lombardo, D. Targeting Notch signaling in pancreatic cancer. Expert Opin. Ther. Targets 14, 541–552 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Li, J. L. & Harris, A. L. Crosstalk of VEGF and Notch pathways in tumour angiogenesis: therapeutic implications. Frontiers Biosci. 14, 3094–3110 (2009).

    Article  CAS  Google Scholar 

  92. Holderfield, M. T. & Hughes, C. C. Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-β in vascular morphogenesis. Circul. Res. 102, 637–652 (2008).

    Article  CAS  Google Scholar 

  93. Villaronga, M. A., Bevan, C. L. & Belandia, B. Notch signaling: a potential therapeutic target in prostate cancer. Curr. Cancer Drug Targets 8, 566–580 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Nakamura, T., Tsuchiya, K. & Watanabe, M. Crosstalk between Wnt and Notch signaling in intestinal epithelial cell fate decision. J. Gastroenterol. 42, 705–710 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Uetz, P. et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

    Article  CAS  PubMed  Google Scholar 

  96. Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl Acad. Sci. USA 98, 4569–4574 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Giot, L. et al. A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736 (2003). This study presented the first and the largest binary interaction (yeast-two hybrid) map for D. melanogaster . This work marks one of the earliest efforts at modelling multicellular organisms using a systems-biology approach.

    Article  CAS  PubMed  Google Scholar 

  98. Li, S. et al. A map of the interactome network of the metazoan C. elegans. Science 303, 540–543 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Stelzl, U. et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell 122, 957–968 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Rual, J. F. et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173–1178 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Stanyon, C. A. et al. A Drosophila protein-interaction map centered on cell-cycle regulators. Genome Biol. 5, R96 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Krogan, N. J. et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Gavin, A. C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Cramer, R. Editorial for “advances in biological mass spectrometry and proteomics”. Methods 54, 349–350 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Gavin, A. C., Maeda, K. & Kuhner, S. Recent advances in charting protein-protein interaction: mass spectrometry-based approaches. Curr. Opin. Biotechnol. 22, 42–49 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Bandyopadhyay, S., Kelley, R., Krogan, N. J. & Ideker, T. Functional maps of protein complexes from quantitative genetic interaction data. PLoS Comput. Biol. 4, e1000065 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Costanzo, M. et al. The genetic landscape of a cell. Science 327, 425–431 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. van Wageningen, S. et al. Functional overlap and regulatory links shape genetic interactions between signaling pathways. Cell 143, 991–1004 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Li, B., Cao, W., Zhou, J. & Luo, F. Understanding and predicting synthetic lethal genetic interactions in Saccharomyces cerevisiae using domain genetic interactions. BMC Systems Biol. 5, 73 (2011).

    Article  Google Scholar 

  111. Linden, R. O., Eronen, V. P. & Aittokallio, T. Quantitative maps of genetic interactions in yeast — comparative evaluation and integrative analysis. BMC Systems Biol. 5, 45 (2011).

    Article  Google Scholar 

  112. Horn, T. et al. Mapping of signaling networks through synthetic genetic interaction analysis by RNAi. Nature Methods 8, 341–346 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Guruharsha, K. G. et al. A protein complex network of Drosophila melanogaster. Cell 147, 690–703 (2011). This study presents the first metazoan protein complex map and defined more than 500 protein complexes involving several thousand proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fan, X. et al. Notch1 and notch2 have opposite effects on embryonal brain tumor growth. Cancer Res. 64, 7787–7793 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Heitzler, P. Biodiversity and noncanonical Notch signaling. Curr. Top. Dev. Biol. 92, 457–481 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Hu, Q. D. et al. F3/contactin acts as a functional ligand for Notch during oligodendrocyte maturation. Cell 115, 163–175 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Cui, X. Y. et al. NB-3/Notch1 pathway via Deltex1 promotes neural progenitor cell differentiation into oligodendrocytes. J. Biol. Chem. 279, 25858–25865 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Hori, K. et al. Drosophila deltex mediates suppressor of Hairless-independent and late-endosomal activation of Notch signaling. Development 131, 5527–5537 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Shawber, C. et al. Notch signaling inhibits muscle cell differentiation through a CBF1-independent pathway. Development 122, 3765–3773 (1996).

    CAS  PubMed  Google Scholar 

  120. Rusconi, J. C. & Corbin, V. Evidence for a novel Notch pathway required for muscle precursor selection in Drosophila. Mech. Dev. 79, 39–50 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Martinez Arias, A., Zecchini, V. & Brennan, K. CSL-independent Notch signalling: a checkpoint in cell fate decisions during development? Curr. Opin. Genet. Dev. 12, 524–533 (2002).

    Article  PubMed  Google Scholar 

  122. Vaccari, T. & Bilder, D. The Drosophila tumor suppressor vps25 prevents nonautonomous overproliferation by regulating notch trafficking. Dev. Cell 9, 687–698 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Thompson, B. J. et al. Tumor suppressor properties of the ESCRT-II complex component Vps25 in Drosophila. Dev. Cell 9, 711–720 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Vaccari, T., Lu, H., Kanwar, R., Fortini, M. E. & Bilder, D. Endosomal entry regulates Notch receptor activation in Drosophila melanogaster. J. Cell Biol. 180, 755–762 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Vaccari, T. et al. Comparative analysis of ESCRT-I, ESCRT-II and ESCRT-III function in Drosophila by efficient isolation of ESCRT mutants. J. Cell Sci. 122, 2413–2423 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wilkin, M. B. et al. Regulation of notch endosomal sorting and signaling by Drosophila Nedd4 family proteins. Curr. Biol. 14, 2237–2244 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Hori, K., Sen, A., Kirchhausen, T. & Artavanis-Tsakonas, S. Synergy between the ESCRT-III complex and Deltex defines a ligand-independent Notch signal. J. Cell Biol. 195, 1005–1015 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Couturier, L., Vodovar, N. & Schweisguth, F. Endocytosis by Numb breaks Notch symmetry at cytokinesis. Nature Cell Biol. 14, 131–139 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Croft, D. et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 39, D691–D697 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Gordon, W. R. et al. Effects of S1 cleavage on the structure, surface export, and signaling activity of human Notch1 and Notch2. PLoS ONE 4, e6613 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lake, R. J., Grimm, L. M., Veraksa, A., Banos, A. & Artavanis-Tsakonas, S. In vivo analysis of the Notch receptor S1 cleavage. PLoS ONE 4, e6728 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Qurashi, A. et al. HSPC300 and its role in neuronal connectivity. Neural Dev. 2, 18 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M. & Hirakawa, M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 38, D355–D360 (2010).

    Article  CAS  PubMed  Google Scholar 

  134. Warde-Farley, D. et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 38, W214–W220 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P. L. & Ideker, T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27, 431–432 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank A. Louvi, D. Dimlich, K. Hori, B. Obar and A. Sen for critically reading the manuscript. Special thanks to J. Iwasa for the Notch pathway animations. We also apologize to our colleagues whose original work was not discussed or cited here in the interest of space. Work in the Artavanis-Tsakonas laboratory is supported by grants from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spyros Artavanis-Tsakonas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (movie)

(MOV 5028 kb)

Supplementary information S2 (movie)

(MOV 1289 kb)

Supplementary information S3 (movie)

(MOV 3803 kb)

Supplementary information S4 (table)

(XLS 308 kb)

Supplementary information S5 (figure)

High-resolution image file from Figure 4: Mapping genetic modifiers on proteome map (PDF 7288 kb)

Related links

Related links

FURTHER INFORMATION

Spyros Artavanis-Tsakonas's homepage

BioGRID

Drosophila Protein Interaction Map

DroID

Exelixis

Fly Stocks of National Institute of Genetics (NIG-FLY)

Proteomics Identifications database (PRIDE)

MINT

modEncode

Pathguide

Reactome

Vienna Drosophila RNAi Center (VDRC)

Glossary

Haploinsufficiency

A genetic condition in a diploid organism in which a single functional copy of a gene fails to generate sufficient gene product, leading to an abnormal or diseased state.

Triplomutant

A genetic variant that carries three copies of a single gene, as opposed to the normal two copies, and displays a specific mutant phenotype that may include lethality or morphological defects. This mutant is distinct from aneuploidy, which alters copy numbers for large numbers of genes owing to chromosomal aberrations.

Alagille's syndrome

An inherited autosomal dominant genetic disorder that can affect multiple vital organs, such as the liver, heart and other body parts. The disorder may also affect the blood vessels within the brain, spinal cord and the kidneys. The estimated prevalence of Alagille's syndrome is 1 in 70,000 newborns.

Transcriptional feedback

A regulatory loop in which the gene products positively or negatively regulate the expression or activity of other members of the same pathway and therefore regulate themselves.

Equivalence group

A group of unspecified cells that have the same developmental potential to adopt various fates. Typically, these are cells from an equivalence group that receive a signal take on fates that are distinct from those cells that do not receive a signal and therefore adopt a default fate.

Quantitative proteomics

Quantitative proteomics is identical to general (qualitative) proteomics but includes quantification as an additional dimension. Information about differences between two or more protein samples is obtained with the use of isotopes or mass tags that are distinguishable in mass spectrometry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guruharsha, K., Kankel, M. & Artavanis-Tsakonas, S. The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat Rev Genet 13, 654–666 (2012). https://doi.org/10.1038/nrg3272

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3272

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research