
75. Johannes, F., Colot, V. & Jansen, R. C. 
Epigenome dynamics: a quantitative genetics 
perspective. Nature Rev. Genet. 9, 883–890 (2008).

76. Teixeira, F. K. & Colot, V. Repeat elements and the 
Arabidopsis DNA methylation landscape. Heredity 
105, 14–23 (2010).

77. Eichler, E. E. et al. Missing heritability and strategies 
for finding the underlying causes of complex disease. 
Nature Rev. Genet. 11, 446–450 (2010).

78. Heinig, M. et al. A trans-acting locus regulates an 
anti-viral expression network and type 1 diabetes risk. 
Nature (in the press).

79. McKinney, E. F. et al. A CD8+ T cell transcription 
signature predicts prognosis in autoimmune disease. 
Nature Med. 16, 586–591, 1p following 591 
(2010).

80. Pham, M. X. et al. Gene-expression profiling for 
rejection surveillance after cardiac transplantation. 
N. Engl. J. Med. 362, 1890–1900 (2010).

81. Winzeler, E. A. et al. Functional characterization of the 
S. cerevisiae genome by gene deletion and parallel 
analysis. Science 285, 901–906 (1999).

82. Giaever, G. et al. Functional profiling of the 
Saccharomyces cerevisiae genome. Nature 418, 
387–391 (2002).

83. Manolio, T. A. Genomewide association studies and 
assessment of the risk of disease. N. Engl. J. Med. 
363, 166–176 (2010).

84. Barabási, A. L. & Oltvai, Z. N. Network biology: 
understanding the cell’s functional organization. 
Nature Rev. Genet. 5, 101–113 (2004).

85. Delbrück, M. in Unités Biologiques Douées 
De Continuité Génétique. 33–35 (Editions du 
Centre National de la Recherche Scientifique Paris, 
1949).

86. Waddington, C. H. The Strategy of the Genes 
(Geo. Allen & Unwin, London, 1957).

87. Monod, J. & Jacob, F. Teleonomic mechanisms in 
cellular metabolism, growth, and differentiation.  
Cold Spring Harb. Symp. Quant. Biol. 26, 389–401 
(1961).

88. Nurse, P. The great ideas of biology. Clin. Med. 3, 
560–568 (2003).

89. Wagner, G. P. The developmental genetics of 
homology. Nature Rev. Genet. 8, 473–479 
(2007).

90. Arendt, D. The evolution of cell types in animals: 
emerging principles from molecular studies. Nature 
Rev. Genet. 9, 868–882 (2008).

91.  Lynch, V. J. et al. Adaptive changes in the transcription 
factor HoxA-11 are essential for the evolution of 
pregnancy in mammals. Proc. Natl Acad. Sci. USA 
105, 14928–14933 (2008).

92. Patel, C. J., Bhattacharya, J. & Butte, A. J. 
An environment-wide association study (EWAS)  
on type 2 diabetes mellitus. PLoS ONE 5, e10746 
(2010).

93. Buckler, E. S. et al. The genetic architecture 
of maize flowering time. Science 325, 714–718 
(2009).

94. Schneeberger, K. et al. SHOREmap: simultaneous 
mapping and mutation identification by deep 
sequencing. Nature Methods 6, 550–551 (2009).

95. Ehrenreich, I. M. et al. Dissection of genetically 
complex traits with extremely large pools  
of yeast segregants. Nature 464, 1039–1042 
(2010).

96. Qin, J. et al. A human gut microbial gene catalogue 
established by metagenomic sequencing. Nature 464, 
59–65 (2010).

97. Dangl, J. L. & Jones, J. D. Plant pathogens and 
integrated defence responses to infection. Nature 
411, 826–833 (2001).

98. Brady, S. M. et al. A high-resolution root 
spatiotemporal map reveals dominant expression 
patterns. Science 318, 801–806 (2007).

99. Chickarmane, V. et al. Computational 
morphodynamics: a modeling framework to 
understand plant growth. Annu. Rev. Plant Biol. 61, 
65–87 (2010).

100. Guenther, M. & Young, R. A. Repressive transcription. 
Science 329, 150–151 (2010).

101. Jacob, F. & Monod, J. Genetic regulatory mechanisms 
in the synthesis of proteins. J. Mol. Biol. 3, 318–356 
(1961).

102. Gurdon, J. B. Adult frogs derived from the nuclei of 
single somatic cells. Dev. Biol. 4, 256–273 (1962).

103. Tang, F. et al. Tracing the derivation of embryonic stem 
cells from the inner cell mass by single-cell RNA-seq 
analysis. Cell Stem Cell 6, 468–478 (2010).

Acknowledgements
S.T. thanks members of her laboratory for helpful discussions. 
J.A.T. thanks the Wellcome Trust, the Juvenile Diabetes 
Research Foundation International and the National Institute 
for Health Research Cambridge Biomedical Research  
Centre for funding, and J. Nadeau for sharing unpublished 
information. The Cambridge Institute for Medical Research is 
a recipient of a Wellcome Trust Strategic Award (079895). 
M.V. would like to thank M. Walhout, J. Dekker and 
J. Vandenhaute for helpful conversations on the subject  
discussed here.

Competing interests statement 
The authors declare no competing financial interests.

FURTHER INFORMATION
Edith Heard’s homepage: http://www.curie.fr/recherche/
themes/detail_equipe.cfm/lang/_gb/id_equipe/63.htm
Sarah Tishkoff’s homepage: http://www.med.upenn.edu/
tishkoff/Lab/Tishkoff/Tishkoff.html
John A. Todd’s homepage:  
http://www.cimr.cam.ac.uk/investigators/todd/index.html
Marc Vidal’s homepage: http://ccsb.dfci.harvard.edu
Günter P. Wagner’s homepage: 
http://pantheon.yale.edu/~gpwagner/index.html
Detlef Weigel’s homepage: http://www.weigelworld.org
Richard Young’s homepage: http://web.wi.mit.edu/young
1000 Genomes Project: http://www.1000genomes.org
The BGI homepage: http://www.genomics.cn

ALL LINKS ARE ACTIVE IN THE ONLINE PDF

O P I N I O N

Tackling the widespread and  
critical impact of batch effects  
in high-throughput data
Jeffrey T. Leek, Robert B. Scharpf, Héctor Corrada Bravo, David Simcha, 
Benjamin Langmead, W. Evan Johnson, Donald Geman, Keith Baggerly  
and Rafael A. Irizarry

Abstract | High-throughput technologies are widely used, for example to assay 
genetic variants, gene and protein expression, and epigenetic modifications. One 
often overlooked complication with such studies is batch effects, which occur 
because measurements are affected by laboratory conditions, reagent lots and 
personnel differences. This becomes a major problem when batch effects are 
correlated with an outcome of interest and lead to incorrect conclusions. Using 
both published studies and our own analyses, we argue that batch effects (as well 
as other technical and biological artefacts) are widespread and critical to address. 
We review experimental and computational approaches for doing so.

Many technologies used in biology — 
including high-throughput ones such as 
microarrays, bead chips, mass spectrom-
eters and second-generation sequencing 
— depend on a complicated set of reagents 

and hardware, along with highly trained per-
sonnel, to produce accurate measurements. 
When these conditions vary during the 
course of an experiment, many of the quan-
tities being measured will be simultaneously 

affected by both biological and non-biological 
factors. Here we focus on batch effects, a 
common and powerful source of variation  
in high-throughput experiments.

Batch effects are sub-groups of measure-
ments that have qualitatively different 
behaviour across conditions and are unre-
lated to the biological or scientific variables 
in a study. For example, batch effects may 
occur if a subset of experiments was run on 
Monday and another set on Tuesday, if two 
technicians were responsible for different 
subsets of the experiments or if two different 
lots of reagents, chips or instruments were 
used. These effects are not exclusive to high-
throughput biology and genomics research1, 
and batch effects also affect low-dimensional 
molecular measurements, such as northern 
blots and quantitative PCR. Although batch 
effects are difficult or impossible to detect 
in low-dimensional assays, high-throughput 
technologies provide enough data to detect 
and even remove them. However, if not 
properly dealt with, these effects can have 
a particularly strong and pervasive impact. 
Specific examples have been documented 
in published studies2,3 in which the biologi-
cal variables were extremely correlated with 
technical variables, which subsequently led 
to serious concerns about the validity of the 
biological conclusions4,5.
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Normalization is a data analysis technique 
that adjusts global properties of measure-
ments for individual samples so that they can 
be more appropriately compared. Including 
a normalization step is now standard in data 
analysis of gene expression experiments6. But 
normalization does not remove batch effects, 
which affect specific subsets of genes and may 
affect different genes in different ways. In 
some cases, these normalization procedures 
may even exacerbate technical artefacts in 
high-throughput measurements, as batch and 
other technical effects violate the assumptions 
of normalization methods. Although specific 
normalization methods have been developed 
for microarray studies that take into account 
study design7 or otherwise correct for the 
batch problem8, they are still not widely used.

As described here, in surveying a large 
body of published data involving high-
throughput studies and a number of technol-
ogy platforms, we have found evidence of 
batch effects. In many cases we have found 
that these can lead to erroneous biological 
conclusions, supporting the conclusions of 
previous publications4,5. Here we analyse 
the extent of the problem, review the critical 
downstream consequences of batch effects 
and describe experimental and computa-
tional solutions to reduce their impact on 
high-throughput data.

An illustration of batch effects
To introduce the batch effect problem we 
used data from a previously published 
bladder cancer study9 (FIG. 1). In this study, 

microarray expression profiling was used 
to examine the gene expression patterns 
in superficial transitional cell carcinoma 
(sTCC) with and without surrounding carci-
noma in situ (CIS). Hierarchical cluster anal-
ysis separated the sTCC samples according 
to the presence or absence of CIS. However, 
the presence or absence of CIS was strongly 
confounded with processing date, as reported 
in REF. 10. In high-throughput studies it is 
typical for global properties of the raw data 
distribution to vary strongly across arrays, 
as they do for this data set (FIG. 1a). After 
normalization, these global differences are 
greatly reduced (FIG. 1b), and the sTCC study 
properly normalized the data. However, it is 
typical to observe substantial batch effects 
on subsets of specific genes that are not 
addressed by normalization (FIG. 1c). In gene 
expression studies, the greatest source of dif-
ferential expression is nearly always across 
batches rather than across biological groups, 
which can lead to confusing or incorrect 
biological conclusions owing to the influ-
ence of technical artefacts. For example, the 
control samples in the sTCC study clustered 
perfectly by the processing date (FIG. 1d), and 
the processing date was confounded with the 
presence/absence status.

Group and date are only surrogates
The processing of samples using protocols 
that differ among laboratories has been 
linked to batch effects. In such cases, the 
samples that have been processed using 
the same protocol are known as processing 
groups. For example, multiple laboratory 
comparisons of microarray experiments 
have shown strong laboratory-specific 
effects11. In addition, in nearly every gene 
expression study, large variations are 
associated with the processing date12, and 
in microarray studies focusing on copy 
number variation, large effects are associ-
ated with DNA preparation groups13. The 
processing group and date are therefore 
commonly used to account for batch effects. 
However, in a typical experiment these are 
probably only surrogates for other sources 
of variation, such as ozone levels, labora-
tory temperatures and reagent quality12,14. 
Unfortunately, many possible sources of 
batch effects are not recorded, and data  
analysts are left with just processing group 
and date as surrogates.

One way to quantify the affect of non-
biological variables is to examine the 
principal components of the data. Principal 
components are estimates of the most com-
mon patterns that exist across features. For 
example, if most genes in a microarray study 
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Figure 1 | Demonstration of normalization and surviving batch effects. For a published bladder 
cancer microarray data set obtained using an Affymetrix platform9, we obtained the raw data for only 
the normal samples. Here, green and orange represent two different processing dates. a | Box plot of 
raw gene expression data (log base 2). b | Box plot of data processed with RMA, a widely used preproc-
essing algorithm for Affymetrix data27. RMA applies quantile normalization — a technique that forces 
the distribution of the raw signal intensities from the microarray data to be the same in all samples28. 
c | Example of ten genes that are susceptible to batch effects even after normalization. Hundreds of 
genes show similar behaviour but, for clarity, are not shown. d | Clustering of samples after normalization. 
Note that the samples perfectly cluster by processing date.
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are differentially expressed with respect to 
cancer status, the first principal compo-
nent will be highly correlated with cancer 
status. Principal components capture both 
biological and technical variability and, in 
some cases, principal components can be 
estimated after the biological variables have 
been accounted for15. In this case, the prin-
cipal components primarily quantify the 
effects of artefacts on the high-throughput 
data. Principal components can be com-
pared to known variables, such as processing 
group or time. If the principal components 
do not correlate with these known variables, 
there may be an alternative, unmeasured 
source of batch effects in the data.

Examination of public data
In addition to the example described above 
involving the sTCC study, we examined 
the extent of batch effects for eight other 
published or publicly available data sets 
(TABLE 1) using the following approach. 
First, we identified a surrogate for batch 
effects (such as date or processing group) 
for each data set. We then used simple linear 
models to measure the level of confounding 
between this surrogate and the study out-
come (for example, case or control) when 
available. Note that the more confound-
ing there is, the more likely it is that batch 
variability can be confused with biologi-
cal variability. We then summarized the 

susceptibility to batch effects for each high-
throughput feature. We did this by quan-
tifying the association between observed 
values and the surrogates using analysis of 
variance models. If the association p-value 
was below 0.01, we declared the feature 
as susceptible to batch effects. Next, we 
identified the principal components that 
were most correlated with the surrogate 
and with the outcome, again using analysis 
of variance models. Finally, we identified 
associations between the feature measure-
ments (for example, copy number and gene 
expression levels) and the outcome of inter-
est for each study. The outcomes of this 
analysis are described below.

Table 1 | Batch effects seen for a range of high-throughput technologies

Study description* Known variable used as a surrogate Principal components used as a surrogate Association 
with 
outcome

Significant 
features 
(%)‡‡

Refs

Surrogate‡ Confounding 
(%)§

Susceptible 
features 
(%)||

Principal 
components 
rank of 
surrogate 
(correlation)¶

Principal 
components 
rank of 
outcome 
(correlation)#

Susceptible 
features 
(%)**

Data set 1: gene 
expression microarray, 
Affymetrix (N

p
 = 22,283)

Date 29.7 50.5 1 (0.570) 1 (0.649) 91.6 71.9 9

Data set 2: gene 
expression, Affymetrix 
(N

p
 = 4167)

Date 77.6 73.7 1 (0.922) 1 (0.668) 98.5 62.2 2

Data set 3: mass 
spectrometry (N

p
= 

15,154) 

Processing 
group

100 51.7 2 (0.344) 2 (0.344) 99.7 51.7 3

Data set 4: copy 
number variation, 
Affymetrix (N

p
= 

945,806)

Date 29.2 99.5 2 (0.921) 3 (0.485) 99.8 98.8 16

Data set 5: copy 
number variation, 
Affymetrix (N

p
= 

945,806)

Date 12.2 83.8 1 (0.553) 1 (0.137) 99.8 74.1 17

Data set 6: gene 
expression, Affymetrix 
(N

p
 = 22,277)

Processing 
group

NA 83.8 5 (0.369) NA 97.1 NA 18

Data set 7: gene 
expression, Agilent 
(N

p
 = 17,594)

Date NA 62.8 2 (0.248) NA 96.7 NA 18

Data set 8: DNA 
methylation, Agilent 
(N

p
 = 27,578)

Processing 
group

NA 78.6 3 (0.381) NA 99.8 NA 18

Data set 9: DNA 
sequencing, Solexa 
(N

p
 = 2,886)

Date 24.2 32.1 2 (0.846) 2 (0.213) 72.7 16.9 1000  
Genomes 

Project

The first three rows represent studies for which batch effects have been described in the literature4,5,10. Rows four and five are from genome-wide association study data 
sets. Rows six to eight represent data from The Cancer Genome Atlas (TCGA). Finally, the last row represents second-generation sequencing data from the 1000 
Genomes Project. Details for each data set and the analyses used to construct the table are included in Supplementary information S1 (box). *Study description 
includes the application, platform and number of features (N

p
). ‡A known variable was used as a surrogate for batch effect. §Level of confounding between surrogate 

and biological outcome of interest. We use a generalized R2 statistic for categorical data. The correlation ranges from 0% (no confounding) to 100% (completely 
confounded). ||For each feature of the technology (for example, genes), we computed an F-statistic to test for association by stratifying measurements by the surrogate. 
p-values were obtained and, because of multiple comparisons, false discovery rates (FDRs) were obtained using the Benjamini–Hochberg procedure. A feature 
obtaining an FDR below 5% was considered susceptible to batch effects. ¶Principal components analysis was performed on the feature level data. The principal 
components were ranked in decreasing order of the variability that they explained. We computed the association (using R2) between the surrogate and the first five 
principal components. We report the rank of the component with the highest correlation; the correlation is given in parenthesis. #As for ¶ but using the biological 
outcome of interest instead of the surrogate. **As for ¶ but using principal components to define batch. ‡‡As for ¶ but using biological outcome. NA, not available.
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We re-examined data sets from three 
studies for which batch effects have been 
reported (TABLE 1). The first was the sTCC 
study9 described above. The second was a 
microarray data set from a study examining 
population differences in gene expression2. 
The conclusion of the original paper, that 
the expression of 1,097 of 4,197 genes dif-
fers between populations of European and 
Asian descent, was questioned in another 
publication4 because the populations and 
processing dates were highly correlated. 
In fact, more differences were found when 
comparing data from two processing dates 
while keeping the population fixed. The 
third was a mass spectrometry data set  
that was used to develop a statistical pro-
cedure, based on proteomic patterns in 
serum, to distinguish neoplastic diseases 
from non-neoplastic diseases within the 
ovary3. Concerns about the conclusions 
of this paper were raised in another  
publication, which showed that outcome 
was confounded with run date5.

To further illustrate the ubiquity and 
potential hazards associated with batch 
effects, we also carried out analyses on rep-
resentative publicly available data sets that 
have been established using a range of high-
throughput technologies. In addition to the 
three studies described above, we examined: 
data from a study of copy number variation 

in HapMap populations16; a study of copy 
number variation in a genome-wide asso-
ciation study of bipolar disorder17; gene 
expression from an ovarian cancer study 
from The Cancer Genome Atlas (TCGA)18 
produced using two platforms (Affymetrix 
and Agilent); methylation data from the 
same TCGA ovarian cancer samples pro-
duced using Illumina BeadChips; and 
second-generation sequencing data from a 
study comparing unrelated HapMap indi-
viduals (these data were a subset of the data 
from the 1000 Genomes Project).

We found batch effects for all of these 
data sets, and substantial percentages 
(32.1–99.5%) of measured features showed 
statistically significant associations with 
processing date, irrespective of biologi-
cal phenotype (TABLE 1). This suggests that 
batch effects influence a large percentage 
of the measurements from genomic tech-
nologies. Next, we computed the first five 
principal components of the feature data 
(the principal components were ordered by 
the amount of variability explained). Ideally 
these principal components would correlate 
with the biological variables of interest, as 
the principal components represent the 
largest sources of signal in the data. Instead, 
for all of the studied data sets, the surro-
gates for batch (date or processing group) 
were strongly correlated with one of the top 

principal components (TABLE 1). In general, 
the correlation with the top principal com-
ponents was not as high for the biological 
outcome as it was for the surrogates. This 
suggests that technical variability was more 
influential than biological variability across 
a range of experimental conditions and 
technologies.

For most of the data sets examined, neither  
date nor biological factors was perfectly asso-
ciated with the top principal components, 
suggesting that other unknown sources of 
batch variability are present. This implies 
that accounting for date or processing group 
might not be sufficient to capture and remove 
batch effects. For example, we did a further 
analysis of second-generation sequencing  
data that were generated by the 1000 
Genomes Project (FIG. 2). We found that 32% 
of the features were associated with date but 
up to 73% were associated with the second 
principal component. Note that the principal 
components cannot be explained by biol-
ogy because only 17% of the features are 
associated with the biological outcome.

Downstream consequences
In the most benign cases, batch effects will 
lead to increased variability and decreased 
power to detect a real biological signal15. 
Of more concern are cases in which batch 
effects are confounded with an outcome of 
interest and result in misleading biological 
or clinical conclusions. An example of con-
founding is when all of the cases are pro-
cessed on one day and all of the controls are 
processed on another. We have shown that 
in a typical high-throughput experiment, 
one can expect a substantial percentage of 
features to show statistically significant dif-
ferences when comparing across batches, 
even when no real biological differences are 
present (FIG. 1; TABLE 1). Therefore, if one is 
not aware of the batch effect, a confounded 
experiment will lead to incorrect biological 
conclusions because results due to batch 
will be impossible to distinguish from 
real biological effects. As an example, we 
consider the proteomics study mentioned 
above3. These published results and further 
confirmation19 led to the development of a 
‘home-brew’ diagnostic assay for ovarian 
cancer. However, in this study the biologi-
cal variable of interest (neoplastic disease 
within the ovary) was extremely correlated 
with processing day5. Furthermore, batch 
effects were identified as a major driver of 
these results. Fortunately, objections raised 
after the assay was advertised led the US 
Food and Drug Administration to block use 
of the assay, pending further validation20.
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Figure 2 | Batch effects for second-generation sequencing data from the 1000 Genomes 
Project. Each row is a different HapMap sample processed in the same facility with the same plat-
form. See Supplementary information S1 (box) for a description of the data represented here. The 
samples are ordered by processing date with horizontal lines dividing the different dates. We show 
a 3.5 Mb region from chromosome 16. Coverage data from each feature were standardized across 
samples: blue represents three standard deviations below average and orange represents three 
standard deviations above average. Various batch effects can be observed, and the largest one occurs 
between days 243 and 251 (the large orange horizontal streak).
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A more subtle consequence of the batch 
effect relates to correlations between fea-
tures. These correlations are implicitly or 
explicitly used in various applications. For 
example, in systems biology, gene–gene 
expression correlations are used to analyse 
or predict pathways. Rank-based classifi-
cation methods21 are another example of 
how correlations between features can be 
used. However, we find that batch effects 
are strong enough to change not only mean 
levels of gene expression between batches 
but also correlations and relative rankings 
between the expression of pairs of genes. In 
some cases, the direction of significant posi-
tive correlation between genes is completely 
reversed in different batches. For example, 
we found an effect of this type in our analy-
sis of the gene expression data set from REF. 2 
(TABLE 1). Here, genes that show significant 
positive correlations in the direction of their 
gene expression changes in samples from 
one batch are significantly negatively corre-
lated in samples from a second batch (FIG. 3).

If batch effects go undetected, they 
can lead to substantial misallocation of 
resources and lack of reproducibility22. In 
general, technology that has been developed 
for the prediction of clinical outcomes using 
data that show batch effects may produce 
results that are more variable than expected. 
Batch effects were shown to have strong 
adverse effects on predictors built with 
methods that are naive to these effects10; the 
result is lower-than-expected classification 
rates, which might put patients classified 
with these technologies at risk.

Experimental design solutions
The first step in addressing batch and other 
technical artefacts is careful study design23. 
Experiments that run over long periods of 

time and large-scale experiments that are 
run across different laboratories are highly 
likely to be susceptible. But even smaller 
studies performed within a single labora-
tory may span several days or include 
personnel changes.

High-throughput experiments should 
be designed to distribute batches and other 
potential sources of experimental variation 
across biological groups8. For example, 
in a study comparing a molecular profile in 
tumour samples versus healthy controls,  

the tumour and healthy samples should  
be equally distributed between multiple 
laboratories and across different processing 
times22. These steps can help to minimize 
the probability of confounding between  
biological and batch effects.

However, even in a perfectly designed 
study, batch will strongly influence the meas-
ured high-throughput data. Information 
about changes in personnel, reagents, stor-
age and laboratories should be recorded and 
passed onto data analysts. As it is generally 
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batch was omitted owing to small sample size.) We identified all significant correlations (p < 0.05) 
between pairs of genes within each batch using a linear model. We looked at genes that showed a 
significant correlation in two batches and counted the fraction of times that the correlation changed 
between the two batches. A large percentage of significant correlations reversed signs across batches, 
suggesting that the correlation structure between genes changes substantially across batches. To 
confirm this phenomenon is due to batch, we repeated the process — looking for significant correla-
tions that changed sign across batches — but with the batch labels randomly permuted. With random 
batches, a much smaller fraction of significant correlations change signs. This suggests that correlation 
patterns differ by batch, which would affect rank-based prediction methods as well as system biology 
approaches that rely on between-gene correlation to estimate pathways.

Glossary

Confounded
An extraneous variable (for example, processing data)  
is said to be confounded with the outcome of interest  
(for example, disease state) when it correlates both  
with the outcome and with an independent variable of 
interest (for example, gene expression).

Feature
The general name given to the measurement unit in 
high-throughput technologies. Examples of features  
include probes for the genes represented on microarray, 
mass-to-charge (m/z) ratios for which intensities are 
measured in mass spectrometry, and loci for which 
coverage is reported for sequencing technologies.

Hierarchical clustering
A statistical method in which objects (for example, gene 
expression profiles for different individuals) are grouped  

into a hierarchy, which is visualized in a dendrogram. 
Objects close to each other in the hierarchy, measured  
by tracing the branch heights, are also close by some 
measure of distance — for example, individuals with  
similar expression profiles will be close together in terms  
of branch lengths.

Linear models
Statistical models in which the effect of independent 
variables and error terms are expressed as additive 
terms. For example, when modelling the outcomes  
in a case–control study, the effect of a typical case  
is added to the typical control level. Variation around 
these levels is explained by additive error. Linear  
models motivate many widely used statistical  
methods, such as t-tests and analysis of variance.  
Many popular genomics software tools are also based 
on linear models.

Normalization
Methods used to adjust measurements so that they  
can be appropriately compared among samples.  
For example, gene expression levels measured by 
quantitative PCR are typically normalized to one  
or more housekeeping genes or ribosomal RNA.  
In microarray analysis, methods such as quantile 
normalization manipulate global characteristics of  
the data.

Principal components
Patterns in high-dimensional data that explain  
a large percentage of the variation across features.  
The top principal component is the most ubiquitous 
pattern in a set of high-dimensional data.  
Principal components are sometimes called  
eigengenes when estimated from microarray  
gene expression data.
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impossible to record all potential sources  
of batch effects, statistical modelling solu-
tions — as described below — are needed  
to reduce the impact of batch effects on  
biological conclusions.

Statistical solutions
After a high-throughput study has been 
performed, the statistical approach for deal-
ing with batch effects consists of two key 
steps. Exploratory analyses must be carried 
out to identify the existence of batch effects 
and quantify their effect, as well as the effect 
of other technical artefacts in the data. 
Downstream statistical analyses must then 
be adjusted to account for these unwanted 
effects (FIG. 4).

The first step in the exploratory statistical 
analysis of batch effects is to identify  
and quantify batch effects using principal  
components analysis or visualization  
techniques, such as hierarchical clustering 
dendrograms (FIG. 1d) or multidimensional 
scaling24. Hierarchical clustering of samples25 
labelled both with biological groups and 

known batch surrogates reveals whether  
the major differences are due to biology or 
batch (FIG. 1d). It is also useful to plot the 
levels of individual features (the expression 
levels of specific genes, probes, proteins,  
and so on) versus biological variables and 
batch variables, such as processing group 
or time (FIG. 1c). Plotting individual features 
versus biological and known batch variables 
is crucial, as the bulk distribution of normal-
ized data may seem correct even when  
batch effects exist (FIG. 1b). A useful way 
to summarize these feature-level effects is to 
calculate the principal components of the 
feature data26. The principal components 
can also be plotted against known batch 
variables, such as processing group or time, 
to determine whether, on average, the high-
dimensional feature data are correlated with 
batch. An example R script is included in the 
code and data for this article (see ‘Further 
Information’).

Strong batch effects may exist when: 
the samples cluster by processing group or 
time; a large number of features are highly 

associated with processing group or time;  
or principal components are associated  
with batch processing group or time. If strong 
batch effects exist, they must be accounted 
for in downstream statistical analyses.

Most downstream statistical analyses 
performed on high-throughput data rely on 
linear models, either explicitly or implicitly. 
However, there are also other solutions, such 
as those provided for copy number vari-
ation microarrays13 that do not use linear 
models. Because these latter solutions are 
typically specific to each application, we do 
not review them here. For analyses using 
linear models, batch effects can be modelled 
in one of two ways. If exploratory analyses 
and prior knowledge suggest that simple 
surrogates, such as processing time, capture 
all of the batch effects, these surrogates can 
be directly incorporated into the models that 
are used to compare groups. The simplest 
approach is to include processing group 
and time as variables in the linear model for 
association between the high-dimensional 
features and the outcome variables8,12. 
See the ComBat website for a discussion 
of this approach.

In many cases, processing time is a  
useful surrogate but does not explain all 
of the technical artefacts and variability 
that are seen in high-throughput data. 
When the true sources of batch effects are 
unknown or cannot be adequately mod-
elled with processing group or date, it may 
be more appropriate to use methods such 
as surrogate variable analysis (SVA)15 (see 
‘Further Information’). SVA estimates the 
sources of batch effects directly from the 
high-throughput data so that downstream 
significance analyses can be corrected. 
Variables estimated with SVA can then be 
incorporated into the linear model that 
relates the outcome to the high-dimensional 
feature data, in the same way as processing  
year or group could be included. An 
advantage of SVA is that surrogate vari-
ables are estimated instead of pre-specified, 
which means that the important potential 
batch variables do not have to be known 
in advance.

These approaches are most effective 
when batch effects are not highly con-
founded, or correlated, with the biological 
variables of interest. To identify potential 
sources of confounding, biological variables 
and sample characteristics can be compared 
to processing group and time. If the bio-
logical variables are highly correlated with 
processing group or time, it is difficult to 
determine whether observed differences 
across biological groups are due to biology 
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Exploratory analyses

Downstream analyses

Diagnostic analyses

Use of SVA and ComBat does not guarantee that batch effects have been addressed. After fitting 
models, including processing time and date or surrogate variables estimated with SVA, re-cluster the 
data to ensure that the clusters are not still driven by batch effects

Perform downstream analyses, such as regressions, t-tests or clustering, and adjust for surrogate or 
estimated batch effects. The estimated/surrogate variables should be treated as standard covariates, 
such as sex or age, in subsequent analyses or adjusted for use with tools such as ComBat

Use measured technical variables as surrogates 
for batch and other technical artefacts

Estimate artefacts from the high-throughput data 
directly using surrogate variable analysis (SVA)

Do you believe that measured batch surrogates (processing time, laboratory, etc.) represent the only 
potential artefacts in the data?

Yes No

Hierarchically cluster the samples and label them with biological variables and batch surrogates (such as 
laboratory and processing time)

Plot individual features versus biological variables and batch surrogates

Calculate principal components of the high-throughput data and identify components that correlate
with batch surrogates

Figure 4 | Key steps in the statistical analysis of batch effects. The first step is exploratory data 
analysis to identify and quantify potential batch effects and other artefacts. The second step is to use 
known or estimated surrogates of the artefacts to adjust downstream analyses. The final step is to carry 
out diagnostic analyses.
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or artefacts. At a minimum, analyses should 
report the processing group and time of all 
samples in a study along with the biological 
variables of interest so that results can be 
independently verified.

Conclusion
There has been substantial progress in  
identifying and accounting for batch effects, 
but substantial challenges remain. Foremost 
among these challenges is the need for 
consistent reporting of the most common 
potential sources of batch effects, including 
processing group and date. Experimental 
designs should also consistently distribute 
biological groups equally across process-
ing groups and times. Close collaborations 
between laboratory biologists and  
data analysts are also needed so that  
the specific sources of batch effects  
can be isolated and the dependence on 
surrogates can be reduced. Targeted experi-
ments may be necessary to determine the 
precise sources of non-biological signal for 
each specific technology. Finally, there is a 
need to incorporate adjustment for batch 
effects as a standard step in the analysis of 
high-throughput data analysis along with 
normalization, exploratory analysis and  
significance calculation.
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