Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Mitotic bookmarking of genes: a novel dimension to epigenetic control

Abstract

Regulatory machinery is focally organized in the interphase nucleus. The information contained in these focal nuclear microenvironments must be inherited during cell division to sustain physiologically responsive gene expression in progeny cells. Recent results suggest that focal mitotic retention of phenotypic transcription factors at promoters together with histone modifications and DNA methylation — a mechanism collectively known as gene bookmarking — is a novel parameter of inherited epigenetic control that sustains cellular identity after mitosis. The epigenetic signatures imposed by bookmarking poise genes for activation or suppression following mitosis. We discuss the implications of phenotypic transcription factor retention on mitotic chromosomes in biological control and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distinct mechanisms control the protein content of a cell during mitosis.
Figure 2: The coordination of mesenchymal stem cell growth, proliferation and differentiation into three distinct lineages.
Figure 3: Mitotic retention of transcription factors in normal cells and cancer cells.

Similar content being viewed by others

References

  1. Urnov, F. D. & Wolffe, A. P. Above and within the genome: epigenetics past and present. J. Mammary Gland Biol. Neoplasia 6, 153–167 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Goldberg, A. D., Allis, C. D. & Bernstein, E. Epigenetics: a landscape takes shape. Cell 128, 635–638 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Berger, S. L. The complex language of chromatin regulation during transcription. Nature 447, 407–412 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Nelson, C. J., Santos-Rosa, H. & Kouzarides, T. Proline isomerization of histone H3 regulates lysine methylation and gene expression. Cell 126, 905–916 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Cuthbert, G. L. et al. Histone deimination antagonizes arginine methylation. Cell 118, 545–553 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Nathan, D. et al. Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev. 20, 966–976 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shilatifard, A. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu. Rev. Biochem. 75, 243–269 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Nowak, S. J. & Corces, V. G. Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet. 20, 214–220 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Sterner, D. E. & Berger, S. L. Acetylation of histones and transcription-related factors. Microbiol. Mol. Biol. Rev. 64, 435–459 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ruthenburg, A. J., Li, H., Patel, D. J. & Allis, C. D. Multivalent engagement of chromatin modifications by linked binding modules. Nature Rev. Mol. Cell Biol. 8, 983–994 (2007).

    Article  CAS  Google Scholar 

  11. Trojer, P. & Reinberg, D. Histone lysine demethylases and their impact on epigenetics. Cell 125, 213–217 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Jones, P. A. & Baylin, S. B. The epigenomics of cancer. Cell 128, 683–692 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Esteller, M. Epigenetics in cancer. N. Engl. J. Med. 358, 1148–1159 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Gal-Yam, E. N., Saito, Y., Egger, G. & Jones, P. A. Cancer epigenetics: modifications, screening, and therapy. Annu. Rev. Med. 59, 267–280 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Kouskouti, A. & Talianidis, I. Histone modifications defining active genes persist after transcriptional and mitotic inactivation. EMBO J. 24, 347–357 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Chow, C. M. et al. Variant histone H3.3 marks promoters of transcriptionally active genes during mammalian cell division. EMBO Rep. 6, 354–360 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saurin, A. J. et al. The human polycomb group complex associates with pericentromeric heterochromatin to form a novel nuclear domain. J. Cell Biol. 142, 887–898 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Burke, L. J. et al. CTCF binding and higher order chromatin structure of the H19 locus are maintained in mitotic chromatin. EMBO J. 24, 3291–3300 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sarge, K. D. & Park-Sarge, O. K. Mitotic bookmarking of formerly active genes: keeping epigenetic memories from fading. Cell Cycle 8, 818–823 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Martinez-Balbas, M. A., Dey, A., Rabindran, S. K., Ozato, K. & Wu, C. Displacement of sequence-specific transcription factors from mitotic chromatin. Cell 83, 29–38 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Groudine, M. & Weintraub, H. Propagation of globin DNAase I-hypersensitive sites in absence of factors required for induction: a possible mechanism for determination. Cell 30, 131–139 (1982).

    Article  CAS  PubMed  Google Scholar 

  22. Zeng, C. et al. Identification of a nuclear matrix targeting signal in the leukemia and bone-related AML/CBFα transcription factors. Proc. Natl Acad. Sci. USA 94, 6746–6751 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ma, H., Siegel, A. J. & Berezney, R. Association of chromosome territories with the nuclear matrix. Disruption of human chromosome territories correlates with the release of a subset of nuclear matrix proteins. J. Cell Biol. 146, 531–542 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Verschure, P. J., van Der Kraan, I., Manders, E. M. & van Driel, R. Spatial relationship between transcription sites and chromosome territories. J. Cell Biol. 147, 13–24 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nagaich, A. K. et al. Subnuclear trafficking and gene targeting by steroid receptors. Ann. N. Y. Acad. Sci. 1024, 213–220 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Misteli, T. The concept of self-organization in cellular architecture. J. Cell Biol. 155, 181–185 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wagner, S., Chiosea, S. & Nickerson, J. A. The spatial targeting and nuclear matrix binding domains of SRm160. Proc. Natl Acad. Sci. USA 100, 3269–3274 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Choi, J.-Y. et al. Subnuclear targeting of Runx/Cbfa/AML factors is essential for tissue-specific differentiation during embryonic development. Proc. Natl Acad. Sci., USA 98, 8650–8655 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. North, T. et al. Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. Development 126, 2563–2575 (1999).

    CAS  PubMed  Google Scholar 

  30. Spencer, C. A., Kruhlak, M. J., Jenkins, H. L., Sun, X. & Bazett-Jones, D. P. Mitotic transcription repression in vivo in the absence of nucleosomal chromatin condensation. J. Cell Biol. 150, 13–26 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. He, S. & Davie, J. R. Sp1 and Sp3 foci distribution throughout mitosis. J. Cell Sci. 119, 1063–1070 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Pines, J. Mitosis: a matter of getting rid of the right protein at the right time. Trends Cell Biol. 16, 55–63 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Young, D. W. et al. Mitotic occupancy and lineage-specific transcriptional control of rRNA genes by Runx2. Nature 445, 442–446 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Young, D. W. et al. Mitotic retention of gene expression patterns by the cell fate determining transcription factor Runx2. Proc. Natl Acad. Sci. USA 104, 3189–3194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Weintraub, H. et al. The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251, 761–766 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Ali, S. A. et al. Phenotypic transcription factors epigenetically mediate cell growth control. Proc. Natl Acad. Sci. USA 105, 6632–6637 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tang, Q. Q. & Lane, M. D. Activation and centromeric localization of CCAAT/enhancer-binding proteins during the mitotic clonal expansion of adipocyte differentiation. Genes Dev. 13, 2231–2241 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xing, H. et al. Mechanism of hsp70i gene bookmarking. Science 307, 421–423 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Michelotti, E. F., Sanford, S. & Levens, D. Marking of active genes on mitotic chromosomes. Nature 388, 895–899 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Duncan, R. et al. A sequence-specific, single-strand binding protein activates the far upstream element of c-myc and defines a new DNA-binding motif. Genes Dev. 8, 465–480 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Michelotti, E. F., Michelotti, G. A., Aronsohn, A. I. & Levens, D. Heterogeneous nuclear ribonucleoprotein K is a transcription factor. Mol. Cell. Biol. 16, 2350–2360 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Michelotti, G. A. et al. Multiple single-stranded cis elements are associated with activated chromatin of the human c-myc gene in vivo. Mol. Cell. Biol. 16, 2656–2669 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zaidi, S. K. et al. Nuclear microenvironments in biological control and cancer. Nature Rev. Cancer 7, 454–463 (2007).

    Article  CAS  Google Scholar 

  44. Lian, J. B. et al. Regulatory controls for osteoblast growth and differentiation: role of Runx/Cbfa/AML factors. Crit. Rev. Eukaryot. Gene Expr. 14, 1–41 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Cameron, E. R. & Neil, J. C. The Runx genes: lineage-specific oncogenes and tumor suppressors. Oncogene 23, 4308–4314 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Ito, Y. & Miyazono, K. RUNX transcription factors as key targets of TGF-β superfamily signaling. Curr. Opin. Genet. Dev. 13, 43–47 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Speck, N. A. & Gilliland, D. G. Core-binding factors in haematopoiesis and leukaemia. Nature Rev. Cancer 2, 502–513 (2002).

    Article  CAS  Google Scholar 

  48. Vradii, D. et al. Point mutation in AML1 disrupts subnuclear targeting, prevents myeloid differentiation, and effects a transformation-like phenotype. Proc. Natl Acad. Sci. USA 102, 7174–7179 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Javed, A. et al. Impaired intranuclear trafficking of Runx2 (AML3/CBFA1) transcription factors in breast cancer cells inhibits osteolysis in vivo. Proc. Natl Acad. Sci. USA 102, 1454–1459 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pande, S. et al. Subnuclear targeting of the Runx3 tumor suppressor and its epigenetic association with mitotic chromosomes. J. Cell. Physiol. 218, 473–479 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bakshi, R. et al. The leukemogenic t(8;21) fusion protein AML1-ETO controls rRNA genes and associates with nucleolar organizing regions at mitotic chromosomes. J. Cell Sci. 21, 3981–3990 (2008).

    Article  Google Scholar 

  52. Zaidi, S. K. et al. Mitotic partitioning and selective reorganization of tissue specific transcription factors in progeny cells. Proc. Natl Acad. Sci. USA 100, 14852–14857 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cao, A. & Moi, P. Regulation of the globin genes. Pediatr. Res. 51, 415–421 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. McGhee, J. D., Wood, W. I., Dolan, M., Engel, J. D. & Felsenfeld, G. A 200 base pair region at the 5′ end of the chicken adult β-globin gene is accessible to nuclease digestion. Cell 27, 45–55 (1981).

    Article  CAS  PubMed  Google Scholar 

  55. Xin, L. et al. Exploring cellular memory molecules marking competent and active transcriptions. BMC. Mol. Biol. 8, 31 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Martin, D. I. & Orkin, S. H. Transcriptional activation and DNA binding by the erythroid factor GF-1/NF-E1/Eryf1. Genes Dev. 4, 1886–1898 (1990).

    Article  CAS  PubMed  Google Scholar 

  57. Whitelaw, E., Tsai, S. F., Hogben, P. & Orkin, S. H. Regulated expression of globin chains and the erythroid transcription factor GATA-1 during erythropoiesis in the developing mouse. Mol. Cell. Biol. 10, 6596–6606 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mohun, T. Muscle differentiation. Curr. Opin. Cell Biol. 4, 923–928 (1992).

    Article  CAS  PubMed  Google Scholar 

  59. Dias, P., Dilling, M. & Houghton, P. The molecular basis of skeletal muscle differentiation. Semin. Diagn. Pathol. 11, 3–14 (1994).

    CAS  PubMed  Google Scholar 

  60. Tapscott, S. J. The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription. Development 132, 2685–2695 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Rudnicki, M. A. & Jaenisch, R. The MyoD family of transcription factors and skeletal myogenesis. Bioessays 17, 203–209 (1995).

    Article  CAS  PubMed  Google Scholar 

  62. MacDougald, O. A. & Lane, M. D. Transcriptional regulation of gene expression during adipocyte differentiation. Annu. Rev. Biochem. 64, 345–373 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Voellmy, R. On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones 9, 122–133 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Quyn, A. J. et al. Spindle orientation bias in gut epithelial stem cell compartments is lost in precancerous tissue. Cell Stem Cell 6, 175–181 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Verdeguer, F. et al. A mitotic transcriptional switch in polycystic kidney disease. Nature Med. 16, 106–110 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Blobel, G. A. et al. A reconfigured pattern of MLL occupancy within mitotic chromatin promotes rapid transcriptional reactivation following mitotic exit. Mol. Cell 36, 970–983 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bernstein, E. & Allis, C. D. RNA meets chromatin. Genes Dev. 19, 1635–1655 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Calin, G. A. & Croce, C. M. MicroRNA signatures in human cancers. Nature Rev. Cancer 6, 857–866 (2006).

    Article  CAS  Google Scholar 

  69. Croce, C. M. & Calin, G. A. miRNAs, cancer, and stem cell division. Cell 122, 6–7 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Zaratiegui, M., Irvine, D. V. & Martienssen, R. A. Noncoding RNAs and gene silencing. Cell 128, 763–776 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. John, S. & Workman, J. L. Bookmarking genes for activation in condensed mitotic chromosomes. Bioessays 20, 275–279 (1998).

    Article  CAS  PubMed  Google Scholar 

  72. Ali, S. A. et al. Transcriptional corepressor TLE1 functions with Runx2 in epigenetic repression of ribosomal RNA genes. Proc. Natl Acad. Sci. USA 107, 4165–4169 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank P. Jamieson for her assistance in the preparation of this article. This work was supported by National Institutes of Health grants P01 AR048818 and P01 CA082834. The contents of this paper are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary S. Stein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaidi, S., Young, D., Montecino, M. et al. Mitotic bookmarking of genes: a novel dimension to epigenetic control. Nat Rev Genet 11, 583–589 (2010). https://doi.org/10.1038/nrg2827

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2827

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing