Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding the molecular machinery of genetics through 3D structures

Key Points

  • Knowledge of the 3D structures of biological molecules can reveal the fine details of how the molecules perform their biological functions.

  • The principal experimental techniques for determining 3D structure are X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. In addition, recent advances in electron microscopy, cryo-electron microscopy and electron cryo-tomography have enabled low-resolution structures of large structures, such as those of viruses and large macromolecular assemblies, to be determined.

  • Homology modelling allows the 3D structures of proteins to be computed from their sequence, based on the structure of a close relative. However, great care must be taken when drawing conclusions on the basis of these models as they are often not sufficiently accurate for predicting detailed or subtle structural changes.

  • 3D structure has contributed greatly to our understanding of protein evolution as structure tends to be more strongly conserved over evolutionary time than sequence. Structural similarity can reveal distant evolutionary relationships between proteins that cannot be detected from comparison of their sequences alone.

  • Most single amino-acid changes to a protein's sequence have little effect on structure. Some, however, such as the point mutations that are known to be associated with inherited monogenic diseases, have catastrophic consequences.

  • Most disease-associated missense mutations affect either the stability of the associated protein or its ability to fold. Others interfere with its biological function by disrupting its ability to interact with other molecules.

  • Sequence insertions and deletions can be accommodated over evolutionary time within a protein's structure without significantly altering its overall fold.

  • Alternative splicing of genes can result in different protein products with different functions. In some cases, the change of function can be explained by the consequent change in structure (for example, by the loss or gain of a functional structural domain, or by the subtle modification of the substrate binding site). In most cases, however, the structural differences between splice isoforms are not known (and are difficult to model reliably), so the consequences are difficult to predict.

  • The X-ray structure of the nucleosome core particle has revealed the large-scale packaging of DNA in chromatin. This, together with the knowledge of the histone proteins and the modifications they can undergo, is a first step in the understanding of the encoding, inheritance and recognition of epigenetic information.

  • The phenotypic differences observed both within and between species result both from differences in the genome sequences and in the regulatory networks through which the genes are expressed. Structural studies have helped to reveal how many of the simpler mechanisms that regulate gene expression operate.

  • Although there are currently 47,000 3D structures of biomolecules known, this is a tiny fraction of the 105 million known protein sequences. Several structural genomics projects worldwide are applying high-throughput technologies for structure determination in an attempt to address this shortfall.

Abstract

Detailed knowledge of the three-dimensional structures of biological molecules has had an enormous impact on all areas of biological science, including genetics, as structure can reveal the fine details of how molecules perform their biological functions. Here we consider how changes in protein sequence affect the corresponding 3D structure, and describe how structural information about proteins, DNA and chromatin has shed light on gene regulatory mechanisms and the storage and transmission of epigenetic information. Finally, we describe how structure determination is benefiting from the high-throughput technologies of the worldwide structural genomics projects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline of solved structures of some key biomolecules.
Figure 2: The effect of mutations on structure.
Figure 3: The pitfalls of relying on homology-built models.
Figure 4: Suggested structure for the 30 nm chromatin fibre.
Figure 5: The three most common structural motifs used by proteins to recognize and bind to DNA.

Similar content being viewed by others

References

  1. Watson, J. D. & Crick, F. H. C. A structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    CAS  PubMed  Google Scholar 

  2. Franklin, R. E. & Gosling, R. G. Molecular configuration in sodium thymonucleate. Nature 171, 740–741 (1953).

    Article  CAS  PubMed  Google Scholar 

  3. Kendrew, J. C. et al. Structure of myoglobin: a three-dimensional Fourier synthesis at 2Å resolution. Nature 185, 422–427 (1960).

    Article  CAS  PubMed  Google Scholar 

  4. Dutta, S. & Berman, H. M. Large macromolecular complexes in the Protein Data Bank: a status report. Structure 13, 381–388 (2005). An interesting Review of some of the large 3D structures that have been solved.

    Article  CAS  PubMed  Google Scholar 

  5. Adrian, M., Dubochet, J., Lepault, J. & McDowall, A. W. Cryo-electron microscopy of viruses. Nature 308, 32–36 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Grünewald, K. & Cyrklaff, M. Structure of complex viruses and virus-infected cells by electron cryo tomography. Curr. Opin. Microbiol. 9, 437–442 (2006).

    Article  PubMed  CAS  Google Scholar 

  7. Chothia, C. & Lesk, A. M. The relation between the divergence of sequence and structure in proteins. EMBO J. 5, 823–826 (1986). The first demonstration that protein 3D structure is better conserved than sequence is.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rost, B. Twilight zone of protein sequence alignments. Protein Eng. 12, 85–94 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Pearl, F. M.G. et al. The CATH extended protein-family database: providing structural annotations for genome sequences. Prot. Sci. 11, 233–244 (2002).

    Article  CAS  Google Scholar 

  10. Marsden, R. L. et al. Exploiting protein structure data to explore the evolution of protein function and biological complexity. Phil. Trans. Royal Soc. B-Biol. Sci. 361, 425–440 (2006).

    Article  CAS  Google Scholar 

  11. Orengo, C. A., Sillitoe, I., Reeves, G. & Pearl, F. M. G. What can structural classifications reveal about protein evolution? J. Struct. Biol. 134, 145–165 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Lee, D., Grant, A., Buchan, D. & Orengo, C. A structural perspective on genome evolution. Curr. Opin. Struct. Biol. 13, 359–369 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Vogel, C., Bashton, M., Kerrison, N. D., Chothia, C. & Teichmann, S. A. Structure, function and evolution of multidomain proteins. Curr. Opin. Struct. Biol. 14, 208–216 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Ranea, J. A. G., Sillero, A. Thornton, J. M. & Orengo, C. A. Protein superfamily evolution and the last universal common ancestor (LUCA). J. Mol. Evol. 63, 513–525 (2006). These authors argue that the protein domains that are present across all kingdoms of life may have been present in the last universal common ancestor.

    Article  CAS  PubMed  Google Scholar 

  15. Martin, A. C. R. et al. Protein folds and functions. Structure 6, 875–884 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Matthews, B. W. Structural and genetic analysis of protein stability. Annu. Rev. Biochem. 62, 139–160 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Sinha, N. & Nussinov, R. Point mutations and sequence variability in proteins: redistributions of preexisting populations. Proc. Natl Acad. Sci. USA 98, 3139–3144 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stenson, P. D. et al. Human Gene Mutation Database (HGMD): 2003 update. Hum. Mutat. 21, 577–581 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, Z. & Moult, J. SNPs, protein structure, and disease. Hum. Mutat. 17, 263–270 (2001).

    Article  PubMed  Google Scholar 

  20. Steward, R. E., MacArthur, M.W, Laskowski, R. A. & Thornton, J. M. Molecular basis of inherited diseases: a structural perspctive. Trends Genet. 19, 505–513 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Ferrer-Costa, C., Orozco, M. & de la Cruz, X. Characterization of disease-associated single amino acid polymorphisms in terms of sequence and structure properties. J. Mol. Biol. 315, 771–786 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Yue, P. & Moult, J. Identification and analysis of deleterious human SNPs. J. Mol. Biol. 356, 1263–1274 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Yue, P., Li, Z. & Moult, J. Loss of protein structure stability as a major causative factor in monogenic disease. J. Mol. Biol. 353, 459–473 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Chang, Y.-F., Imam, J. S. & Wilkinson, M. F. The nonsense-mediated decay RNA surveillance pathway. Annu. Rev. Biochem. 76, 51–74 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Vogt, G. et al. Gain-of-glycosylation mutations. Curr. Opin. Genet. Dev. 17, 245–251 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Ng, P.C & Henikoff, S. Predicting the effect of amino acid substitutions on protein function. Annu. Rev. Genom. Human Genet. 7, 61–80 (2006).

    Article  CAS  Google Scholar 

  27. Saunders, C. T. & Baker, D. Evaluation of structural and evolutionary contributions to deleterious mutation prediction. J. Mol. Biol. 322, 891–901 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Karchin, R. et al. LS-SNP: large-scale annotation of coding non-synonymous SNPs based on multiple information sources. Bioinformatics 21, 2814–2820 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Zvelebil, M. J., Barton, G. J., Taylor, W. R. & Sternberg, M. J. E. Prediction of protein secondary structure and active sites using the alignment of homologous sequences. J. Mol. Biol. 195, 957–961 (1987).

    Article  CAS  PubMed  Google Scholar 

  30. Poussu, E., Vihinen, M., Paulin, L. & Savilahti, H. Probing the α-complementing domain of E. coli β-galactosidase with use of an insertional pentapeptide mutagenesis strategy based on Mu in vitro DNA transposition. Proteins 54, 681–692 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Chen, R. Enzyme engineering: rational redesign versus directed evolution. Trends Biotechnol. 19, 13–14 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Getzoff, E. D. et al. Faster superoxide-dismutase mutants designed by enhancing electrostatic guidance. Nature 358, 347–351 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Xing, Y. & Lee, C. Alternative splicing and RNA selection pressure — evolutionary consequences for eukaryotic genomes. Nature Rev. Genet. 7, 499–509 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Black, D. L. Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell 103, 367–370 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Johnson, J. M. et al. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 302, 2141–2144 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Stamm, S. et al. Function of alternative splicing. Gene 344, 1–20 (2005). A nice Review of splice variants that are known to be associated with alternative functions.

    Article  CAS  PubMed  Google Scholar 

  37. Schmucker, D. et al. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101, 671–684 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Celetto, A. M. & Gravely, B. R. Alternative splicing of the Drosophila Dscam pre-mRNA is both temporally and spatially regulated. Genetics 159, 599–608 (2001).

    Google Scholar 

  39. Stetefeld, J. & Ruegg, M. A. Structural and functional diversity generated by alternative mRNA splicing. Trends Biochem. Sci. 30, 515–521 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Hymowitz, S. G. et al. The crystal structures of EDA-A1 and EDA-A2: splice variants with distinct receptor specificity. Structure 11, 1513–1520 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Walma, T. et al. A closed binding pocket and global destabilization modify the binding properties of an alternatively spliced form of the second PDZ domain of PTP-BL. Structure 12, 11–20 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Garcia, J., Gerber, S. H., Sugita, S., Sudhof, T. C. & Rizo, J. A conformational switch in the Piccolo C2A domain regulated by alternative splicing. Nature Struct. Mol. Biol. 11, 45–53 (2004).

    Article  CAS  Google Scholar 

  43. Lewis, B. P., Green, R. E. & Brenner, S. E. Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc. Natl Acad. Sci. USA 100, 189–192 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Henikoff, S. et al. Gene families: the taxonomy of protein paralogs and chimeras. Science 278, 609–614 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Brodsky, G. et al. The human GARS–AIRS–GART gene encodes two proteins which are differentially expressed during human brain development and temporally overexpressed in cerebellum of individuals with Down syndrome. Hum. Mol. Genet. 6, 2043–2050 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Orban, T. I. & Olah, E. Emerging roles of BRCA1 alternative splicing. Mol. Pathol. 56, 191–197 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kriventseva, E. V. et al. Increase of functional diversity by alternative splicing. Trends Genet. 19, 124–128 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Zavolan, M. & van Nimwegen, E. The types and prevalence of alternative splice forms. Curr. Opin. Struct. Biol. 16, 362–367 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Liu, M., Walch, H., Wu, S & Grigoriev, A. Significant expansion of exon-bordering protein domains during animal proteome evolution. Nucleic Acids Res. 33, 95–105 (2005). This paper demonstrates that protein domains with borders that coincide with exon borders seem to be more abundant than other domains, possibly as a result of exon shuffling and gene duplication.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yura, K. et al. Alternative splicing in human transcriptome: functional and structural influence on proteins. Gene 380, 63–71 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Tress, M. L. et al. The implications of alternative splicing in the ENCODE protein complement. Proc. Natl Acad. Sci. USA 104, 5495–5500 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Romero, P. R. et al. Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proc. Natl Acad. Sci. USA 103, 8390–8395 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, P., Yan, B., Guo, J.-T., Hicks, C. & Xu, Y. Structural genomics analysis of alternative splicing and application to isoform structure modeling. Proc. Natl Acad. Sci. USA 102, 18920–18925 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Burlingame, R. W. et al. Crystallographic structure of the octameric histone core of the nucleosome at a resolution of 3.3Å. Science 228, 546–553 (1985).

    Article  CAS  PubMed  Google Scholar 

  55. Klug, A. et al. Crystallographic structure of the octamer histone core of the nucleosome. Science 229, 1109–1113 (1985).

    Article  CAS  Google Scholar 

  56. Arents, G., Burlingame, R. W., Wang, B. C., Love, W. E. & Moudrianakis, E, N. The nucleosomal core histone octamer at 3.1 Å resolution: a tripartite protein assembly and a left-handed superhelix. Proc. Natl Acad. Sci. USA 88, 10148–10152 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Luger, K., Mäder, A. W., Richmond, R. K., Sargent D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8Å resolution. Nature 389, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  58. Luger, K. Structure and dynamic behaviour of nucleosomes. Curr. Opin. Genet. Dev. 13, 127–135 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Bhaumik, S. R., Smith, E. & Shilatifard, A. Covalent modifications of histones during development and disease pathogenesis. Nature Struct. Mol. Biol. 14, 1008–1016 (2007).

    Article  CAS  Google Scholar 

  60. Turner, B. M. Cellular memory and the histone code. Cell 111, 285–291 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Taverna, S. D., Li, H., Ruthenburg, A. J., Allis, C. D. & Patel, D. J. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nature Struct. Mol. Biol. 14, 1025–1040 (2007).

    Article  CAS  Google Scholar 

  62. Latham, J. A. & Dent, S. Y. R. Cross-regulation of histone modifications. Nature Struct. Mol. Biol. 14, 1017–1024 (2007).

    Article  CAS  Google Scholar 

  63. Rando, O. J. Global patterns of histone modifications. Curr. Opin. Genet. Dev. 17, 94–99 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Min, J., Zhang, Y. & Xu, R. M. Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. Genes Dev. 17, 1823–1828 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jacobs, S. A. & Khorasanizadeh, S. Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 295, 2080–2083 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Suto, R. K., Clarkson, M. J., Tremethick, D. J. & Luger, K. Crystal structure of a nucleosome core particle containing the variant histone H2A. Z. Nature Struct. Biol. 7, 1121–1124 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Couture, J.-F. & Trievel, R. C. Histone-modifying enzymes: encrypting an enigmatic epigenetic code. Curr. Opin. Struct. Biol. 16, 753–760 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Holbert, M. A. & Marmorstein, R. Structure and activity of enzymes that remove histone modifications. Curr. Opin. Struct. Biol. 15, 673–680 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Schalch, T., Duda, S., Sargent, D. F. & Richmond, T. J. X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436, 138–141 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Groth, A., Rocha, W., Verreault, A. & Almouzni, G. Chromatin challenges during DNA replication and repair. Cell 128, 721–733 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Cairns, B. R. Chromatin remodeling: insights and intrigue from single-molecule studies. Nature Struct. Mol. Biol. 14, 989–996 (2007).

    Article  CAS  Google Scholar 

  72. Greenbaum, J. A., Parker, S. C. J. & Tullius, T. D. Detection of DNA structural motifs in functional genomic elements. Genome Res. 17, 940–946 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kornberg, R. D. & Lorch, Y. Chromatin rules. Nature Struct. Mol. Biol. 14, 986–988 (2007). An overview for a special edition of Nature Struct. Mol. Biol. (dated Nov 2007) devoted entirely to the structural organization and function of chromatin.

    Article  CAS  Google Scholar 

  74. Luscombe, N. M., Austin, S. E., Berman, H. M. & Thornton, J. M. An overview of the structures of protein–DNA complexes. Genome Biol. 1, 1 (2000).

    Article  Google Scholar 

  75. Matthews, B. W. Protein–DNA interaction. No code for recognition. Nature 335, 294–295 (1988).

    Article  CAS  PubMed  Google Scholar 

  76. Luscombe, N. M., Laskowski, R. A. & Thornton, J. M. Amino acid–base pair interactions: a three-dimensional analysis of protein-DNA interactions at an atomic level. Nucleic Acids Res. 29, 2860–2874 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Benos, P. V., Lapedes, A. S. & Stormo, G. D. Is there a code for protein–DNA recognition? Probab(ilistical)ly. BioEssays 24, 466–475 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Marmorstein, R. & Fitzgerald, M. X. Modulation of DNA-binding domains for sequence-specific DNA recognition. Gene 304, 1–12 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. MacRae, I. J. et al. Structural basis for double-stranded RNA processing by Dicer. Science 311, 195–198 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Serganov, A. & Patel, D. J. Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nature Rev. Genet. 8, 776–790 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Vitreschak, A. G., Rodionov, D. A., Mironov, A. A. & Gelfand, M. S. Riboswitches: the oldest mechanism for the regulation of gene expression? Trends Genet. 20, 44–50 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Lanctôt, C., Cheutin, T., Cremer, M., Cavalli, G. & Cremer, T. Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nature Rev. Genet. 8, 104–115 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Sexton, T., Schober, H., Fraser, P. & Gasser, S. M. Gene regulation through nuclear organization. Nature Struct. Mol. Biol. 14, 1049–1055 (2007).

    Article  CAS  Google Scholar 

  85. Kulikova, T. et al. EMBL Nucleotide Sequence Database in 2006. Nucleic Acids Res. 35, D16–D20 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Brenner, S. E. A tour of structural genomics. Nature Rev. Genet. 2, 801–809 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 32, D138–D141 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chandonia, J. M. & Brenner, S. E. The impact of structural genomics: Expectations and outcomes. Science 311, 347–351 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Watson, J. D. et al. Towards fully automated structure-based function prediction in structural genomics: a case study. J. Mol. Biol. 367, 1511–22 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bernstein, F. C. et al. The Protein Data Bank: a computer-based archival file of macromolecular structures. J. Mol. Biol. 112, 535–542 (1977).

    Article  CAS  PubMed  Google Scholar 

  91. Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Berman, H. M., Henrick, K. & Nakamura, H. Announcing the worldwide Protein Data Bank. Nature Struct. Biol. 10, 980 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Laskowski, R. A., Chistyakov, V. V. & Thornton, J. M. PDBsum more: new summaries and analyses of the known 3D structures of proteins and nucleic acids. Nucleic Acids Res. 33, D266–D268 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Schwede, T., Kopp, J., Guex, N. & Peitsch, M. C. SWISS-MODEL: an automated protein-homology server. Nucleic Acids Res. 31, 3381–3385 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pieper, U. et al. MODBASE: a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res. 32, D217–D222 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dantzer, J, Moad, C. Heiland, R & Mooney S. MutDB services: interactive structural analysis of mutation data. Nucleic Acids Res. 33, W311–W314 (2005).

    Article  CAS  Google Scholar 

  97. Berman, H. M. et al. The Nucleic Acid Database: a comprehensive relational database of three-dimensional structures of nucleic acids. Biophys. J. 63, 751–759 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Laskowski, R. A. in Structural Bioinformatics (eds Bourne, P. E. & Weissig, H.) 273–303 (John Wiley, New Jersey, 2003).

    Google Scholar 

  99. Kleywegt, G. J. & Jones, T. A. Phi-psi-chology: Ramachandran revisited. Structure 4, 1395–1400 (1996).

    Article  CAS  PubMed  Google Scholar 

  100. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Rosenberg, J. M., Seeman, N. C., Kim, J. J. P., Suddath, F. L., Nicholas, H. B. & Rich, A. Double helix at atomic resolution. Nature 243, 150–154 (1973).

    Article  CAS  PubMed  Google Scholar 

  102. Day, R. O., Seeman, N. C., Rosenberg, J. M. & Rich, A. A crystalline fragment of the double helix: the structure of the dinucleoside phosphate guanylyl-3′, 5′-cytidine. Proc. Natl Acad. Sci. USA 70, 849–853 (1973). References 101 and 102 proved the Watson–Crick hydrogen-bonding hypothesis between complementary DNA bases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wing, R. et al. Crystal structure analysis of a complete turn of B-DNA. Nature 287, 755–758 (1980).

    Article  CAS  PubMed  Google Scholar 

  104. DeLano, W. L. The PyMOL Molecular Graphics System. (DeLano Scientific, San Carlos, USA, 2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman A. Laskowski.

Related links

Related links

DATABASES

PDBsum

1aay

1aoi

1fok

1f66

1gm1

1hio

1kna

1kne

1ozi

1pfb

1rh8

1rj7

1rj8

1vj6

1ysa

1zbb

2ffl

FURTHER INFORMATION

Thornton Group homepage

Human Gene Mutation Database

PyMol

SWISS-MODEL

SwissProt

TrEMBL

Glossary

B-DNA

Standard form of double-stranded DNA.

Fold

The arrangement and connectivity of the regions of regular secondary structure, adopted by a given structural domain.

Fold group

A grouping of similar folds, often merely referred to as a fold.

Structural domain

A compact part of the protein's 3D structure that is capable of folding independently of any of a protein's other domains. Structural domains often, but not always, correspond to sequence domains.

PDB

(Protein Data Bank). The archive of experimentally determined structures of proteins, RNA and fragments of DNA (see Box 1).

Secondary structure

Segments of the protein chain that show a regular local structure: coiling into an α-helical segment, or extending to form a β-strand that links up side-by-side with others to form a β-sheet.

Rational engineering

Use of site-directed mutagenesis to make specific alterations to an enzyme's structure, specificity or catalytic activity.

Directed evolution

Cycles of error-prone PCR introduce random point mutations into a small pool of homologous genes with the selection of gene products that have required properties at each cycle.

Pfam

A manually curated database of protein families.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laskowski, R., Thornton, J. Understanding the molecular machinery of genetics through 3D structures. Nat Rev Genet 9, 141–151 (2008). https://doi.org/10.1038/nrg2273

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2273

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing