Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Which evolutionary processes influence natural genetic variation for phenotypic traits?

Key Points

  • We have little understanding about the evolutionary forces that influence the genes underlying complex-trait variation.

  • Genome-wide association studies and analyses of amino-acid polymorphisms are advancing rapidly, but have yet to elucidate the selective importance of QTL alleles.

  • Positive selection, local adaptation, balancing selection and deleterious mutations all contribute to phenotypic trait variation, but their relative importance is unknown.

  • Understanding the genetic architecture of complex traits is essential for interpreting the evolutionary significance of phenotypic variation. The frequency and magnitude of QTL alleles can help us to distinguish between balancing selection or mutation–selection balance. This will require fine mapping (and ultimately cloning) of QTLs in multiple or complex mapping populations.

  • In evolutionary studies of humans, laboratory organisms and ecological model species, similarities in the approaches used and the questions asked are more important than differences among species.

Abstract

Although many studies provide examples of evolutionary processes such as adaptive evolution, balancing selection, deleterious variation and genetic drift, the relative importance of these selective and stochastic processes for phenotypic variation within and among populations is unclear. Theoretical and empirical studies from humans as well as natural animal and plant populations have made progress in examining the role of these evolutionary forces within species. Tentative generalizations about evolutionary processes across species are beginning to emerge, as well as contrasting patterns that characterize different groups of organisms. Furthermore, recent technical advances now allow the combination of ecological measurements of selection in natural environments with population genetic analysis of cloned QTLs, promising advances in identifying the evolutionary processes that influence natural genetic variation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The fitness effects of alleles differ between environments.
Figure 2: Colour polymorphism in Linanthus parryae.
Figure 3: Molecular basis of local adaptation to oxygen availability in deer mice.
Figure 4: Molecular basis of local variation in the coat colour of beach mice.

Similar content being viewed by others

References

  1. Lewontin, R. C. The Genetic Basis of Evolutionary Change (Columbia Univ. Press, New York, 1974).

    Google Scholar 

  2. Hughes, A. L. Looking for Darwin in all the wrong places: the misguided quest for positive selection at the nucleotide sequence level. Heredity 99, 364–373 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Williamson, S. et al. Localizing recent adaptive evolution in the human genome. PLoS Genet. (in the press).

  4. Johnson, T. & Barton, N. Theoretical models of selection and mutation on quantitative traits. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 360, 1411–1425 (2005).

    Article  CAS  Google Scholar 

  5. Eyre-Walker, A., Woolfit, M. & Phelps, T. The distribution of fitness effects of new deleterious amino acid mutations in humans. Genetics 173, 891–900 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, X. S. & Hill, W. G. Genetic variability under mutation selection balance. Trends Ecol. Evol. 20, 468–470 (2005).

    Article  PubMed  Google Scholar 

  7. Yampolsky, L. Y., Allen, C., Shabalina, S. A. & Kondrashov, A. S. Persistence time of loss-of-function mutations at nonessential loci affecting eye color in Drosophila melanogaster. Genetics 171, 2133–2138 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kryukov, G. V., Pennacchio, L. A. & Sunyaev, S. R. Most rare missense alleles are deleterious in humans: implications for complex disease and association studies. Am. J. Hum. Genet. 80, 727–739 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barton, N. H. & Keightley, P. D. Understanding quantitative genetic variation. Nature Rev. Genet. 3, 11–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Eyre-Walker, A. The genomic rate of adaptive evolution. Trends Ecol. Evol. 21, 569–575 (2006). A thoughtful review of recent studies of deleterious and advantageous nucleotide changes.

    Article  PubMed  Google Scholar 

  11. Turelli, M. & Barton, N. H. Polygenic variation maintained by balancing selection: pleiotropy, sex-dependent allelic effects and G x E interactions. Genetics 166, 1053–1079 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Charlesworth, D. Balancing selection and its effects on sequences in nearby genome regions. PLoS Genet. 2, 379–384 (2006).

    Article  CAS  Google Scholar 

  13. Dean, A. M. & Thornton, J. W. Mechanistic approaches to the study of evolution: the functional synthesis. Nature Rev. Genet. 8, 675–688 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Hoekstra, H. E., Hirschmann, R. J., Bundey, R. A., Insel, P. A. & Crossland, J. P. A single amino acid mutation contributes to adaptive beach mouse color pattern. Science 313, 101–104 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Tian, D., Traw, M., Chen, J., Kreitman, M. & Bergelson, J. Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423, 74–77 (2003).

    CAS  PubMed  Google Scholar 

  16. Kroymann, J. & Mitchell-Olds, T. Epistasis and balanced polymorphism influencing complex trait variation. Nature 435, 95–98 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Erickson, D. L., Fenster, C. B., Stenoien, H. K. & Price, D. Quantitative trait locus analyses and the study of evolutionary process. Mol. Ecol. 13, 2505–2522 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, W. Y. S., Barratt, B. J., Clayton, D. G. & Todd, J. A. Genome-wide association studies: theoretical and practical concerns. Nature Rev. Genet. 6, 109–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Yu, J. et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genet. 38, 203–208 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Mackay, I. & Powell, W. Methods for linkage disequilibrium mapping in crops. Trends Plant Sci. 12, 57–63 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Sabeti, P. C. et al. Positive natural selection in the human lineage. Science 312, 1614–1620 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Zeng, K., Fu, Y.-X., Shi, S. & Wu, C.-I. Statistical tests for detecting positive selection by utilizing high-frequency variants. Genetics 174, 1431–1439 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Toomajian, C. et al. A nonparametric test reveals selection for rapid flowering in the Arabidopsis genome. PLoS Biol. 4, e137 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Voight, B., Kudaravalli, S., Wen, X. & Pritchard, J. A map of recent positive selection in the human genome. PLoS Biol. 4, e72 (2006). References 23 and 24 use extended haplotype methods to test for positive selection in A. thaliana and humans, respectively.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sawyer, S. A., Parsch, J., Zhang, Z. & Hartl, D. L. Prevalence of positive selection among nearly neutral amino acid replacements in Drosophila. Proc. Natl Acad. Sci. USA 104, 6504–6510 (2007). This study presents a new statistical method, and applies it to previously published Drosophila sequence data on polymorphism and divergence in 91 genes to estimate that 70% of amino-acid polymorphisms are slightly deleterious, but that 95% of amino-acid fixed differences between species were weakly beneficial.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wade, M. J. & Kalisz, S. The causes of natural selection. Evolution 44, 1947–1955 (1990).

    Article  PubMed  Google Scholar 

  27. Rausher, M. D. The measurement of selection on quantitative traits — Biases due to environmental covariances between traits and fitness. Evolution 46, 616–626 (1992).

    Article  PubMed  Google Scholar 

  28. Granhall, C., Park, H.-B., Fakhrai-Rad, H. & Luthman, H. High-resolution quantitative trait locus analysis reveals multiple diabetes susceptibility loci mapped to intervals <800 kb in the species-conserved Niddm1i of the GK rat. Genetics 174, 1565–1572 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Feder, M. & Mitchell-Olds, T. Evolutionary and ecological functional genomics. Nature Rev. Genet. 4, 651–657 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Shapiro, J. A. et al. Adaptive genic evolution in the Drosophila genomes. Proc. Natl Acad. Sci. USA 104, 2271–2276 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tishkoff, S. A. et al. Convergent adaptation of human lactase persistence in Africa and Europe. Nature Genet. 39, 31–40 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Saunders, M. A., Slatkin, M., Garner, C., Hammer, M. F. & Nachman, M. W. The extent of linkage disequilibrium caused by selection on G6PD in humans. Genetics 171, 1219–1229 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hedrick, P. W. Genetic polymorphism in heterogeneous environments: The age of genomics. Annu. Rev. Ecol. Syst. 37, 67–93 (2006).

    Article  Google Scholar 

  34. Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004).

    Article  Google Scholar 

  35. Li, Z. K. et al. QTL × environment interactions in rice. I. Heading date and plant height. Theor. Appl. Genet. 108, 141–153 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Hawthorne, D. J. & Via, S. Genetic linkage of ecological specialization and reproductive isolation in pea aphids. Nature 412, 904–907 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Weinig, C., Stinchcombe, J. R. & Schmitt, J. QTL architecture of resistance and tolerance traits in Arabidopsis thaliana in natural environments. Mol. Ecol. 12, 1153–1163 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Lexer, C., Welch, M. E., Durphy, J. L. & Rieseberg, L. H. Natural selection for salt tolerance quantitative trait loci (QTLs) in wild sunflower hybrids: implications for the origin of Helianthus paradoxus, a diploid hybrid species. Mol. Ecol. 12, 1225–1235 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Verhoeven, K. J. F., Vanhala, T. K., Biere, A., Nevo, E. & Van Damme, J. M. M. The genetic basis of adaptive population differentiation: a quantitative trait locus analysis of fitness traits in two wild barley populations from contrasting habitats. Evolution 58, 270–283 (2004). This unique study maps QTLs that contribute to local adaptation between genetically differentiated populations in their natural habitats.

    Article  PubMed  Google Scholar 

  40. Slate, J. O. N. Quantitative trait locus mapping in natural populations: progress, caveats and future directions. Mol. Ecol. 14, 363–379 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Mitchell-Olds, T. & Schmitt, J. Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441, 947–952 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Umina, P. A., Weeks, A. R., Kearney, M. R., McKechnie, S. W. & Hoffmann, A. A. A rapid shift in a classic clinal pattern in Drosophila reflecting climate change. Science 308, 691–693 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Schmidt, P. S., Matzkin, L., Ippolito, M. & Eanes, W. F. Geographic variation in diapause incidence, life-history traits, and climatic adaptation in Drosophila melanogaster. Evolution 59, 1721–1732 (2005).

    Article  PubMed  Google Scholar 

  44. Schmidt, P. & Conde, D. Environmental heterogeneity and the maintenance of genetic variation for reproductive diapause in Drosophila melanogaster. Evolution 60, 1602–1611 (2006).

    Article  PubMed  Google Scholar 

  45. Sandrelli, F. et al. A molecular basis for natural selection at the timeless locus in Drosophila melanogaster. Science 316, 1898–1900 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Mathias, D., Jacky, L., Bradshaw, W. E. & Holzapfel, C. M. Quantitative trait loci associated with photoperiodic response and stage of diapause in the pitcher-plant mosquito, Wyeomyia smithii. Genetics 176, 391–402 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Balasubramanian, S. et al. The PHYTOCHROME C photoreceptor gene mediates natural variation in flowering and growth responses of Arabidopsis thaliana. Nature Genet. 38, 711–715 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Korves, T. M. et al. Fitness effects associated with the major flowering time gene FRIGIDA in Arabidopsis thaliana in the field. Am. Nat. 169, e141–e157 (2007).

    Article  PubMed  Google Scholar 

  49. Schemske, D. W. & Bierzychudek, P. Perspective: evolution of flower color in the desert annual Linanthus parryae: Wright revisited. Evolution 55, 1269–1282 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Schemske, D. W. & Bierzychudek, P. Spatial differentiation for flower color in the desert annual Linanthus parryae: was Wright right? Evolution 25 September 2007 (doi:10.11111/j1558-5646.2007.00219.x). References 49 and 50 provide compelling experimental evidence that natural selection, not random genetic drift, maintains flower colour variation, perhaps in response to local and temporal edaphic variation.

  51. Yeaman, S. & Jarvis, A. Regional heterogeneity and gene flow maintain variance in a quantitative trait within populations of lodgepole pine. Proc. R. Soc. B Lond. Biol. Sci. 273, 1587–1593 (2006).

    Article  CAS  Google Scholar 

  52. Schranz, M. E., Windsor, A. J., Song, B.-H., Lawton-Rauh, A. & Mitchell-Olds, T. Comparative genetic mapping in Boechera stricta, a close relative of Arabidopsis. Plant Physiol. 144, 286–298 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu, C. A. et al. Mimulus is an emerging model system for the integration of ecological and genomic studies. Heredity 6 June 2007 (doi:10.1038/sj.hdy.6801018).

    Article  CAS  PubMed  Google Scholar 

  54. Storz, J. F. et al. The molecular basis of high-altitude adaptation in deer mice. PLoS Genet. 3, e45 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Eads, B. D., Andrews, J. & Colbourne, J. K. Ecological genomics in Daphnia: stress responses and environmental sex determination. Heredity 23 May 2007 (doi:10.1038/sj.hdy.6800999).

    Article  CAS  PubMed  Google Scholar 

  56. Shapiro, M. D. et al. Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature 428, 717–723 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Colosimo, P. F. et al. Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles. Science 307, 1928–1933 (2005). This study uses mapping, postitional cloning, sequencing and transgenics to show that the relatively recent and parallel evolution of reduced armour plate patterning in worldwide freshwater sticklebacks involved the fixation of relatively ancient low-plate alleles of the Eda gene that contribute to standing variation in marine populations.

    Article  CAS  PubMed  Google Scholar 

  58. Nachman, M. W., Hoekstra, H. E. & D'Agostino, S. L. The genetic basis of adaptive melanism in pocket mice. Proc. Natl Acad. Sci. USA 100, 5268–5273 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lao, O., de Gruijter, J. M., van Duijn, K., Navarro, A. & Kayser, M. Signatures of positive selection in genes associated with human skin pigmentation as revealed from analyses of single nucleotide polymorphisms. Ann. Hum. Genet. 71, 354–369 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Le Corre, V. Variation at two flowering time genes within and among populations of Arabidopsis thaliana: comparison with markers and traits. Mol. Ecol. 14, 4181–4192 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Protas, M. E. et al. Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nature Genet. 38, 107–111 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Steiner, C., Weber, J. & Hoekstra, H. Adaptive variation in beach mice produced by two interacting pigmentation genes. PLoS Biol. 5, e219 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hoekstra, H. E. & Coyne, J. A. The locus of evolution: evo–devo and the genetics of adaptation. Evolution 61, 995–1016 (2007).

    Article  PubMed  Google Scholar 

  64. Bersaglieri, T. et al. Genetic signatures of strong recent positive selection at the lactase gene. Am. J. Hum. Genet. 74, 1111–1120 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Burger, J., Kirchner, M., Bramanti, B., Haak, W. & Thomas, M. G. Absence of the lactase-persistence-associated allele in early Neolithic Europeans. Proc. Natl Acad. Sci. USA 104, 3736–3741 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Surridge, A. K., Osorio, D. & Mundy, N. I. Evolution and selection of trichromatic vision in primates. Trends Ecol. Evol. 18, 198 (2003).

    Article  Google Scholar 

  67. Loisel, D. A., Rockman, M. V., Wray, G. A., Altmann, J. & Alberts, S. C. Ancient polymorphism and functional variation in the primate MHC-DQA1 5′ cis-regulatory region. Proc. Natl Acad. Sci. USA 103, 16331–16336 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Meyer, D., Single, R. M., Mack, S. J., Erlich, H. A. & Thomson, G. Signatures of demographic history and natural selection in the human major histocompatibility complex loci. Genetics 173, 2121–2142 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bubb, K. L. et al. Scan of human genome reveals no new loci under ancient balancing selection. Genetics 173, 2165–2177 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bakker, E. G., Toomajian, C., Kreitman, M. & Bergelson, J. A genome-wide survey of R gene polymorphisms in Arabidopsis. Plant Cell 18, 1803–1818 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bergelson, J., Kreitman, M., Stahl, E. A. & Tian, D. C. Evolutionary dynamics of plant R-genes. Science 292, 2281–2285 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Subramaniam, B. & Rausher, M. D. Balancing selection on a floral polymorphism. Evolution 54, 691–695 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Gigord, L. D. B., Macnair, M. R. & Smithson, A. Negative frequency-dependent selection maintains a dramatic flower color polymorphism in the rewardless orchid Dactylorhiza sambucina (L.) Soo. Proc. Natl Acad. Sci. USA 98, 6253–6255 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fitzpatrick, M. J., Feder, E., Rowe, L. & Sokolowski, M. B. Maintaining a behaviour polymorphism by frequency-dependent selection on a single gene. Nature 447, 210–212 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Debelle, J. S. & Sokolowski, M. B. Heredity of rover sitter — alternative foraging strategies of Drosophila melanogaster larvae. Heredity 59, 73–83 (1987).

    Article  Google Scholar 

  76. Rose, L. E., Michelmore, R. W. & Langley, C. H. Natural variation in the Pto disease resistance gene within species of wild tomato (Lycopersicon). II. Population genetics of Pto. Genetics 175, 1307–1319 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Carbone, M. A. et al. Phenotypic variation and natural selection at Catsup, a pleiotropic quantitative trait gene in Drosophila. Curr. Biol. 16, 912–919 (2006). This study uses association mapping to show that, although allelic variation at the gene Catsup has pleiotropic effects on many traits and shows the molecular population genetic signature of balancing selection, underlying polymorphisms within the locus affect traits singly.

    Article  CAS  PubMed  Google Scholar 

  78. Yampolsky, L. Y., Kondrashov, F. A. & Kondrashov, A. S. Distribution of the strength of selection against amino acid replacements in human proteins. Hum. Mol. Genet. 14, 3191–3201 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Clark, R. M. et al. Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317, 338–342 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Haag-Liautard, C. et al. Direct estimation of per nucleotide and genomic deleterious mutation rates in Drosophila. Nature 445, 82–85 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Cohen, J. C. et al. Multiple rare variants in NPC1L1 associated with reduced sterol absorption and plasma low-density lipoprotein levels. Proc. Natl Acad. Sci. USA 103, 1810–1815 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fearnhead, N. S. et al. Multiple rare variants in different genes account for multifactorial inherited susceptibility to colorectal adenomas. Proc. Natl Acad. Sci. USA 101, 15992–15997 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Waser, N. M. & Price, M. V. Pollinator choice and stabilizing selection for flower color in Delphinium nelsonii. Evolution 35, 376–390 (1981).

    Article  PubMed  Google Scholar 

  84. Kelly, J. K. & Willis, J. H. Deleterious mutations and genetic variation for flower size in Mimulus guttatus. Evolution 55, 937–942 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Kelly, J. K. Deleterious mutations and the genetic variance of male fitness components in Mimulus guttatus. Genetics 164, 1071–1085 (2003).

    PubMed  PubMed Central  Google Scholar 

  86. Charlesworth, B., Miyo, T. & Borthwick, H. Selection responses of means and inbreeding depression for female fecundity in Drosophila melanogaster suggest contributions from intermediate-frequency alleles to quantitative trait variation. Genet. Res. Camb. 89, 85–91 (2007). References 84–86 use biometric tests to show that quantitative genetic variation for ecologically important traits within populations is not consistent with the segregation of rare recessive alleles, as expected under the deleterious mutation hypothesis, but rather is more consistent with variation due to intermediate frequency polymorphisms.

    Article  CAS  Google Scholar 

  87. Weber, K. E. Large genetic change at small fitness cost in large populations of Drosophila melanogaster selected for wind tunnel flight: rethinking fitness surfaces. Genetics 144, 205–213 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Ohta, T. Near-neutrality in evolution of genes and gene regulation. Proc. Natl Acad. Sci. USA 99, 16134–4660 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Di Rienzo, A. Population genetics models of common diseases. Curr. Opin. Genet. Dev. 16, 630–636 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Frayling, T. M. Genome-wide association studies provide new insights into type 2 diabetes aetiology. Nature Rev. Genet. 8, 657–662 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Macdonald, S. J. & Long, A. D. Joint estimates of quantitative trait locus effect and frequency using synthetic recombinant populations of Drosophila melanogaster. Genetics 176, 1261–1281 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Song, B.-H., Clauss, M., Pepper, A. & Mitchell-Olds, T. Geographic patterns of microsatellite variation in Boechera stricta, a close relative of Arabidopsis. Molec. Ecol. 15, 357–369 (2006).

    Article  CAS  Google Scholar 

  93. Kingsolver, J. G. et al. The strength of phenotypic selection in natural populations. Am. Nat. 157, 245–261 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Novembre, J., Galvani, A. P. & Slatkin, M. The geographic spread of the CCR5 Δ32 HIV-resistance allele. PLoS Biol. 3, e339 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sabeti, P. et al. The case for selection at CCR532. PLoS Biol. 3, e378 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. de Bakker, P. I. W. et al. Efficiency and power in genetic association studies. Nature Genet. 37, 1217–1223 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Moskvina, V. & O'Donovan, M. C. Detailed analysis of the relative power of direct and indirect association studies and the implications for their interpretation. Hum. Hered. 64, 63–73 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Vander Molen, J. et al. Population genetics of CAPN10 and GPR35: implications for the evolution of type 2 diabetes variants. Am. J. Hum. Genet. 76, 548–560 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Churchill, G. A. et al. The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nature Genet. 36, 1133 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Symonds, V. V. et al. Mapping quantitative trait loci in multiple populations of Arabidopsis thaliana identifies natural allelic variation for trichome density. Genetics 169, 1649–1658 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Welch, J. J. Estimating the genomewide rate of adaptive protein evolution in Drosophila. Genetics 173, 821–837 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Andolfatto, P. Adaptive evolution of non-coding DNA in Drosophila. Nature 437, 1149–1152 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Sawyer, S. A., Kulathinal, R. J., Bustamante, C. D. & Hartl, D. L. Bayesian analysis suggests that most amino acid replacements in Drosophila are driven by positive selection. J. Mol. Evol. 57, S154–S164 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Fry, A. E. et al. Haplotype homozygosity and derived alleles in the human genome. Am. J. Hum. Genet. 78, 1053–1059 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Teshima, K. M., Coop, G. & Przeworski, M. How reliable are empirical genomic scans for selective sweeps? Genome Res. 16, 702–712 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pennings, P. S. & Hermisson, J. Soft sweeps III: the signature of positive selection from recurrent mutation. PLoS Genet. 2, e186 (2006). Although soft selective sweeps can complicate population genetic analyses of natural selection, this paper shows that soft sweeps leave a detectable signature in patterns of linkage disequilibrium.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nair, S. et al. Recurrent gene amplification and soft selective sweeps during evolution of multidrug resistance in malaria parasites. Mol. Biol. Evol. 24, 562–573 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Nordborg, M. et al. The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol. 3, e196 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Charlesworth, B., Charlesworth, D. & Barton, N. H. The effects of genetic and geographic structure on neutral variation. Annu. Rev. Ecol. Syst. 34, 99–125 (2003).

    Article  Google Scholar 

  110. Charlesworth, D. Effects of inbreeding on the genetic diversity of populations. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 1051–1070 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hartl, D. The origin of malaria: mixed messages from genetic diversity. Nature Rev. Microbiol. 2, 15–22 (2004).

    Article  CAS  Google Scholar 

  112. Kwiatkowski, D. How malaria has affected the human genome and what human genetics can teach us about malaria. Am. J. Hum. Genet. 77, 171–192 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Verrelli, B. C., Tishkoff, S. A., Stone, A. C. & Touchman, J. W. Contrasting histories of G6PD molecular evolution and malarial resistance in humans and chimpanzees. Mol. Biol. Evol. 23, 1592–1601 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Hanchard, N. A. et al. Screening for recently selected alleles by analysis of human haplotype similarity. Am. J. Hum. Genet. 78, 153–159 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Aquadro, C. F., DuMont, V. B. & Reed, F. A. Genome-wide variation in the human and fruitfly: a comparison. Curr. Opin. Genet. Dev. 11, 627–634 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Hedrick, P. Estimation of relative fitnesses from relative risk data and the predicted future of haemoglobin alleles S and C. J. Evol. Biol. 17, 221–224 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Mackinnon, M. J., Mwangi, T. W., Snow, R. W., Marsh, K. & Williams, T. N. Heritability of malaria in Africa. PLoS Med. 2, e340 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Williams, T. N. et al. Negative epistasis between the malaria-protective effects of α-thalassemia and the sickle cell trait. Nature Genet. 37, 1253–1257 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Lowry, A. Manzaneda, J. Modliszewski, M. Rausher, C. Wu and three anonymous reviewers for helpful comments and discussion. We are grateful to P. Bierzychudek and D. Schemske for unpublished photos of Linanthus parryae, and to H. Hoekstra and J. Storz for permission to reprint figures from their publications. This work was supported by the US National Science Foundation, US National Institutes of Health and Duke University, Durham, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Mitchell-Olds.

Related links

Related links

DATABASES

OMIM

α-thalassaemia

sickle-cell anaemia

FURTHER INFORMATION

Thomas Mitchell-Olds's homepage

John H. Willis's homepage

David B. Goldstein's homepage

Glossary

Mutation–selection balance

Models that examine equilibrium levels of genetic variation attributable to mutation, natural selection and genetic drift.

Balancing selection

Historically, balancing selection refers to evolutionary processes such as frequency-dependent selection or heterozygote advantage that maintain greater than neutral levels of polymorphism within a population. In the era of molecular population genetics, the term balancing selection is often applied to loci showing species-wide levels of nucleotide polymorphism that exceed neutral expectation, regardless of ecological mechanism or levels of variation within populations.

Local adaptation

The situation in which genotypes from different populations have higher fitness in their home environments owing to historical natural selection.

Disruptive selection

Occurs when individuals with extreme phenotypes have higher fitness than those with intermediate trait values.

Overdominance

An unusual mode of gene action whereby heterozygotes at a given locus have higher fitness than either homozygote.

Positive selection

Directional selection based on phenotype.

Signatures of selection

Patterns of nucleotide polymorphism, allele frequency and linkage disequilibrium that distinguish selected loci from neutrally evolving genomic regions.

Metapopulations

A series of partially isolated conspecific populations that are subject to local extinction and recolonization.

Selective sweep

Directional selection that fixes an advantageous mutation in a population.

Site frequency spectrum

Statistical tests in population genetics use information on the numbers of SNPs that are rare or common, and the frequency of ancestral and derived alleles in order to infer demographic history and possible natural selection. One widely-used statistic is Tajima's D.

Antagonistic pleiotropy

The situation in which allelic variation at a locus has phenotypic effects on two or more separate traits, or on the same trait expressed in two or more environments.

Clinal variation

A gradual change in trait value or gene frequency across a geographical area.

Admixture

The pattern of genetic variation that results when a population is derived from founders that originated from more than one ancestral population.

Population structure

The distribution of individuals in partially isolated populations. A metapopulation is one example of a population structure, and includes local extinction and recolonization.

Epistasis

Occurs when two or more polymorphic loci interact to determine phenotype.

Frequency-dependent selection

Occurs when rare alleles have higher fitness than common alleles. This process can maintain genetic variation within populations.

Directional selection

This form of selection favours a particular allele because of its effect on phenotype.

Genetic architecture

The number, magnitude and frequencies of QTL alleles, as well as their patterns of epistasis and genotype–environment interaction.

Ascertainment bias

A biased estimation of population genetic parameters when the studied individuals are a non-random sample of a reference population. For example, association studies are biased towards the detection of common polymorphisms.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell-Olds, T., Willis, J. & Goldstein, D. Which evolutionary processes influence natural genetic variation for phenotypic traits?. Nat Rev Genet 8, 845–856 (2007). https://doi.org/10.1038/nrg2207

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg2207

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing