Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Maintaining the brain: insight into human neurodegeneration from Drosophila melanogaster mutants

Key Points

  • More than 40 Drosophila melanogaster genes have been discovered for which recessive, loss-of-function mutations cause adult onset degeneration of the central nervous system (CNS). A table presenting these genes is provided, and an expanded, updated version can be found at the Bonini laboratory homepage.

  • Almost all of these genes have easily identifiable orthologues in the mouse and human. Over half have mouse or human orthologues that are also associated with neurodegeneration.

  • The swiss cheese (sws) gene demonstrates the value of unbiased screens in the fly. Since its discovery, two biochemical functions have been characterized for the protein; loss of the mouse orthologue in the brain has been shown to cause neurodegeneration, and loss-of-function mutations in the human orthologue have been discovered as the cause of spastic paraplegia 39.

  • Pink1 and park are associated with Parkinson's disease, and they demonstrate the value of epistasis experiments in the fly, which have shown that these two genes function together in a pathway that regulates mitochondrial fusion and fission.

  • Fly neurodegeneration genes can be grouped into the following cellular processes: mitochondrial function, signal transduction, lipid homeostasis, protein homeostasis and the cytoskeleton. Many of the genes have roles in more than one of these processes.

  • Some glial-specific genes have been shown to be required for maintaining neurons in the adult. Mutations in other, more widely expressed genes have defective glia, underscoring the importance of glia in CNS integrity.

  • Many genetic tricks are possible in the fly, such as: the precise control in space and time of the expression of transgenes, including through RNAi constructs; and the possibility of making marked homozygous mutant clones as small as a single neuron in otherwise heterozygous animals. These techniques, and the ease of forward genetics screens for identifying new neurodegeneration mutants, ensure that D. melanogaster will remain a key tool for the analysis of genes required for CNS integrity.

Abstract

The fruitfly Drosophila melanogaster has enabled significant advances in neurodegenerative disease research, notably in the identification of genes that are required to maintain the structural integrity of the brain, defined by recessive mutations that cause adult onset neurodegeneration. Here, we survey these genes in the fly and classify them according to five key cell biological processes. Over half of these genes have counterparts in mice or humans that are also associated with neurodegeneration. Fly genetics continues to be instrumental in the analysis of degenerative disease, with notable recent advances in our understanding of several inherited disorders, Parkinson's disease, and the central role of mitochondria in neuronal maintenance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cellular processes implicated by neurodegeneration genes.
Figure 2: Neurodegeneration proteins associated with the mitochondrion.

Similar content being viewed by others

References

  1. Pires-daSilva, A. & Sommer, R. J. The evolution of signalling pathways in animal development. Nature Rev. Genet. 4, 39–49 (2003).

    CAS  PubMed  Google Scholar 

  2. Ben-Shlomo, I., Hsu, S. Y., Rauch, R., Kowalski, H. W. & Hsueh, A. J. W. Signaling receptome: a genomic and evolutionary perspective of plasma membrane receptors involved in signal transduction. Sci. STKE 2003, re9 (2003).

    PubMed  Google Scholar 

  3. Hirth, F. & Reichert, H. Conserved genetic programs in insect and mammalian brain development. Bioessays 21, 677–684 (1999).

    CAS  PubMed  Google Scholar 

  4. Sehgal, A. et al. Molecular analysis of sleep: wake cycles in Drosophila. Cold Spring Harb. Symp. Quant. Biol. 72, 557–564 (2007).

    CAS  PubMed  Google Scholar 

  5. Roman, G. & Davis, R. L. Molecular biology and anatomy of Drosophila olfactory associative learning. Bioessays 23, 571–581 (2001).

    CAS  PubMed  Google Scholar 

  6. Dierick, H. A. Fly fighting: octopamine modulates aggression. Curr. Biol. 18, R161–R163 (2008).

    CAS  PubMed  Google Scholar 

  7. Chien, S., Reiter, L. T., Bier, E. & Gribskov, M. Homophila: human disease gene cognates in Drosophila. Nucleic Acids Res. 30, 149–151 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hotta, Y. & Benzer, S. Mapping of behaviour in Drosophila mosaics. Nature 240, 527–535 (1972).

    CAS  PubMed  Google Scholar 

  9. Bonini, N. M. A Tribute to Seymour Benzer, 1921–2007. Genetics 180, 1265–1273 (2008).

    PubMed  PubMed Central  Google Scholar 

  10. Min, K. T. & Benzer, S. Spongecake and eggroll: two hereditary diseases in Drosophila resemble patterns of human brain degeneration. Curr. Biol. 7, 885–888 (1997).

    CAS  PubMed  Google Scholar 

  11. Min, K. T. & Benzer, S. Preventing neurodegeneration in the Drosophila mutant bubblegum. Science 284, 1985–1988 (1999).

    CAS  PubMed  Google Scholar 

  12. Heisenberg, M. & Bohl, K. Isolation of anatomical brain mutants of Drosophila by histological means. Z. Naturforsch. B 34, 143–147 (1979).

    Google Scholar 

  13. Palladino, M. J., Hadley, T. J. & Ganetzky, B. Temperature-sensitive paralytic mutants are enriched for those causing neurodegeneration in Drosophila. Genetics 161, 1197–1208 (2002). Neurodegeneration screen based on an induced paralysis phenotype.

    PubMed  PubMed Central  Google Scholar 

  14. Fergestad, T., Bostwick, B. & Ganetzky, B. Metabolic disruption in Drosophila bang-sensitive seizure mutants. Genetics 173, 1357–1364 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rezaval, C. et al. A functional misexpression screen uncovers a role for enabled in progressive neurodegeneration. PLoS ONE 3, e3332 (2008).

    PubMed  PubMed Central  Google Scholar 

  16. Kretzschmar, D., Hasan, G., Sharma, S., Heisenberg, M. & Benzer, S. The swiss cheese mutant causes glial hyperwrapping and brain degeneration in Drosophila. J. Neurosci. 17, 7425–7432 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lush, M. J., Li, Y., Read, D. J., Willis, A. C. & Glynn, P. Neuropathy target esterase and a homologous Drosophila neurodegeneration-associated mutant protein contain a novel domain conserved from bacteria to man. Biochem. J. 332, 1–4 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Glynn, P. Neuropathy target esterase and phospholipid deacylation. Biochim. Biophys. Acta 1736, 87–93 (2005).

    CAS  PubMed  Google Scholar 

  19. Muhlig-Versen, M. et al. Loss of Swiss cheese/neuropathy target esterase activity causes disruption of phosphatidylcholine homeostasis and neuronal and glial death in adult Drosophila. J. Neurosci. 25, 2865–2873 (2005).

    PubMed  PubMed Central  Google Scholar 

  20. Bettencourt da Cruz, A., Wentzell, J. & Kretzschmar, D. Swiss cheese, a protein involved in progressive neurodegeneration, acts as a noncanonical regulatory subunit for PKA-C3. J. Neurosci. 28, 10885–10892 (2008). SWS binds to and inhibits a catalytic subunit of cAMP-dependent protein kinase, an activity that plays a part in protecting CNS integrity.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Akassoglou, K. et al. Brain-specific deletion of neuropathy target esterase/swisscheese results in neurodegeneration. Proc. Natl Acad. Sci. USA 101, 5075–5080 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Rainier, S. et al. Neuropathy target esterase gene mutations cause motor neuron disease. Am. J. Hum. Genet. 82, 780–785 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Thomas, B. & Beal, M. F. Parkinson's disease. Hum. Mol. Genet. 16, R183–R194 (2007).

    CAS  PubMed  Google Scholar 

  24. Clark, I. E. et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162–1166 (2006).

    CAS  PubMed  Google Scholar 

  25. Park, J. et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157–1161 (2006).

    CAS  PubMed  Google Scholar 

  26. Yang, Y. et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc. Natl Acad. Sci. USA 103, 10793–10798 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Exner, N. et al. Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by Parkin. J. Neurosci. 27, 12413–12418 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Poole, A. C. et al. The PINK1/Parkin pathway regulates mitochondrial morphology. Proc. Natl Acad. Sci. USA 105, 1638–1643 (2008). References 28 and 29 detail epistasis experiments that show rescue of Pink1 and park mutant defects by upregulating Drp1 or by downregulating Marf or opa1 .

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Deng, H., Dodson, M. W., Huang, H. & Guo, M. The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc. Natl Acad. Sci. USA 105, 14503–14508 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, H., McCaffery, J. M. & Chan, D. C. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 130, 548–562 (2007).

    CAS  PubMed  Google Scholar 

  31. Opal, P. & Zoghbi, H. Y. The role of chaperones in polyglutamine disease. Trends Mol. Med. 8, 232–236 (2002).

    CAS  PubMed  Google Scholar 

  32. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Fergestad, T. et al. Neuropathology in Drosophila mutants with increased seizure susceptibility. Genetics 178, 947–956 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Vance, J. E. Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids. J. Lipid Res. 49, 1377–1387 (2008).

    CAS  PubMed  Google Scholar 

  35. Di Paolo, G. & De Camilli, P. Phosphoinositides in cell regulation and membrane dynamics. Nature 443, 651–657 (2006).

    CAS  PubMed  Google Scholar 

  36. Bosveld, F. et al. De novo CoA biosynthesis is required to maintain DNA integrity during development of the Drosophila nervous system. Hum. Mol. Genet. 17, 2058–2069 (2008).

    CAS  PubMed  Google Scholar 

  37. Rubio-Gozalbo, M. E., Bakker, J. A., Waterham, H. R. & Wanders, R. J. Carnitine-acylcarnitine translocase deficiency, clinical, biochemical and genetic aspects. Mol. Aspects Med. 25, 521–532 (2004).

    CAS  PubMed  Google Scholar 

  38. Shobab, L. A., Hsiung, G.-Y. R. & Feldman, H. H. Cholesterol in Alzheimer's disease. Lancet Neurol. 4, 841–852 (2005).

    CAS  PubMed  Google Scholar 

  39. Tschape, J. A. et al. The neurodegeneration mutant lochrig interferes with cholesterol homeostasis and Appl processing. EMBO J. 21, 6367–6376 (2002). Characterization of the γ-subunit of AMP-activated protein kinase. This reference is an early report of the role of cholesterol in fly neurodegeneration, even though flies do not synthesize this molecule de novo .

    PubMed  PubMed Central  Google Scholar 

  40. Towler, M. C. & Hardie, D. G. AMP-activated protein kinase in metabolic control and insulin signaling. Circ. Res. 100, 328–341 (2007).

    CAS  PubMed  Google Scholar 

  41. Breitling, R. Greased hedgehogs: new links between hedgehog signaling and cholesterol metabolism. Bioessays 29, 1085–1094 (2007).

    CAS  PubMed  Google Scholar 

  42. Pfrieger, F. W. Cholesterol homeostasis and function in neurons of the central nervous system. Cell. Mol. Life Sci. 60, 1158–1171 (2003).

    CAS  PubMed  Google Scholar 

  43. Freeman, M. R., Dobritsa, A., Gaines, P., Segraves, W. A. & Carlson, J. R. The dare gene: steroid hormone production, olfactory behavior, and neural degeneration in Drosophila. Development 126, 4591–4602 (1999). A possible role for steroid synthesis and signalling in the brain in maintaining CNS integrity.

    CAS  PubMed  Google Scholar 

  44. Dobritsa, A. A. Molecular genetics of odor reception and development in Drosophila. Thesis, Yale Univ. (2003).

    Google Scholar 

  45. Griffin, L. D., Gong, W., Verot, L. & Mellon, S. H. Niemann–Pick type C disease involves disrupted neurosteroidogenesis and responds to allopregnanolone. Nature Med. 10, 704–711 (2004).

    CAS  PubMed  Google Scholar 

  46. Spasic, M. R., Callaerts, P. & Norga, K. K. Drosophila alicorn is a neuronal maintenance factor protecting against activity-induced retinal degeneration. J. Neurosci. 28, 6419–6429 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Tasken, K. & Aandahl, E. M. Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol. Rev. 84, 137–167 (2004).

    CAS  PubMed  Google Scholar 

  48. Teng, F. Y. & Tang, B. L. Axonal regeneration in adult CNS neurons — signaling molecules and pathways. J. Neurochem. 96, 1501–1508 (2006).

    CAS  PubMed  Google Scholar 

  49. Kim, Y. et al. PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem. Biophys. Res. Commun. 377, 975–980 (2008).

    CAS  PubMed  Google Scholar 

  50. Narendra, D., Tanaka, A., Suen, D.-F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Moore, D. J. Parkin: a multifaceted ubiquitin ligase. Biochem. Soc. Trans. 34, 749–753 (2006).

    CAS  PubMed  Google Scholar 

  52. Mukhopadhyay, D. & Riezman, H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315, 201–205 (2007).

    CAS  PubMed  Google Scholar 

  53. Plun-Favreau, H. et al. The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1. Nature Cell Biol. 9, 1243–1252 (2007).

    CAS  PubMed  Google Scholar 

  54. Vande Walle, L., Lamkanfi, M. & Vandenabeele, P. The mitochondrial serine protease HtrA2/Omi: an overview. Cell Death Differ. 15, 453–460 (2008).

    CAS  PubMed  Google Scholar 

  55. Challa, M. et al. Drosophila Omi, a mitochondrial-localized IAP antagonist and proapoptotic serine protease. EMBO J. 26, 3144–3156 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Igaki, T. et al. Evolution of mitochondrial cell death pathway: proapoptotic role of HtrA2/Omi in Drosophila. Biochem. Biophys. Res. Commun. 356, 993–997 (2007).

    CAS  PubMed  Google Scholar 

  57. Umbach, J. A. et al. Presynaptic dysfunction in Drosophila csp mutants. Neuron 13, 899–907 (1994).

    CAS  PubMed  Google Scholar 

  58. Zinsmaier, K. E., Eberle, K. K., Buchner, E., Walter, N. & Benzer, S. Paralysis and early death in cysteine string protein mutants of Drosophila. Science 263, 977–980 (1994).

    CAS  PubMed  Google Scholar 

  59. Fernandez-Chacon, R. et al. The synaptic vesicle protein CSP alpha prevents presynaptic degeneration. Neuron 42, 237–251 (2004).

    CAS  PubMed  Google Scholar 

  60. Chandra, S., Gallardo, G., Fernandez-Chacon, R., Schluter, O. M. & Sudhof, T. C. α-Synuclein cooperates with CSPα in preventing neurodegeneration. Cell 123, 383–396 (2005). Expression of normal α-synuclein (but not with mutations associated with Parkinson's disease) rescues neurodegeneration caused by loss of CSP in mice. Knockout of α-synuclein enhances CSP-caused neurodegeneration.

    CAS  PubMed  Google Scholar 

  61. Lee, V. M. & Trojanowski, J. Q. Mechanisms of Parkinson's disease linked to pathological α-synuclein: new targets for drug discovery. Neuron 52, 33–38 (2006).

    CAS  PubMed  Google Scholar 

  62. Greenspan, R. J., Finn, J. A. Jr & Hall, J. C. Acetylcholinesterase mutants in Drosophila and their effects on the structure and function of the central nervous system. J. Comp. Neurol. 189, 741–774 (1980).

    CAS  PubMed  Google Scholar 

  63. Hall, J. C., Alahiotis, S. N., Strumpf, D. A. & White, K. Behavioral and biochemical defects in temperature-sensitive acetylcholinesterase mutants of Drosophila melanogaster. Genetics 96, 939–965 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Rival, T. et al. Decreasing glutamate buffering capacity triggers oxidative stress and neuropil degeneration in the Drosophila brain. Curr. Biol. 14, 599–605 (2004). A glutamate transporter expressed only in glial processes in the neuropil demonstrates the crucial role of glia in CNS maintenance.

    CAS  PubMed  Google Scholar 

  65. Palladino, M. J., Bower, J. E., Kreber, R. & Ganetzky, B. Neural dysfunction and neurodegeneration in Drosophila Na+/K+ ATPase alpha subunit mutants. J. Neurosci. 23, 1276–1286 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Sweeney, S. T. & Davis, G. W. Unrestricted synaptic growth in spinster — a late endosomal protein implicated in TGF-β-mediated synaptic growth regulation. Neuron 36, 403–416 (2002).

    CAS  PubMed  Google Scholar 

  67. Dermaut, B. et al. Aberrant lysosomal carbohydrate storage accompanies endocytic defects and neurodegeneration in Drosophila benchwarmer. J. Cell Biol. 170, 127–139 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Celotto, A. M. et al. Mitochondrial encephalomyopathy in Drosophila. J. Neurosci. 26, 810–820 (2006). Characterization of two genes with vital mitochondrial functions, one of which is encoded by the mitochondrial genome.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kaukonen, J. et al. Role of adenine nucleotide translocator 1 in mtDNA maintenance. Science 289, 782–785 (2000).

    CAS  PubMed  Google Scholar 

  70. Wallace, D. C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359–407 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Pridgeon, J. W., Olzmann, J. A., Chin, L.-S. & Li, L. PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol. 5, e172 (2007).

    PubMed  PubMed Central  Google Scholar 

  72. Mattson, M. P. Apoptosis in neurodegenerative disorders. Nature Rev. Mol. Cell Biol. 1, 120–129 (2000).

    CAS  Google Scholar 

  73. Gandhi, S. et al. PINK1-associated parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death. Mol. Cell 33, 627–638 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Freeman, M. R. & Doherty, J. Glial cell biology in Drosophila and vertebrates. Trends Neurosci. 29, 82–90 (2006).

    CAS  PubMed  Google Scholar 

  75. Xiong, W. C. & Montell, C. Defective glia induce neuronal apoptosis in the repo visual system of Drosophila. Neuron 14, 581–590 (1995).

    CAS  PubMed  Google Scholar 

  76. Buchanan, R. L. & Benzer, S. Defective glia in the Drosophila brain degeneration mutant drop-dead. Neuron 10, 839–850 (1993).

    CAS  PubMed  Google Scholar 

  77. Phillips, S. E., Woodruff, E. A. 3rd, Liang, P., Patten, M. & Broadie, K. Neuronal loss of Drosophila NPC1a causes cholesterol aggregation and age-progressive neurodegeneration. J. Neurosci. 28, 6569–6582 (2008). This fly model for Niemann-Pick disease mimics many of the human and mouse symptoms. Neuron-specific expression of NPC1arescues the mutant defects; glia-specific expression, surprisingly, can also partially rescue these defects.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Palladino, M. J., Keegan, L. P., O'Connell, M. A. & Reenan, R. A. A-to-I pre-mRNA editing in Drosophila is primarily involved in adult nervous system function and integrity. Cell 102, 437–449 (2000).

    CAS  PubMed  Google Scholar 

  79. McGuire, S. E., Mao, Z. & Davis, R. L. Spatiotemporal gene expression targeting with the TARGET and gene-switch systems in Drosophila. Sci. STKE 2004, p16 (2004).

  80. Pfeiffer, B. D. et al. Tools for neuroanatomy and neurogenetics in Drosophila. Proc. Natl Acad. Sci. USA 105, 9715–9720 (2008). Summarizes recent advances in techniques for fly genetics.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451–461 (1999).

    CAS  PubMed  Google Scholar 

  82. Wang, T. & Montell, C. Phototransduction and retinal degeneration in Drosophila. Pflugers Arch. 454, 821–847 (2007).

    CAS  PubMed  Google Scholar 

  83. Stowers, R. S. & Schwarz, T. L. A genetic method for generating Drosophila eyes composed exclusively of mitotic clones of a single genotype. Genetics 152, 1631–1639 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Franceschini, N. in Information Processing in the Visual Systems of Arthropods (ed. Wehner, R.) 75–82 (Springer, Berlin, 1972).

    Google Scholar 

  85. Lessing, D. & Bonini, N. M. Polyglutamine genes interact to modulate the severity and progression of neurodegeneration in Drosophila. PLoS Biol. 6, e29 (2008).

    PubMed  PubMed Central  Google Scholar 

  86. Ahmed, Y., Hayashi, S., Levine, A. & Wieschaus, E. Regulation of Armadillo by a Drosophila APC inhibits neuronal apoptosis during retinal development. Cell 93, 1171–1182 (1998).

    CAS  PubMed  Google Scholar 

  87. Zhai, R. G. et al. Drosophila NMNAT maintains neural integrity independent of its NAD synthesis activity. PLoS Biol. 4, e416 (2006).

    PubMed  PubMed Central  Google Scholar 

  88. McQuibban, G. A., Lee, J. R., Zheng, L., Juusola, M. & Freeman, M. Normal mitochondrial dynamics requires Rhomboid-7 and affects Drosophila lifespan and neuronal function. Curr. Biol. 16, 982–989 (2006).

    CAS  PubMed  Google Scholar 

  89. Mast, J. D., Tomalty, K. M., Vogel, H. & Clandinin, T. R. Reactive oxygen species act remotely to cause synapse loss in a Drosophila model of developmental mitochondrial encephalopathy. Development 135, 2669–2679 (2008).

    CAS  PubMed  Google Scholar 

  90. Phillips, J. P. et al. Subunit-destabilizing mutations in Drosophila copper/zinc superoxide dismutase: neuropathology and a model of dimer dysequilibrium. Proc. Natl Acad. Sci. USA 92, 8574–8578 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Rimkus, S. A. et al. Mutations in String/CDC25 inhibit cell cycle re-entry and neurodegeneration in a Drosophila model of ataxia telangiectasia. Genes Dev. 22, 1205–1220 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Muraro, N. I. & Moffat, K. G. Down-regulation of torp4a, encoding the Drosophila homologue of torsinA, results in increased neuronal degeneration. J. Neurobiol. 66, 1338–1353 (2006).

    CAS  PubMed  Google Scholar 

  93. Matthies, H. J. G. & Broadie, K. Techniques to dissect cellular and subcellular function in the Drosophila nervous system. Methods Cell Biol. 71, 195–265 (2003).

    CAS  PubMed  Google Scholar 

  94. Magyar, J. P. et al. Degeneration of neural cells in the central nervous system of mice deficient in the gene for the adhesion molecule on Glia, the beta 2 subunit of murine Na, K-ATPase. J. Cell Biol. 127, 835–845 (1994).

    CAS  PubMed  Google Scholar 

  95. Watase, K. et al. Motor discoordination and increased susceptibility to cerebellar injury in GLAST mutant mice. Eur. J. Neurosci. 10, 976–988 (1998).

    CAS  PubMed  Google Scholar 

  96. Aoyama, K. et al. Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse. Nature Neurosci. 9, 119–126 (2006).

    CAS  PubMed  Google Scholar 

  97. Pavlidis, P., Ramaswami, M. & Tanouye, M. A. The Drosophila easily shocked gene: a mutation in a phospholipid synthetic pathway causes seizure, neuronal failure, and paralysis. Cell 79, 23–33 (1994).

    CAS  PubMed  Google Scholar 

  98. Bettencourt da Cruz, A. et al. Disruption of the MAP1B-related protein FUTSCH leads to changes in the neuronal cytoskeleton, axonal transport defects, and progressive neurodegeneration in Drosophila. Mol. Biol. Cell 16, 2433–2442 (2005). futsch, which regulates the microtubule cytoskeleton,interacts with Fmr1 , the fly orthologue of the causative gene for fragile X mental retardation.

    CAS  PubMed  Google Scholar 

  99. Liu, W. et al. Mutations in cytochrome c oxidase subunit VIa cause neurodegeneration and motor dysfunction in Drosophila. Genetics 176, 937–946 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Greene, J. C., Whitworth, A. J., Andrews, L. A., Parker, T. J. & Pallanck, L. J. Genetic and genomic studies of Drosophila parkin mutants implicate oxidative stress and innate immune responses in pathogenesis. Hum. Mol. Genet. 14, 799–811 (2005).

    CAS  PubMed  Google Scholar 

  101. Greene, J. C. et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl Acad. Sci. USA 100, 4078–4083 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Tschape, J. A., Bettencourt da Cruz, A. & Kretzschmar, D. in Advances in Neurodegeneration (eds Horowski, R. et al.) 51–62 (Springer, Wien, 2003).

    Google Scholar 

Download references

Acknowledgements

We thank M. Bland, N. Liu, Z. Yu, L.-Y. Hao and C.J. Thut for comments on the manuscript. N.M.B receives funding from the National Institute of Aging and the National Institute of Neurological Disorders and Stroke, and she is an Investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy M. Bonini.

Supplementary information

Supplementary Table 1

Neurodegeneration Due to Loss-of-Function Mutations. (PDF 335 kb)

Related links

Related links

DATABASES

Flybase

dare

drd

Eaat1

park

Pink1

sws

OMIM

adrenoleukodystrophy

Alzheimer's disease

Charcot–Marie–Tooth type 2A

juvenile onset parkinsonism

Niemann–Pick disease

Parkinson's disease

progressive external opthalmoplegia 2

FURTHER INFORMATION

Bonini Laboratory

Flybrain

Homophila

Mouse Genome Informatics

Glossary

RNAi

RNAi in the adult fly is achieved with transgenic constructs expressing an inverted repeat sequence targeted to the mRNA of interest. The expressed dsRNA is processed in vivo into short interfering RNAs, which lead to degradation of the target gene transcripts for a loss-of-function mutant effect.

Mosaic

An animal comprised of tissue of different genotypes. In flies, mosaics are generated by site-specific recombination, to yield homozygous mutant tissue or cells in an otherwise heterozygous animal.

Glia

Support cells for neurons.

Phototaxis

Movement towards a light source. A behaviour often used in flies to test locomotor activity and eye function.

Parkinsonism

Showing symptoms characteristic of Parkinsons disease (tremor, rigidity, slowing of movement, postural instability and shuffling gait) that respond to treatment with dopamine.

Purkinje cells

Vertebrate neurons with huge, dense dendrites that integrate complex inputs in the cerebellum and project axons to the deep motor nuclei of the brain.

Ubiquitin-proteasome system

Members of a large family of E3 ubiquitin ligases recognize specific substrate proteins, tagging them by polyubiquitination for degradation in the proteasome, a large cylindrical protein complex.

Autophagy

More precisely, macroautophagy — the engulfment of protein aggregates or organelles by vesicles with double-bilayer membranes, which then fuse with lysosomes for degradation of their contents.

Neurite

General term for axons and dendrites.

Amyloid

Protein aggregates that accumulate as fibres of 7–10 nm in diameter with common structural features including β-pleated sheet conformation and resistance to detergents and proteases.

Ecdysteroids

Steroids that are similar in structure to ecdysones, found in arthropods and some plants.

Ecdysone

Steroid hormone found in arthropods. In insects, 20-hydroxyecdysone stimulates moulting and metamorphosis.

Excitotoxicity

The over-stimulation of excitatory neurotransmitter receptors, which causes an influx of calcium in the postsynaptic neuron.

Haemolymph

The interstitial fluid in insects, which have an open circulatory system. Unlike blood, haemolymph has only a small role in carrying O2 and CO2, which is principally done by the tracheal system.

Optic lobes

Large, bilaterally symmetric structures of the fly brain that process visual input.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lessing, D., Bonini, N. Maintaining the brain: insight into human neurodegeneration from Drosophila melanogaster mutants. Nat Rev Genet 10, 359–370 (2009). https://doi.org/10.1038/nrg2563

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2563

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing