Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards systematic functional characterization of cancer genomes

Key Points

  • Cancer genome characterization efforts will provide a complete description of genetic and epigenetic alterations in cancer. However, the complexity and heterogeneity of cancer genomes makes it clear that complementary efforts to understand the function of cancer genes are necessary.

  • The tools to manipulate gene function at genome scale are now available in multiple formats. Technical advances will increase the power and throughput of these approaches.

  • Important functional-genomics approaches include systematic mutagenesis, RNAi, expression libraries and small-molecule screens.

  • Integration of functional and structural characterizations of cancer genomes provides a path to identifying driver genes.

  • These same approaches, tools and methods can also be used to study other diseases.

Abstract

Whole-genome approaches to identify genetic and epigenetic alterations in cancer genomes have begun to provide new insights into the range of molecular events that occurs in human tumours. Although in some cases this knowledge immediately illuminates a path towards diagnostic or therapeutic implementation, the bewildering lists of mutations in each tumour make it clear that systematic functional approaches are also necessary to obtain a comprehensive molecular understanding of cancer. Here we review the current range of methods, assays and approaches for genome-scale interrogation of gene function in cancer. We also discuss the integration of functional-genomics approaches with the outputs from cancer genome sequencing efforts.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of cancer functional genomics.
Figure 2: Tools and formats of cancer functional-genomics experiments.
Figure 3: Integrating functional and structural cancer genomics.

Similar content being viewed by others

References

  1. Meyerson, M., Gabriel, S. & Getz, G. Advances in understanding cancer genomes through second-generation sequencing. Nature Rev. Genet. 11, 685–696 (2010).

    CAS  PubMed  Google Scholar 

  2. Maemondo, M. et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N. Engl. J. Med. 362, 2380–2388 (2010).

    CAS  PubMed  Google Scholar 

  3. van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. N. Engl. J. Med. 347, 1999–2009 (2002).

    CAS  PubMed  Google Scholar 

  4. McDermott, U. et al. Genomic alterations of anaplastic lymphoma kinase may sensitize tumours to anaplastic lymphoma kinase inhibitors. Cancer Res. 68, 3389–3395 (2008).

    CAS  PubMed  Google Scholar 

  5. Soda, M. et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007).

    CAS  PubMed  Google Scholar 

  6. Copeland, N. G. & Jenkins, N. A. Harnessing transposons for cancer gene discovery. Nature Rev. Cancer 10, 696–706 (2010).

    CAS  Google Scholar 

  7. Starr, T. K. et al. A transposon-based genetic screen in mice identifies genes altered in colorectal cancer. Science 323, 1747–1750 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ding, S. et al. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122, 473–483 (2005).

    CAS  PubMed  Google Scholar 

  9. Rad, R. et al. PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice. Science 330, 1104–1107 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sun, L. V. et al. PBmice: an integrated database system of piggyBac (PB) insertional mutations and their characterizations in mice. Nucleic Acids Res. 36, D729–D734 (2008). References 7–10 demonstrate the use of transposon-mediated insertional mutagenesis.

    CAS  PubMed  Google Scholar 

  11. Kool, J. & Berns, A. High-throughput insertional mutagenesis screens in mice to identify oncogenic networks. Nature Rev. Cancer 9, 389–399 (2009).

    CAS  Google Scholar 

  12. Uren, A. G. et al. Large-scale mutagenesis in p19(ARF)- and p53-deficient mice identifies cancer genes and their collaborative networks. Cell 133, 727–741 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Carette, J. E. et al. Haploid genetic screens in human cells identify host factors used by pathogens. Science 326, 1231–1235 (2009).

    CAS  PubMed  Google Scholar 

  14. MacKeigan, J. P., Murphy, L. O. & Blenis, J. Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nature Cell Biol. 7, 591–600 (2005).

    CAS  PubMed  Google Scholar 

  15. Whitehurst, A. W. et al. Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature 446, 815–819 (2007).

    CAS  PubMed  Google Scholar 

  16. Brummelkamp, T. R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    CAS  PubMed  Google Scholar 

  17. Moffat, J. et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124, 1283–1298 (2006).

    CAS  PubMed  Google Scholar 

  18. Silva, J. M. et al. Second-generation shRNA libraries covering the mouse and human genomes. Nature Genet. 37, 1281–1288 (2005).

    CAS  PubMed  Google Scholar 

  19. Kittler, R. et al. Genome-wide resources of endoribonuclease-prepared short interfering RNAs for specific loss-of-function studies. Nature Methods 4, 337–344 (2007). References 16–19 describe genome-scale libraries of shRNAs.

    CAS  PubMed  Google Scholar 

  20. Premsrirut, P. K. et al. A rapid and scalable system for studying gene function in mice using conditional RNA interference. Cell 145, 145–158 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fellmann, C. et al. Functional identification of optimized RNAi triggers using a massively parallel ensor assay. Mol. Cell 41, 733–746 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Echeverri, C. J. et al. Minimizing the risk of reporting false positives in large-scale RNAi screens. Nature Methods 3, 777–779 (2006).

    CAS  PubMed  Google Scholar 

  23. Seed, B. & Aruffo, A. Molecular cloning of the CD2 antigen, the T-cell erythrocyte receptor, by a rapid immunoselection procedure. Proc. Natl Acad. Sci. USA 84, 3365–3369 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Shih, C. & Weinberg, R. A. Isolation of a transforming sequence from a human bladder carcinoma cell line. Cell 29, 161–169 (1982).

    CAS  PubMed  Google Scholar 

  25. Lin, H. Y. et al. Expression cloning of an adenylate cyclase-coupled calcitonin receptor. Science 254, 1022–1024 (1991).

    CAS  PubMed  Google Scholar 

  26. Temple, G. et al. The completion of the Mammalian Gene Collection (MGC). Genome Res. 19, 2324–2333 (2009).

    PubMed  PubMed Central  Google Scholar 

  27. Bechtel, S. et al. The full-ORF clone resource of the German cDNA Consortium. BMC Genomics 8, 399 (2007).

    PubMed  PubMed Central  Google Scholar 

  28. Lamesch, P. et al. Human ORFeome 3.1: a resource of human open reading frames covering over 10,000 human genes. Genomics 89, 307–315 (2007).

    CAS  PubMed  Google Scholar 

  29. Ota, T. et al. Complete sequencing and characterization of 21,243 full-length human cDNAs. Nature Genet. 36, 40–45 (2004).

    PubMed  Google Scholar 

  30. Park, J. et al. Building a human kinase gene repository: bioinformatics, molecular cloning, and functional validation. Proc. Natl Acad. Sci. USA 102, 8114–8119 (2005). References 27–30 describe large-scale expression libraries.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Johannessen, C. M. et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468, 968–972 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang, X. et al. A public genome-scale lentiviral expression library of human ORFs. Nature Methods (in the press).

  33. Griffiths-Jones, S. miRBase: the microRNA sequence database. Methods Mol. Biol. 342, 129–138 (2006).

    CAS  PubMed  Google Scholar 

  34. Calin, G. A. et al. Frequent deletions and downregulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 99, 15524–15529 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Voorhoeve, P. M. et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumours. Cell 124, 1169–1181 (2006).

    CAS  PubMed  Google Scholar 

  36. McDermott, U. et al. Ligand-dependent platelet-derived growth factor receptor (PDGFR)-α activation sensitizes rare lung cancer and sarcoma cells to PDGFR kinase inhibitors. Cancer Res. 69, 3937–3946 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. McDermott, U. et al. Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumour cell line profiling. Proc. Natl Acad. Sci. USA 104, 19936–19941 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Schreiber, S. L. et al. Towards patient-based cancer therapeutics. Nature Biotech. 28, 904–906 (2010).

    CAS  Google Scholar 

  39. Nielsen, T. E. & Schreiber, S. L. Towards the optimal screening collection: a synthesis strategy. Angew. Chem. Int. Ed. Engl. 47, 48–56 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Stanton, B. Z. et al. A small molecule that binds Hedgehog and blocks its signalling in human cells. Nature Chem. Biol. 5, 154–156 (2009).

    CAS  Google Scholar 

  41. Moellering, R. E. et al. Direct inhibition of the NOTCH transcription factor complex. Nature 462, 182–188 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhu, S. et al. A small molecule primes embryonic stem cells for differentiation. Cell Stem Cell 4, 416–426 (2009).

    CAS  PubMed  Google Scholar 

  43. Wurdak, H. et al. An RNAi screen identifies TRRAP as a regulator of brain tumour-initiating cell differentiation. Cell Stem Cell 6, 37–47 (2010).

    CAS  PubMed  Google Scholar 

  44. Schmitz, M. H. et al. Live-cell imaging RNAi screen identifies PP2A-B55α and importin-β1 as key mitotic exit regulators in human cells. Nature Cell Biol. 12, 886–893 (2010).

    CAS  PubMed  Google Scholar 

  45. Wheeler, D. B., Carpenter, A. E. & Sabatini, D. M. Cell microarrays and RNA interference chip away at gene function. Nature Genet. 37, S25–S30 (2005).

    CAS  PubMed  Google Scholar 

  46. Vegas, A. J., Fuller, J. H. & Koehler, A. N. Small-molecule microarrays as tools in ligand discovery. Chem. Soc. Rev. 37, 1385–1394 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Berns, K. et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12, 395–402 (2007).

    CAS  PubMed  Google Scholar 

  48. Hurov, K. E., Cotta-Ramusino, C. & Elledge, S. J. A genetic screen identifies the Triple T complex required for DNA damage signalling and ATM and ATR stability. Genes Dev. 24, 1939–1950 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Smogorzewska, A. et al. A genetic screen identifies FAN1, a Fanconi anaemia-associated nuclease necessary for DNA interstrand crosslink repair. Mol. Cell 39, 36–47 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Paddison, P. J. et al. A resource for large-scale RNA-interference-based screens in mammals. Nature 428, 427–431 (2004).

    CAS  PubMed  Google Scholar 

  51. Brummelkamp, T. R. & Bernards, R. New tools for functional mammalian cancer genetics. Nature Rev. Cancer 3, 781–789 (2003).

    CAS  Google Scholar 

  52. Ngo, V. N. et al. A loss-of-function RNA interference screen for molecular targets in cancer. Nature 441, 106–110 (2006).

    CAS  PubMed  Google Scholar 

  53. Buchholz, F., Kittler, R., Slabicki, M. & Theis, M. Enzymatically prepared RNAi libraries. Nature Methods 3, 696–700 (2006).

    CAS  PubMed  Google Scholar 

  54. Schlabach, M. R. et al. Cancer proliferation gene discovery through functional genomics. Science 319, 620–624 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Luo, B. et al. Highly parallel identification of essential genes in cancer cells. Proc. Natl Acad. Sci. USA 105, 20380–20385 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zender, L. et al. An oncogenomics-based in vivo RNAi screen identifies tumour suppressors in liver cancer. Cell 135, 852–864 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bric, A. et al. Functional identification of tumour-suppressor genes through an in vivo RNA interference screen in a mouse lymphoma model. Cancer Cell 16, 324–335 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Meacham, C. E., Ho, E. E., Dubrovsky, E., Gertler, F. B. & Haemann, M. T. In vivo RNAi screening identifies regulators of actin dynamics as key determinants of lymphoma progression. Nature Genet. 41, 1133–1137 (2009).

    CAS  PubMed  Google Scholar 

  59. Zuber, J. et al. Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi. Nature Biotech. 29, 79–83 (2011).

    CAS  Google Scholar 

  60. Kittler, R. et al. Genome-scale RNAi profiling of cell division in human tissue culture cells. Nature Cell Biol. 9, 1401–1412 (2007).

    CAS  PubMed  Google Scholar 

  61. Cheng, H. et al. SIK1 couples LKB1 to p53-dependent anoikis and suppresses metastasis. Sci. Signal. 2, ra35 (2009).

    PubMed  PubMed Central  Google Scholar 

  62. Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437 (2004).

    CAS  PubMed  Google Scholar 

  64. Westbrook, T. F. et al. A genetic screen for candidate tumour suppressors identifies REST. Cell 121, 837–848 (2005).

    CAS  PubMed  Google Scholar 

  65. Kolfschoten, I. G. et al. A genetic screen identifies PITX1 as a suppressor of RAS activity and tumorigenicity. Cell 121, 849–858 (2005).

    CAS  PubMed  Google Scholar 

  66. Firestein, R. et al. CDK8 is a colorectal cancer oncogene that regulates β-catenin activity. Nature 455, 547–551 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Peeper, D. S. et al. A functional screen identifies hDRIL1 as an oncogene that rescues RAS-induced senescence. Nature Cell Biol. 4, 148–153 (2002).

    CAS  PubMed  Google Scholar 

  68. Gazin, C., Wajapeyee, N., Gobeil, S., Virbasius, C. M. & Green, M. R. An elaborate pathway required for Ras-mediated epigenetic silencing. Nature 449, 1073–1077 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Collins, C. S. et al. A small interfering RNA screen for modulators of tumour cell motility identifies MAP4K4 as a promigratory kinase. Proc. Natl Acad. Sci. USA 103, 3775–3780 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Smolen, G. A. et al. A genome-wide RNAi screen identifies multiple RSK-dependent regulators of cell migration. Genes Dev. 24, 2654–2665 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Epping, M. T. et al. A functional genetic screen identifies retinoic acid signalling as a target of histone deacetylase inhibitors. Proc. Natl Acad. Sci. USA 104, 17777–17782 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. O'Connell, B. C. et al. A genome-wide camptothecin sensitivity screen identifies a mammalian MMS22L-NFKBIL2 complex required for genomic stability. Mol. Cell 40, 645–657 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Fotheringham, S. et al. Genome-wide loss-of-function screen reveals an important role for the proteasome in HDAC inhibitor-induced apoptosis. Cancer Cell 15, 57–66 (2009).

    CAS  PubMed  Google Scholar 

  74. Chen, S. et al. Genome-wide siRNA screen for modulators of cell death induced by proteasome inhibitor bortezomib. Cancer Res. 70, 4318–4326 (2010).

    CAS  PubMed  Google Scholar 

  75. Eichhorn, P. J. et al. Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235. Cancer Res. 68, 9221–9230 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Mullenders, J. et al. Candidate biomarkers of response to an experimental cancer drug identified through a large-scale RNA interference genetic screen. Clin. Cancer Res. 15, 5811–5819 (2009).

    CAS  PubMed  Google Scholar 

  77. Hahn, C. K. et al. Proteomic and genetic approaches identify Syk as an AML target. Cancer Cell 16, 281–294 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Stegmaier, K. et al. Gene expression-based high-throughput screening (GE-HTS) and application to leukemia differentiation. Nature Genet. 36, 257–263 (2004).

    CAS  PubMed  Google Scholar 

  79. Bradner, J. E. et al. Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease. Proc. Natl Acad. Sci. USA 107, 12617–12622 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lamb, J. et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).

    CAS  PubMed  Google Scholar 

  81. Du, J. et al. Bead-based profiling of tyrosine kinase phosphorylation identifies SRC as a potential target for glioblastoma therapy. Nature Biotech. 27, 77–83 (2009).

    CAS  Google Scholar 

  82. Pujana, M. A. et al. Network modeling links breast cancer susceptibility and centrosome dysfunction. Nature Genet. 39, 1338–1349 (2007).

    CAS  PubMed  Google Scholar 

  83. Wilson, B., Liotta, L. A. & Petricoin, E. Monitoring proteins and protein networks using reverse phase protein arrays. Disease Markers 28, 225–232 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Evangelista, M. et al. Kinome siRNA screen identifies regulators of ciliogenesis and hedgehog signal transduction. Sci. Signal. 1, ra7 (2008).

    PubMed  Google Scholar 

  85. Lam, L. T. et al. Compensatory IKKα activation of classical NF-κB signalling during IKKβ inhibition identified by an RNA interference sensitization screen. Proc. Natl Acad. Sci. USA 105, 20798–20803 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Sheng, Q. et al. An activated ErbB3/NRG1 autocrine loop supports in vivo proliferation in ovarian cancer cells. Cancer Cell 17, 298–310 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Baldwin, A. et al. Kinase requirements in human cells: II. Genetic interaction screens identify kinase requirements following HPV16 E7 expression in cancer cells. Proc. Natl Acad. Sci. USA 105, 16478–16483 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Brummelkamp, T. R., Nijman, S. M., Dirac, A. M. & Bernards, R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature 424, 797–801 (2003). This study provided the first demonstration that gene-family-focused screens can illuminate genes involved in a specific phenotype.

    CAS  PubMed  Google Scholar 

  89. Nijman, S. M. et al. The deubiquitinating enzyme USP1 regulates the Fanconi anaemia pathway. Mol. Cell 17, 331–339 (2005).

    CAS  PubMed  Google Scholar 

  90. Boehm, J. S. et al. Integrative genomic approaches identify IKBKE as a breast cancer oncogene. Cell 129, 1065–1079 (2007).

    CAS  PubMed  Google Scholar 

  91. Varjosalo, M. et al. Application of active and kinase-deficient kinome collection for identification of kinases regulating hedgehog signalling. Cell 133, 537–548 (2008).

    CAS  PubMed  Google Scholar 

  92. Gonzalez-Malerva, L. et al. High-throughput ectopic expression screen for tamoxifen resistance identifies an atypical kinase that blocks autophagy. Proc. Natl Acad. Sci. USA 108, 2058–2063 (2011).

    PubMed  PubMed Central  Google Scholar 

  93. Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108–112 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Luo, J. et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137, 835–848 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Scholl, C. et al. Synthetic lethal interaction between oncogenic KRAS dependency and suppression of STK33 in human cancer cells. Cell 137, 821–834 (2009).

    CAS  PubMed  Google Scholar 

  96. Vicent, S. et al. Wilms tumour 1 (WT1) regulates KRAS-driven oncogenesis and senescence in mouse and human models. J. Clin. Invest. 120, 3940–3952 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang, Y. et al. Critical role for transcriptional repressor Snail2 in transformation by oncogenic RAS in colorectal carcinoma cells. Oncogene 29, 4658–4670 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Baldwin, A. et al. Kinase requirements in human cells: V. Synthetic lethal interactions between p53 and the protein kinases SGK2 and PAK3. Proc. Natl Acad. Sci. USA 107, 12463–12468 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Bommi-Reddy, A. et al. Kinase requirements in human cells: III. Altered kinase requirements in VHL−/− cancer cells detected in a pilot synthetic lethal screen. Proc. Natl Acad. Sci. USA 105, 16484–16489 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Turner, N. C. et al. A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor. EMBO J. 27, 1368–1377 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Shaffer, A. L. et al. IRF4 addiction in multiple myeloma. Nature 454, 226–231 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Iorns, E., Lord, C. J. & Ashworth, A. Parallel RNAi and compound screens identify the PDK1 pathway as a target for tamoxifen sensitization. Biochem. J. 417, 361–370 (2009).

    CAS  PubMed  Google Scholar 

  103. Barretina, J. et al. Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nature Genet. 42, 715–721 (2010).

    CAS  PubMed  Google Scholar 

  104. Sawey, E. T. et al. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by oncogenomic screening. Cancer Cell 19, 347–358 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ebert, B. L. et al. Identification of RPS14 as a 5q syndrome gene by RNA interference screen. Nature 451, 335–339 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Silva, J. M. et al. Cyfip1 is a putative invasion suppressor in epithelial cancers. Cell 137, 1047–1061 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Zender, L. et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125, 1253–1267 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Kim, M. et al. Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell 125, 1269–1281 (2006).

    CAS  PubMed  Google Scholar 

  109. Ngo, V. N. et al. Oncogenically active MYD88 mutations in human lymphoma. Nature 470, 115–119 (2011).

    CAS  PubMed  Google Scholar 

  110. Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917 (2005).

    CAS  PubMed  Google Scholar 

  111. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    CAS  PubMed  Google Scholar 

  112. Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumours from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    CAS  PubMed  Google Scholar 

  113. Gupta, P. B. et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138, 645–659 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of the Hahn laboratory and the Broad Institute Cancer Program for discussions. W.C.H. is supported in part by grants from the US National Institutes of Health, the Starr Cancer Consortium, the Ivy Foundation, the H.L. Snyder Foundation and the Prostate Cancer Foundation. We apologize to those authors whose relevant work could not be cited owing to space considerations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Hahn.

Ethics declarations

Competing interests

William C. Hahn is a consultant for Novartis Pharmaceuticals.

Related links

Related links

FURTHER INFORMATION

William C. Hahn's homepage

Cancer Program at the Broad Institute of MIT and Harvard

Glossary

Oncogenes

Genes that are somatically mutated or amplified in tumours, are required for the survival of tumours that harbour the oncogene and cause transformation in a cell or animal model.

Tumour suppressor genes

Genes that show loss of heterozygosity in tumours and usually regulate cell survival.

Open reading frame

(ORF).The coding sequence of a transcript without 5′ or 3′ sequences.

RNA interference

(RNAi). The process by which endogenous or exogenous dsRNA molecules lead to interference with gene expression.

Functional-genomics studies

The manipulation of gene expression or function at large scale, usually using high-throughput approaches.

Transposons

DNA elements that can move to new positions within the genome of a single cell.

Short interfering RNAs

(siRNAs). RNA molecules that are capable of inducing RNA interference.

MicroRNAs

(miRNAs). MicroRNAs are short RNA molecules that regulate gene expression through gene silencing and translational repression.

Short hairpin RNAs

(shRNAs). An RNA interference-inducing molecule that folds back onto itself to create a hairpin structure.

Arrayed screens

Functional-genomics screens in which perturbations are individually performed.

Off-target effects

A term that refers to a phenotype that is not related to perturbation of the intended target of a short interfering RNA (siRNA) or small molecule.

Transformation

The process by which a normal cell acquires cellular phenotypes of a cancer cell.

Pooled screen

A functional-genomics screen in which genetic tools are mixed and administered to a cellular population under a selective pressure.

Aniokis

A form of cell death that is associated with loss of cell–matrix interactions.

RAS

A family of small GTPases that are frequently mutated in cancer. Single-nucleotide substitutions lead to constitutive activation of ras signalling.

Perturbagens

Small molecules, peptides, cDNAs or RNAi inducers that disrupt biological processes.

Synthetic lethal

A relationship between two genes in which the combined inactivation of the genes results in lethality, whereas the inactivation of either gene alone has no effect. It can also refer to a gene whose perturbation only results in lethality in the presence of a particular cellular feature (for example, mutation).

Structural genomics

Genome-wide approaches for cataloguing structural changes (for example, mutations and copy-number changes) in the genome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boehm, J., Hahn, W. Towards systematic functional characterization of cancer genomes. Nat Rev Genet 12, 487–498 (2011). https://doi.org/10.1038/nrg3013

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3013

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer