Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The population genetics of antibiotic resistance: integrating molecular mechanisms and treatment contexts

Key Points

  • The fitness effects of antibiotic-resistance mutations and of mutations that compensate for the cost of resistance depends on the molecular basis of resistance and the ecological (or treatment) context in which resistance evolves.

  • The distribution of fitness effects of resistance mutations is determined by antibiotic dose and drug–target interactions.

  • Resistance mutations impose a fitness cost that varies widely among mutations. It may be possible to predict costs of resistance by considering the effects of resistance mutations on protein stability.

  • Compensatory mutations alleviate the cost of resistance, allowing resistant strains to persist in the absence of antibiotics. The opportunity for compensation varies among resistant mutants and it may be possible to predict this variability by explicitly considering the mechanistic basis of the costs of resistance.

  • Physiological interactions between antibiotics and genetic interactions between resistance mutations are crucial for the evolution of multidrug resistance by modifying the benefits associated with resistance and compensatory mutation.

  • Immigration from antibiotic-free populations is important in the evolution of resistance. Immigration accelerates the evolution of resistance when resistance mutations are rare and immigration can reverse resistance following the cessation of antibiotic use.

  • Spatial and temporal patterns of antibiotic use play a key part in the evolution of resistance. Resistance evolves most slowly under maximal levels of environmental heterogeneity.

  • Future work should concentrate on developing predictive models of resistance evolution by integrating molecular mechanisms of resistance with treatment context. This may help develop improved treatment strategies for preventing resistance evolution in pathogen populations.

Abstract

Despite efforts from a range of disciplines, our ability to predict and combat the evolution of antibiotic resistance in pathogenic bacteria is limited. This is because resistance evolution involves a complex interplay between the specific drug, bacterial genetics and both natural and treatment ecology. Incorporating details of the molecular mechanisms of drug resistance and ecology into evolutionary models has proved useful in predicting the dynamics of resistance evolution. However, putting these models to practical use will require extensive collaboration between mathematicians, molecular biologists, evolutionary ecologists and clinicians.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Palumbi, S. R. Evolution — humans as the world's greatest evolutionary force. Science 293, 1786–1790 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Maynard Smith, J., Feil, E. J. & Smith, N. H. Population structure and evolutionary dynamics of pathogenic bacteria. Bioessays 22, 1115–1122 (2000).

    Article  Google Scholar 

  3. Levy, S. B. & Marshall, B. Antibacterial resistance worldwide: causes, challenges and responses. Nature Med. 10, S122–S129 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Lipsitch, M. The rise and fall of antimicrobial resistance. Trends Microbiol. 9, 438–444 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Levin, B. R., Perrot, V. & Walker, N. Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics 154, 985–997 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Buckling, A., MacLean, R. C., Brockhurst, M. & Colegrave, N. The Beagle in a bottle. Nature 457, 824–829 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Gagneux, S. et al. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science 312, 1944–1946 (2006). This paper measures the cost of rifampicin resistance in M. tuberculosis and shows that the least costly resistance mutations are the most prevalent mutations in clinical populations of this important pathogen.

    Article  CAS  PubMed  Google Scholar 

  8. Nagaev, I., Bjorkman, J., Andersson, D. I. & Hughes, D. Biological cost and compensatory evolution in fusidic acid-resistant Staphylococcus aureus. Mol. Microbiol. 40, 433–439 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Rozen, D. E., McGee, L., Levin, B. R. & Klugman, K. P. Fitness costs of fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 51, 412–416 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. MacLean, R. C. & Buckling, A. The distribution of fitness effects of beneficial mutations in Pseudomonas aeruginosa. PLoS Genet. 5, e1000406 (2009). This paper shows that the DFBM of rifampicin resistance mutations is predictably variable as a function of antibiotic dose, and highlights the importance of drug–target interactions for determining the DFBM.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Thomas, V. L., McReynolds, A. C. & Shoichet, B. K. Structural bases for stability–function tradeoffs in antibiotic resistance. J. Mol. Biol. 396, 47–59 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, X. J., Minasov, G. & Shoichet, B. K. Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs. J. Mol. Biol. 320, 85–95 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Weinreich, D. M., Delaney, N. F., DePristo, M. A. & Hartl, D. L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Michel, J. B., Yeh, P. J., Chait, R., Moellering, R. C. & Kishony, R. Drug interactions modulate the potential for evolution of resistance. Proc.Natl Acad. Sci. USA 105, 14918–14923 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yeh, P. J., Hegreness, M. J., Aiden, A. P. & Kishony, R. Drug interactions and the evolution of antibiotic resistance. Nature Rev. Microbiol. 7, 460–466 (2009). This excellent Review shows how physiological interactions among antibiotics play a key part in determining the rate of evolution of multidrug resistance.

    Article  CAS  Google Scholar 

  16. Perron, G. G., Gonzalez, A. & Buckling, A. Source–sink dynamics shape the evolution of antibiotic resistance and its pleiotropic fitness cost. Proc. R. Soc. Lond., B 274, 2351–2356 (2007).

    Article  Google Scholar 

  17. Perron, G. G., Gonzalez, A. & Buckling, A. The rate of environmental change drives adaptation to an antibiotic sink. J. Evol. Biol. 21, 1724–1731 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Palmer, A. C., Angelino, E. & Kishony, R. Chemical decay of an antibiotic inverts selection for resistance. Nature Chem. Biol. 6, 105–107.

  19. Bollenbach, T., Quan, S., Chait, R. & Kishony, R. Nonoptimal microbial response to antibiotics underlies suppressive drug interactions. Cell 139, 707–718 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Walsh, C. Molecular mechanisms that confer antibacterial drug resistance. Nature 406, 775–781 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Andersson, D. I. The biological cost of mutational antibiotic resistance: any practical conclusions? Curr. Opin. Microbiol. 9, 461–465 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Andersson, D. I. & Levin, B. R. The biological cost of antibiotic resistance. Curr. Opin. Microbiol. 2, 489–493 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Bjorkman, J., Hughes, D. & Andersson, D. I. Virulence of antibiotic-resistant Salmonella typhimurium. Proc. Natl Acad. Sci. USA 95, 3949–3953 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maisnier-Patin, S. & Andersson, D. I. Adaptation to the deleterious effects of antimicrobial drug resistance mutations by compensatory evolution. Res. Microbiol. 155, 360–369 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Andersson, D. I. & Hughes, D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nature Rev. Microbiol. 8, 260–271 (2010). This excellent Review provides a comprehensive summary of research on the cost of resistance, compensatory adaptation and the reversion of antibiotic resistance.

    Article  CAS  Google Scholar 

  26. Sandgren, A. et al. Tuberculosis drug resistance mutation database. PLoS Med. 6, e2 (2009).

    Article  PubMed  CAS  Google Scholar 

  27. Orr, H. A. The genetic theory of adaptation: a brief history. Nature Rev. Genet. 6, 119–127 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Eyre-Walker, A. & Keightley, P. D. The distribution of fitness effects of new mutations. Nature Rev. Genet. 8, 610–618 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Joyce, P., Rokyta, D. R., Beisel, C. J. & Orr, H. A. A general extreme value theory model for the adaptation of DNA sequences under strong selection and weak mutation. Genetics 180, 1627–1643 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Orr, H. A. The population genetics of adaptation: the adaptation of DNA sequences. Evolution 56, 1317–1330 (2002). In this landmark theory paper, Orr shows that many very general properties of adaptive walks can be derived from the simple assumption of an exponential DFBM.

    Article  CAS  PubMed  Google Scholar 

  31. Orr, H. A. The distribution of fitness effects among beneficial mutations. Genetics 163, 1519–1526 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Gillespie, J. H. A simple stochastic gene substitution model. Theor. Popul. Biol. 23, 202–215 (1983).

    Article  CAS  PubMed  Google Scholar 

  33. Kassen, R. & Bataillon, T. Distribution of fitness effects among beneficial mutations before selection in experimental populations of bacteria. Nature Genet. 38, 484–488 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Sanjuan, R., Moya, A. & Elena, S. F. The distribution of fitness effects caused by single-nucleotide substitutions in an RNA virus. Proc. Natl Acad. Sci. USA 101, 8396–8401 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Baquero, F., Negri, M. C., Morosini, M. L. & Blázquez, J. Selection of very small differences in bacterial evolution. Int. Microbiol. 1, 295–300 (1998).

    CAS  PubMed  Google Scholar 

  36. Drlica, K. The mutant selection window and antimicrobial resistance. J. Antimicrob. Chemother. 52, 11–17 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Fischbach, M. A. & Walsh, C. T. Antibiotics for emerging pathogens. Science 325, 1089–1093 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. LeClerc, J. E., Li, B., Payne, W. L. & Cebula, T. A. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274, 1208–1211 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Matic, I. et al. Highly variable mutation rates in commensal and pathogenic Escherichia coli. Science 277, 1833–1834 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Oliver, A., Cantón, R., Campo, P., Baquero, F. & Blázquez, J. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288, 1251–1253 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Giraud, A., Radman, M., Matic, I. & Taddei, F. The rise and fall of mutator bacteria. Curr. Opin. Microbiol. 4, 582–585 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Lind, P. A. & Andersson, D. I. Whole-genome mutational biases in bacteria. Proc. Natl Acad. Sci. USA 105, 17878–17883 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Garibyan, L. et al. Use of the rpoB gene to determine the specificity of base substitution mutations on the Escherichia coli chromosome. DNA Repair 2, 593–608 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Ochman, H., Lawrence, J. G. & Grolsman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Hanage, W. P., Fraser, C., Tang, J., Connor, T. R. & Corander, J. Hyper-recombination, diversity, and antibiotic resistance in pneumococcus. Science 324, 1454–1457 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Mazel, D. Integrons: agents of bacterial evolution. Nature Rev. Microbiol. 4, 608–620 (2006).

    Article  CAS  Google Scholar 

  47. Martinez, J. L. The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc. R. Soc. Lond., B 276, 2521–2530 (2009).

    Article  Google Scholar 

  48. Turner, P. E. Phenotypic plasticity in bacterial plasmids. Genetics 167, 9–20 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Levin, B. R., Stewart, F. M. & Rice, V. A. The kinetics of conjugative plasmid transmission: fit of a simple mass action model. Plasmid 2, 247–260 (1979).

    Article  CAS  PubMed  Google Scholar 

  50. Dionisio, F., Matic, I., Radman, M., Rodrigues, O. R. & Taddei, F. Plasmids spread very fast in heterogeneous bacterial communities. Genetics 162, 1525–1532 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Lilley, A. K. & Bailey, M. J. The transfer dynamics of Pseudomonas sp. plasmid pQBR11 in biofilms. FEMS Microbiol. Ecol. 42, 243–250 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. D'Costa, V. M., McGrann, K. M., Hughes, D. W. & Wright, G. D. Sampling the antibiotic resistome. Science 311, 374–377 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Sommer, M. O., Dantas, G. & Church, G. M. Functional characterization of the antibiotic resistance reservoir in the human microflora. Science 325, 1128–1131 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Perron, G. G., Quessy, S. & Bell, G. A reservoir of drug-resistant pathogenic bacteria in asymptomatic hosts. PLoS ONE 3, e3749 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Burt, A. & Trivers, R. Genes in Conflict (Belknap, Cambridge, Massachusetts, 2006).

    Book  Google Scholar 

  56. Dionisio, F., Conceição, I. C., Marques, A. C. R., Fernandes, L. & Gordo, I. The evolution of a conjugative plasmid and its ability to increase bacterial fitness. Biol. Lett. 1, 250–252 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Luciani, F., Sisson, S. A., Jiang, H. L., Francis, A. R. & Tanaka, M. M. The epidemiological fitness cost of drug resistance in Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 106, 14711–14715 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Devanas, M. A., Rafaeli-Eshkol, D. & Stotzky, G. Survival of plasmid-containing strains of Escherichia coli in soil: effect of plasmid size and nutrients on survival of hosts and maintenance of plasmids. Curr. Microbiol. 13, 269–277 (1986).

    Article  Google Scholar 

  59. Bouma, J. E. & Lenski, R. E. Evolution of a bacteria/plasmid association. Nature 335, 351–352 (1988).

    Article  CAS  PubMed  Google Scholar 

  60. Dahlberg, C. & Chao, L. Amelioration of the cost of conjugative plasmid carriage in Escherichia coli K12. Genetics 165, 1641–1649 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Modi, R. I. & Adams, J. Coevolution in bacterial–plasmid populations. Evolution 45, 656–667 (1991).

    Article  PubMed  Google Scholar 

  62. Enne, V. I., Delsol, A. A., Roe, J. M. & Bennett, P. M. Rifampicin resistance and its fitness cost in Enterococcus faecium. J. Antimicrob. Chemother. 53, 203–207 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Kugelberg, E., Lofmark, S., Wretlind, B. & Andersson, D. I. Reduction of the fitness burden of quinolone resistance in Pseudomonas aeruginosa. J. Antimicrob. Chemother. 55, 22–30 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Mariam, D. H., Mengistu, Y., Hoffner, S. E. & Andersson, D. I. Effect of rpoB mutations conferring rifampin resistance on fitness of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 48, 1289–1294 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Trindade, S. et al. Positive epistasis drives the acquisition of multidrug resistance. PLoS Genet. 5, e1000578 (2009). This paper provides the first large-scale test for epistasis between resistance mutations and shows a strong tendency towards antagonistic epistasis between resistance mutations.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Tokuriki, N., Stricher, F., Schymkowitz, J., Serrano, L. & Tawfik, D. S. The stability effects of protein mutations appear to be universally distributed. J. Mol. Biol. 369, 1318–1332 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Blance, S. J. et al. Temperature-sensitive suppressor mutations of the Escherichia coli DNA gyrase B protein. Protein Sci. 9, 1035–1037 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Guerois, R., Nielsen, J. E. & Serrano, L. Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J. Mol. Biol. 320, 369–387 (2002).

    CAS  PubMed  Google Scholar 

  69. Potapov, V., Cohen, M. & Schreiber, G. Assessing computational methods for predicting protein stability upon mutation: good on average but not in the details. Protein Eng. Des. Sel. 22, 553–560 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Perkins, A. E. & Nicholson, W. L. Uncovering new metabolic capabilities of Bacillus subtilis using phenotype profiling of rifampin-resistant rpoB mutants. J. Bacteriol. 190, 807–814 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Hall, A. R., Griffiths, V. F., MacLean, R. C. & Colegrave, N. Mutational neighbourhood and mutation supply rate constrain adaptation in Pseudomonas aeruginosa. Proc. R. Soc. Lond., B 277, 643–650 (2010).

    Article  CAS  Google Scholar 

  72. Hanson, D. K., Tiede, D. M., Nance, S. L., Chang, C. H. & Schiffer, M. Site-specific and compensatory mutations imply unexpected pathways for proton delivery to the QB binding-site of the photosynthetic reaction-center. Proc. Natl Acad. Sci. USA 90, 8929–8933 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Reynolds, M. G. Compensatory evolution in rifampin-resistant Escherichia coli. Genetics 156, 1471–1481 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Björkman, J., Hughes, D. & Andersson, D. I. Virulence of antibiotic-resistant Salmonella typhimurium. Proc. Natl Acad. Sci. USA 95, 3949–3953 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Maisnier-Patin, S., Paulander, W., Pennhag, A. & Andersson, D. I. Compensatory evolution reveals functional interactions between ribosomal proteins S12 L14 and L19. J. Mol. Biol. 366, 207–215 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Nilsson, A. I. et al. Reducing the fitness cost of antibiotic resistance by amplification of initiator tRNA genes. Proc. Natl Acad. Sci. USA 103, 6976–6981 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Romero, D. & Palacios, R. Gene amplification and genomic plasticity in prokaryotes. Annu. Rev. Genet. 31, 91–111 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Sandegren, L. & Andersson, D. I. Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nature Rev. Microbiol. 7, 578–588 (2009).

    Article  CAS  Google Scholar 

  79. Rokyta, D., Badgett, M. R., Molineux, I. J. & Bull, J. J. Experimental genomic evolution: extensive compensation for loss of DNA ligase activity in a virus. Mol. Biol. Evol. 19, 230–238 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Sherman, D. R. et al. Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science 272, 1641–1643 (1996).

    Article  CAS  PubMed  Google Scholar 

  81. Andersson, D. I. Persistence of antibiotic resistant bacteria. Curr. Opin. Microbiol. 6, 452–456 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Schrag, S. J., Perrot, V. & Levin, B. R. Adaptation to the fitness costs of antibiotic resistance in Escherichia coli. Proc. R. Soc. Lond., B 264, 1287–1291 (1997).

    Article  CAS  Google Scholar 

  83. Orr, H. A. The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution 52, 935–949 (1998).

    Article  PubMed  Google Scholar 

  84. Gillespie, J. H. Molecular evolution over the mutational landscape. Evolution 38, 1116–1129 (1984).

    Article  CAS  PubMed  Google Scholar 

  85. Bjorkman, J., Nagaev, I., Berg, O. G., Hughes, D. & Andersson, D. I. Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science 287, 1479–1482 (2000). In this landmark paper, the authors show that the fitness costs of bacterial resistance and subsequent compensatory adaptation differ between assays done in mice and in culture medium.

    Article  CAS  PubMed  Google Scholar 

  86. Maisnier-Patin, S., Berg, O. G., Liljas, L. & Andersson, D. I. Compensatory adaptation to the deleterious effect of antibiotic resistance in Salmonella typhimurium. Mol. Microbiol. 46, 355–366 (2002).

    Article  CAS  PubMed  Google Scholar 

  87. Moore, F. B. G., Rozen, D. E. & Lenski, R. E. Pervasive compensatory adaptation in Escherichia coli. Proc. R. Soc. Lond., B 267, 515–522 (2000).

    Article  CAS  Google Scholar 

  88. Schoustra, S. E., Bataillon, T., Gifford, D. R. & Kassen, R. The properties of adaptive walks in evolving populations of fungus. PLoS Biol. 7, e1000250 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Paulander, W., Maisnier-Patin, S. & Andersson, D. I. Multiple mechanisms to ameliorate the fitness burden of mupirocin resistance in Salmonella typhimurium. Mol. Microbiol. 64, 1038–1048 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. DePristo, M. A., Weinreich, D. M. & Hartl, D. L. Missense meanderings in sequence space: a biophysical view of protein evolution. Nature Rev. Genet. 6, 678–687 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Poon, A., Davis, B. H. & Chao, L. The coupon collector and the suppressor mutation: estimating the number of compensatory mutations by maximum likelihood. Genetics 170, 1323–1332 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Smith, P. A. & Romesberg, F. E. Combating bacteria and drug resistance by inhibiting mechanisms of persistence and adaptation. Nature Chem. Biol. 3, 549–556 (2007).

    Article  CAS  Google Scholar 

  93. Hauser, A. R. Antibiotics Basics for Clinicians: Choosing the Right Antibacterial Agent, 318 (Lippincott Williams and Wilkins, Baltimore, 2007).

    Google Scholar 

  94. Hegreness, M., Shoresh, N., Damian, D., Hartl, D. & Kishony, R. Accelerated evolution of resistance in multidrug environments. Proc. Natl Acad. Sci. USA 105, 13977–13981 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ward, H., Perron, G. & MacLean, R. C. The fitness cost of multiple drug resistance in Pseudomonas aeruginosa. J. Evol. Biol. 22, 997–1003 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Anderson, J. B., Ricker, N. & Sijursingh, C. Antagonism between two mechanisms of antifungal drug resistance. Eukaryotic Cell 5, 1243–1251 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sanjuan, R., Cuevas, J. M., Moya, A. & Elena, S. F. Epistasis and the adaptability of an RNA virus. Genetics 170, 1001–1008 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kemper, N. Veterinary antibiotics in the aquatic and terrestrial environment. Ecol. Indic. 8, 1–13 (2008).

    Article  CAS  Google Scholar 

  99. Débarre, F., Lenormand, T. & Gandon, S. Evolutionary epidemiology of drug-resistance in space. PLoS Comput. Biol. 5, e1000337 (2009). This theoretical study integrates evolution and epidemiology to investigate how drug resistance evolution is influenced by the spatial context of treatment.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Harris, S. R. et al. Evolution of MRSA during hospital transmission and intercontinental spread. Science 327, 469–474 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Grundmann, H., Aires- de-Sousa, M., Boyce, J. & Tiemersma, E. Emergence and resurgence of meticillin-resistant Staphylococcus aureus as a public-health threat. Lancet 368, 874–885 (2006).

    Article  PubMed  Google Scholar 

  102. Séveno, N. A. et al. Occurrence and reservoirs of antibiotic resistance genes in the environment. Rev. Med. Microbiol. 13, 15–27 (2002).

    Article  Google Scholar 

  103. Perron, G. G., Bell, G. & Quessy, S. Parallel evolution of multidrug-resistance in Salmonella enterica isolated from swine. FEMS Microbiol. Lett. 281, 17–22 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Perron, G. G., Quessy, S., Letellier, A. & Bell, G. Genotypic diversity and antimicrobial resistance in asymptomatic Salmonella enterica serotype Typhimurium DT104. Infect. Genet. Evol. 7, 223–228 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Sexton, T., Clarke, P., O'Neill, E., Dillane, T. & Humphreys, H. Environmental reservoirs of methicillin-resistant Staphylococcus aureus in isolation rooms: correlation with patient isolates and implications for hospital hygiene. J. Hosp. Infect. 62, 187–194 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Sánchez-Payá, J. et al. Nosocomial infection surveillance and control: current situation in Spanish hospitals. J. Hosp. Infect. 72, 50–56 (2009).

    Article  PubMed  Google Scholar 

  107. Seppala, H. et al. The effect of changes in the consumption of macrolide antibiotics on erythromycin resistance in group A streptococci in Finland. N. Engl. J. Med. 337, 441–446 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Pal, C., Macia, M. D., Oliver, A., Schachar, I. & Buckling, A. Coevolution with viruses drives the evolution of bacterial mutation rates. Nature 450, 1079–1081 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Perron, G. G. & Buckling, A. Hypermutability and compensatory adaptation in antibiotic-resistant bacteria. Am. Nat. (in the press).

  110. Bergstrom, C. T., Lo, M. & Lipsitch, M. Ecological theory suggests that antimicrobial cycling will not reduce antimicrobial resistance in hospitals. Proc. Natl Acad. Sci. USA 101, 13285–13290 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Smith, D. L., Dushoff, J., Perencevich, E. N., Harris, A. D. & Levin, S. A. Persistent colonization and the spread of antibiotic resistance in nosocomial pathogens: resistance is a regional problem. Proc. Natl Acad. Sci. USA 101, 3709–3714 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Martinez, J. L., Baquero, F. & Andersson, D. I. Predicting antibiotic resistance. Nature Rev. Microbiol. 5, 958–965 (2007).

    Article  CAS  Google Scholar 

  113. Campbell, E. A. et al. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104, 901–912 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Johanson, U., Ævarsson, A., Liljas, A. & Hughes, D. The dynamic structure of EF-G. studied by fusidic acid resistance and internal revertants. J. Mol. Biol. 258, 420–432 (1996).

    Article  CAS  PubMed  Google Scholar 

  115. Madigan, M. T. & Martinko, J. M. Brock Biology of Microorganisms, (Pearson Education, San Francisco, 2006).

    Google Scholar 

  116. Cohan, F. M., King, E. C. & Zawadzki, P. Amelioration of the deleterious pleiotropic effects of an adaptive mutation in Bacillus subtilis. Evolution 48, 81–95 (1994).

    Article  PubMed  Google Scholar 

  117. Austin, D. J. & Anderson, R. M. Studies of antibiotic resistance within the patient, hospitals and the community using simple mathematical models. Philos. Trans. R. Soc. Lond., B 354, 721–738 (1999).

    Article  CAS  Google Scholar 

  118. De Gelder, L. et al. Combining mathematical models and statistical methods to understand and predict the dynamics of antibiotic-sensitive mutants in a population of resistant bacteria during experimental evolution. Genetics 168, 1131–1144 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Reluga, T. C. Simple models of antibiotic cycling. Math. Med. Biol. 22, 187–208 (2005).

    Article  PubMed  Google Scholar 

  120. Martin, G., Lenormand, T. & Phillips, P. A general multivariate extension of Fisher's geometric model and the distribution of mutation fitness effects across species. Evolution 60, 893–907 (2009).

    Article  Google Scholar 

  121. Rokyta, D. R. et al. Beneficial fitness effects are not exponential for two viruses. J. Mol. Evol. 67, 368–376 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Szathmáry, E. Do deleterious mutations interact synergistically? Metabolic control theory provides a partial answer. Genetics 133, 127–132 (1993).

    PubMed  PubMed Central  Google Scholar 

  123. Klipp, E. et al. Systems Biology, (Wiley, Weinheim, Germany, 2009).

    Google Scholar 

  124. Sanjuan, R. & Nebot, M. R. A network model for the correlation between epistasis and genomic complexity. PLoS ONE 3, e2663 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Smith, E. E. et al. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc. Natl Acad. Sci. 103, 8487–8492 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Meacci, F. et al. Drug resistance evolution of a Mycobacterium tuberculosis strain from a noncompliant patient. J. Clin. Microbiol. 43, 3114–3120 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mwangi, M. M. et al. Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc. Natl Acad. Sci. USA 104, 9451–9456 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Lipsitch, M., Bergstrom, C. T. & Levin, B. R. The epidemiology of antibiotic resistance in hospitals: paradoxes and prescriptions. Proc. Natl Acad. Sci. USA 97, 1938–1943 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Brown, E. M. & Nathwani, D. Antibiotic cycling or rotation: a systematic review of the evidence of efficacy. J. Antimicrob. Chemother. 55, 6–9 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the European Research Council, the Royal Society and the Leverhulme Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Craig MacLean.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

TB Drug Resistance Mutation Database

FURTHER INFORMATION

Angus Buckling's homepage

R. Craig MacLean's homepage

Glossary

Strong selection

Occurs when selection imposes strong pressure on the evolution of a trait. In the context of this Review, the strength of selection for resistance increases with antibiotic dose. Most experiments select for resistance under antibiotic doses that prevent growth of wild-type strains, implying strong selection for resistance.

Population bottlenecking

Occurs when the size of a population is reduced dramatically.

Effective population size

The effective population size of a population is the number of individuals in a theoretically ideal population that have the same magnitude of genetic drift as the actual population.

Extreme value theory

A branch of statistical theory that is concerned with the asymptotic properties of the largest samples from a probability distribution, that is those from the tail of the distribution.

Systems-based approach

An approach that investigates a biological phenomenon by assaying a wide range of levels of biological organization, from individual proteins to entire cellular networks. In the context of antibiotic resistance, such an approach involves predicting the fitness effects of resistance and compensatory mutations (ideally quantitatively) based on molecular models of resistance and compensation.

Pleiotropy

A phenomenon in which a gene can influence two or more independent characteristics.

Adaptive walks

A metaphor used to describe the sequence of fixation of beneficial mutations that transform a low-fitness genotype into a genotype that is well-adapted to its environment.

Longitudinal study

A study in which repeated measurements are taken from the same subjects at different time points.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacLean, R., Hall, A., Perron, G. et al. The population genetics of antibiotic resistance: integrating molecular mechanisms and treatment contexts. Nat Rev Genet 11, 405–414 (2010). https://doi.org/10.1038/nrg2778

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2778

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing