Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The evolution of gene regulation by transcription factors and microRNAs

Key Points

  • Gene regulation in multicellular eukaryotes is complex, with many layers of regulation. Two fundamental mechanisms of gene regulation involve transcription factors and microRNAs, a large class of small, non-coding RNAs.

  • It is widely believed that phenotypic evolution is closely linked to the evolution of gene regulation. To begin to understand the evolution of gene regulatory networks, it is important to first understand how the individual regulators and their regulatory interactions evolve.

  • A combination of computational and experimental work has made it possible to begin to compare the evolution of transcriptional regulation with post-transcriptional regulation that is carried out by microRNAs.

  • For both transcription factors and microRNAs, the regulators themselves seem to be well conserved over large evolutionary distances, whereas their targets seem to have evolved much more quickly, indicating that large-scale rewiring of regulatory networks has taken place in the course of evolution.

  • In animal evolution, the acquisition of new microRNA families seems to have been much more rapid than the acquisition of new transcription-factor families. Several authors have proposed that new microRNA families have had important roles in the development of novel tissue types and organs.

  • Ultimately, a comprehensive picture of gene-regulation evolution will require a unification of different regulatory mechanisms. As an initial step in this direction, we suggest a simple model that describes the transcription of new microRNA genes. A corollary of this model is that many microRNAs that are expressed at low levels and in specific spatio-temporal domains might have little biological function in regulating target genes in trans.

Abstract

Changes in the patterns of gene expression are widely believed to underlie many of the phenotypic differences within and between species. Although much emphasis has been placed on changes in transcriptional regulation, gene expression is regulated at many levels, all of which must ultimately be studied together to obtain a complete picture of the evolution of gene expression. Here we compare the evolution of transcriptional regulation and post-transcriptional regulation that is mediated by microRNAs, a large class of small, non-coding RNAs in plants and animals, focusing on the evolution of the individual regulators and their binding sites. As an initial step towards integrating these mechanisms into a unified framework, we propose a simple model that describes the transcriptional regulation of new microRNA genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene regulation by transcription factors and microRNAs.
Figure 2: A model of the acquisition of a new microRNA.

Similar content being viewed by others

References

  1. Levine, M. & Tjian, R. Transcription regulation and animal diversity. Nature 424, 147–151 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Moore, M. J. From birth to death: the complex lives of eukaryotic mRNAs. Science 309, 1514–1518 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Davidson, E. H. The Regulatory Genome: Gene Regulatory Networks in Development and Evolution (Academic, New York, 2006). This book synthesizes several decades of work on gene regulation, animal development and evolution, with an emphasis on transcriptional regulation.

    Google Scholar 

  4. Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism and function. Cell 116, 281–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Wittkopp, P. J. Genomic sources of regulatory variation in cis and in trans. Cell. Mol. Life Sci. 62, 1779–1783 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Davidson, E. H. & Erwin, D. H. Gene regulatory networks and the evolution of animal body plans. Science 311, 796–800 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Carroll, S., Grenier, J. & Weatherbee, S. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design (Blackwell Scientific, Malden, 2005).

    Google Scholar 

  9. Doebley, J. & Lukens, L. Transcriptional regulators and the evolution of plant form. Plant Cell 10, 1075–1082 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kloosterman, W. P. & Plasterk, R. H. The diverse functions of microRNAs in animal development and disease. Dev. Cell 11, 441–450 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Kosik, K. S. The neuronal microRNA system. Nature Rev. Neurosci. 7, 911–920 (2006).

    Article  CAS  Google Scholar 

  12. Carrington, J. C. & Ambros, V. Role of microRNAs in plant and animal development. Science 301, 336–338 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Jones-Rhoades, M. W., Bartel, D. P. & Bartel, B. MicroRNAs and their regulatory roles in plants. Annu. Rev. Plant Biol. 57, 19–53 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Alvarez-Garcia, I. & Miska, E. A. MicroRNA functions in animal development and human disease. Development 132, 4653–4662 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Sokol, N. S. & Ambros, V. Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev. 19, 2343–2354 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Giraldez, A. J. et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75–79 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Giraldez, A. J., Cinalli, R. M., Glasner, M. E., Thomson, J. M. & Baskerville, S. MicroRNAs regulate brain morphogenesis in zebrafish. Science 308, 833–838 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Bernstein, E. et al. Dicer is essential for mouse development. Nature Genet. 35, 215–217 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Schauer, S. E., Jacobsen, S. E., Meinke, D. W. & Ray, A. DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci. 7, 487–491 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Wienholds, E. et al. MicroRNA expression in zebrafish embryonic development. Science 309, 310–311 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Ason, B. et al. Differences in vertebrate microRNA expression. Proc. Natl Acad. Sci. USA 103, 14385–14389 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thomson, J. M. et al. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev. 20, 2202–2207 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aravin, A. A. et al. The small RNA profile during Drosophila melanogaster development. Dev. Cell 5, 337–350 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Aboobaker, A. A., Tomancak, P., Patel, N., Rubin, G. M. & Lai, E. C. Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proc. Natl Acad. Sci. USA 102, 18017–18022 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Leaman, D. et al. Antisense-mediated depletion reveals essential and specific functions of microRNAs in Drosophila development. Cell 121, 1097–1108 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Brennecke, J., Stark, A. & Cohen, S. M. Not miR-ly muscular: microRNAs and muscle development. Genes Dev. 19, 2261–2264 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Hornstein, E. & Shomron, S. Canalization of development by microRNAs. Nature Genet. 38, S20–S24 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Li, Y., Wang, Y., Lee, J. A. & Gao, F. B. MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. Genes Dev. 20, 2793–2805 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cohen S. M., Brennecke, J. & Stark A. Denoising feedback loops by thresholding — a new role for microRNAs. Genes Dev. 20, 2769–2772 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Meyerowitz, E. M. Plants compared to animals: the broadest comparative study of development. Science 295, 1482–1485 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Riechmann, J. L. et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290, 2105–2110 (2000). A detailed study of the evolution of transcription- factor families in plants and animals, which showed that they have diversified greatly during eukaryotic evolution.

    Article  CAS  PubMed  Google Scholar 

  34. Hsia, C. C. & McGinnis, W. Evolution of transcription factor function. Curr. Opin. Genet. Dev. 13, 199–206 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Pasquinelli, A. E. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–89 (2000). This paper demonstrated that let-7 , one of the two founding miRNAs, is highly conserved in animals.

    Article  CAS  PubMed  Google Scholar 

  36. Pasquinelli, A. E. et al. Expression of the 22 nucleotide let-7 heterochronic RNA throughout the metazoa: a role in life history evolution? Evol. Dev. 5, 372–378 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Hertel, J. et al. The expansion of the metazoan miRNA repertoire. BMC Genomics 7, 25 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Sempere, L. F., Cole, C. N., McPeek, M. A. & Peterson, K. J. The phylogenetic distribution of metazoan microRNAs: insights into evolutionary complexity and constraint. J. Exp. Zool. B. Mol. Dev. Evol. 306, 575–588 (2006). The authors studied the evolution of miRNAs in bilaterians, cnidarians and sponges, and proposed that the acquisition of new miRNAs has had an important role in the development of new animal organs.

    Article  PubMed  CAS  Google Scholar 

  39. Prochnik, S. E., Rokhsar, D. S. & Aboobaker, A. A. Evidence for a microRNA expansion in the bilaterian ancestor. Dev. Genes Evol. 14 Nov 2006 (doi: 10.1007/s00427-006-0116-1).

    Article  PubMed  CAS  Google Scholar 

  40. Lemons, D. & McGinnis, W. Genomic evolution of Hox gene clusters. Science 313, 1918–1922 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Xie, X. et al. Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434, 338–345 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, K. & Rajewsky, N. Deep conservation of miRNA-target relationships and 3′ UTR motifs in vertebrates, flies and nematodes. Cold Spring Harb. Symp. Quant. Biol. 12 Dec 2006 (doi:10.1101/sqb.2006.71.039).

    Article  CAS  PubMed  Google Scholar 

  43. Chan, C. S., Elemento, O. & Tavazoie, S. Revealing posttranscriptional regulatory elements through network-level conservation. PLoS Comput. Biol. 1, e69 (2006).

    Article  CAS  Google Scholar 

  44. Lu, C. et al. MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res. 16, 1276–1288 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Arazi, T. et al. Cloning and characterization of micro-RNAs from moss. Plant J. 43, 837–848 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Floyd, S. K. & Bowman, J. L. Gene regulation: ancient microRNA target sequences in plants. Nature 428, 485–486 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Axtell, M. J. & Bartel, D. P. Antiquity of microRNAs and their targets in land plants. Plant Cell 17, 1658–1673 (2005). These authors showed that many miRNAs and miRNA-target relationships are well conserved in plants.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shiu, S. H., Shih, M. C. & Li, W. H. Transcription factor families have much higher expansion rates in plants than in animals. Plant Physiol. 139, 18–26 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Blanc, G. & Wolfe, K. H. Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16, 1679–1691 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Seoighe, C. & Gehring, C. Genome duplication led to highly selective expansion of the Arabidopsis thaliana promoterome. Trends Genet. 20, 461–464 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Davis, J. C. & Petrov, D. A. Do disparate mechanisms of duplication add similar genes to the genome? Trends Genet. 21, 548–551 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Maher, C., Stein, L. & Ware, D. Evolution of Arabidopsis microRNA familes through duplication events. Genome Res. 16, 510–519 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tanzer, A., Amemiya, C. T., Kim, C. B. & Stadler, P. F. Evolution of microRNAs located within Hox gene clusters. J. Exp. Zool. B. Mol. Dev. Evol. 304, 75–85 (2005).

    Article  PubMed  CAS  Google Scholar 

  54. Tanzer, A. & Stadler, P. F. Molecular evolution of a microRNA cluster. J. Mol. Biol. 339, 327–335 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Li, A. & Mao, L. Evolution of plant microRNA gene families. Cell Res. 28 Nov 2006 (doi:10.1038/sj.cr.7310113).

    Article  CAS  Google Scholar 

  56. Abbott, A. L. et al. The let-7 microRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Dev. Cell 9, 403–414 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hayes, G. D., Frand, A. R. & Ruvkun, G. The mir-84 and let-7 paralogous microRNA genes of Caenorhabditis elegans direct the cessation of molting via the conserved nuclear hormone receptors NHR-23 and NHR-25. Development 133, 4631–4641 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Johnson, R. M. et al. RAS is regulated by the let-7 microRNA family. Cell 120, 635–647 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Schulman, B. R. M., Esquela-Kerscher, A. & Slack, F. J. Reciprocal expression of L in-41 and the microRNAs L et-7 and M ir-125 during mouse embryogenesis. Dev. Dyn. 234, 1046–1054 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Moss, E. G. & Tang, L. Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites. Dev. Biol. 258, 432–442 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Yang, D.-H. & Moss, E. G. Temporally regulated expression of Lin-28 in diverse tissues of the developing mouse. Gene Expr. Patterns 3, 719–726 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Grun, D., Wang, Y., Langenberger, D., Gunsalus, K. C. & Rajewsky, N. microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput. Biol. 1, e13 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Elnitski, L., Jin, V. X., Farnham, P. J. & Jones, S. J. M. Locating mammalian transcription factor binding sites: A survey of computational and experimental techniques Genome Res. 16, 1455–1464 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Gerber, A. P., Luschnig, S., Krasnow, M. A., Brown, P. O. & Herschlag, D. Genome-wide identification of mRNAs associated with the translational regulator PUMILIO in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 103, 4487–4492 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dermitzakis, E. T. & Clark, A. G. Evolution of transcription factor binding sites in mammalian gene regulatory regions: conservation and turnover. Mol. Biol. Evol. 19, 1114–1121 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Dermitzakis, E. T., Bergman, C. M. & Clark, A. G. Tracing the evolutionary history of Drosophila regulatory regions with models that identify transcription factor binding sites. Mol. Biol. Evol. 20, 703–714 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Emberly, E., Rajewsky, N. & Siggia, E. D. Conservation of regulatory elements between two regions of Drosophila. BMC Bioinformatics 4, 57 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Richards, S. et al. Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene and cis-element conservation. Genome Res. 15, 1–18 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Moses, A. M. et al. Large-scale turnover of functional transcription factor binding sites in Drosophila. PLoS Comput. Biol. 2, e130 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Ludwig, M. Z., Bergman, C. M., Patel, N. H. & Kreitman, M. Evidence for stabilizing selection in a eukaryotic enhancer element. Nature 403, 564–567 (2000). An elegant demonstration of the complex evolution of the well studied D. melanogaster even-skipped stripe 2 enhancer.

    Article  CAS  PubMed  Google Scholar 

  71. Ludwig, M. Z. et al. Functional evolution of a cis-regulatory module. PLoS Biol. 3, e93 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Krutzfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005).

    Article  PubMed  CAS  Google Scholar 

  73. Sood, P., Krek, A., Zavolan, M., Macino, G. & Rajewsky, N. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc. Natl Acad. Sci. USA 103, 2746–2751 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen, K. & Rajewsky, N. Natural selection on human miRNA binding sites inferred from SNP data. Nature Genet. 38, 1452–1456 (2006). This paper examined polymorphism in human miRNA binding sites and used population genetic techniques to estimate levels of selective constraint on these binding sites.

    Article  CAS  PubMed  Google Scholar 

  75. Rockman, M. V. & Wray, G. A. Abundant raw material for cis-reguatory evolution in humans. Mol. Biol. Evol. 19, 1991–2004 (2002). A systematic survey of the literature on naturally occurring polymorphisms in human promoter regions that significantly affect gene expression levels.

    Article  CAS  PubMed  Google Scholar 

  76. Abelson, J. F. et al. Sequence variants in SLITRK1 are associated with Tourette's syndrome. Science 310, 317–320 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Clop, A. et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nature Genet. 38, 813–818 (2006). The clearest example to date of a naturally occurring SNP in a miRNA binding site that affects a gross phenotypic trait.

    Article  CAS  PubMed  Google Scholar 

  78. Iwai, N. & Naraba, H. Polymorphisms in human pre-miRNAs. Biochem. Biophys. Res. Commun. 331, 1439–1444 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Wray, G. A. et al. The evolution of transcriptional regulation in eukaryotes. Mol. Biol. Evol. 20, 1377–1419 (2003). A comprehensive review of the evolution of transcription factors and their binding sites.

    Article  CAS  PubMed  Google Scholar 

  80. Balhoff, J. P. & Wray, G. A. Evolutionary analysis of the well characterized endo16 promoter reveals substantial variation within functional sites. Proc. Natl Acad. Sci. USA 102, 8591–8596 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sinha, S. & Siggia, E. D. Sequence turnover and tandem repeats in cis-regulatory modules in Drosophila. Mol. Biol. Evol. 22, 874–885 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Stone, J. & Wray, G. Rapid evolution of cis-regulatory sequences via local point mutations. Mol. Biol. Evol. 18, 1764–1770 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Berg, J., Willmann, S. & Laessig, M. Adaptive evolution of transcription factor binding sites. BMC Evol. Biol. 4, 42 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. MacArthur, S. & Brookfield, J. F. Y. Expected rates and modes of evolution of enhancer sequences. Mol. Biol. Evol. 21, 1064–1073 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Durrett, R. & Schmidt, D. Waiting for regulatory sequences to appear. Ann. Appl. Probab. (in the press).

  86. Berezikov, E. et al. Many novel mammalian microRNA candidates identified by extensive cloning and RAKE analysis. Genome Res. 16, 1289–1298 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Berezikov, E. et al. Diversity of microRNAs in human and chimpanzee brain. Nature Genet. 38, 1375–1377 (2006). These authors used 454 sequencing to show that many miRNAs that are expressed in the human brain are not conserved in the chimpanzee brain.

    Article  CAS  PubMed  Google Scholar 

  88. Rajewsky, N. microRNA target predictions in animals. Nature Genet. 38, S8–S13 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Schwab, R. et al. Specific effects on microRNAs on the plant transcriptome. Dev. Cell 8, 517–527 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Allen, E. et al. Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nature Genet. 36, 1282–1290 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Svoboda, P. & Di Cara, A. Hairpin RNA: a secondary structure of primary importance. Cell. Mol. Life Sci. 63, 901–918 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Bentwich, I. et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genet. 37, 766–770 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Bartel, D. P. & Chen, C. Z. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nature Rev. Genet. 5, 396–400 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Farh, K. K. et al. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science 310, 1817–1821 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Stark, A., Brennecke, J., Bushati, N., Russell, R. B. & Cohen, S. M. Animal microRNAs confer robustness to gene expression and have a significant impact on 3′ UTR evolution. Cell 123, 1133–1146 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Baskerville, S. & Bartel, D. P. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11, 241–247 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Bhattacharyya, S. N., Habermacher, R., Martine, U., Closs, E. I. & Filipowicz, W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125, 1111–1124 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Ashraf, S. I., McLoon, A. L., Sclarsic, S. M. & Kunes, S. Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 124, 191–205 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Davidson, E. H. Genomic Regulatory Systems. Development and Evolution (Academic, San Diego, 2001).

    Google Scholar 

  100. Johnston, R. J. J., Chang, S., Etchberger, J. F., Ortiz, C. O. & Hobert, O. MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision. Proc. Natl Acad. Sci. 102, 12449–12454 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yoo, A. S. & Greenwald, I. LIN-12/Notch activation leads to microRNA-mediated down-regulation of Vav in C. elegans. Science 310, 1330–1333 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fazi, F. et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPa regulates human granulopoiesis. Cell 123, 819–831 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. King, M. C. & Wilson, A. C. Evolution at two levels in humans and chimpanzees. Science 188, 107–116 (1975).

    Article  CAS  PubMed  Google Scholar 

  104. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Johnson, S. M., Lin, S. Y. & Slack, F. J. The time of appearance of the C. elegans let-7 microRNA is transcriptionally controlled utilizing a temporal regulatory element in its promoter. Dev. Biol. 259, 364–379 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Biemar, F. et al. Spatial regulation of microRNA gene expression in the Drosophila embryo. Proc. Natl Acad. Sci. 102, 15907–15911 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Engels, B. M. & Hutvagner, G. Principles and effects of microRNA-mediated post-transcriptional gene regulation. Oncogene 25, 6163–6169 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Berezikov, E., Cuppen, E. & Plasterk, R. H. Approaches to microRNA discovery. Nature Genet. 38, S2–S7 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Bentwich, I. Prediction and validation of microRNAs and their targets. FEBS Lett. 579, 5904–5910 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hofacker, I. L. Vienna RNA secondary structure server. Nucleic Acids Res. 31, 3429–3431 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Pfeffer, S. et al. Identification of virus-encoded microRNAs. Science 304, 734–736 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lu, C. et al. Elucidation of the small RNA component of the transcriptome. Science 309, 1567–1569 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A. & Eddy, S. R. Rfam: an RNA family database. Nucleic Acids Res. 31, 439–441 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Krek, A. et al. Combinatorial microRNA target predictions. Nature Genet. 37, 495–500 (2005).

    Article  CAS  PubMed  Google Scholar 

  118. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. & Burge, C. B. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Brennecke, J., Stark, A., Russell, R. B. & Cohen, S. M. Principles of microRNA-target recognition. PLoS Biol. 3, e85 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Lall, S. et al. A genome-wide map of conserved microRNA targets in C. elegans. Curr. Biol. 16, 460–471 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. Sethupathy, P., Megraw, M. & Hatzigeorgiou, A. G. A guide through present computational approaches for the identification of mammalian microRNA targets. Nature Methods 3, 881–886 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Tompa, M. et al. Assessing computational tools for the discovery of transcription factor binding sites. Nature Biotechnol. 23, 137–144 (2005).

    Article  CAS  Google Scholar 

  123. Siggia, E. D. Computational methods for transcriptional regulation. Curr. Opin. Genet. Dev. 15, 214–221 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Rhoades, M. W. et al. Prediction of plant microRNA targets. Cell 110, 513–520 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Lim, L. P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Pillai, R. S., Bhattacharyya, S. N. & Filipowicz, W. Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol. 2 Jan 2007 (doi:10.1016/j.tcb.2006.12.007).

    Article  CAS  PubMed  Google Scholar 

  127. Arteaga-Vazquez, M., Caballero-Perez, J. & Vielle-Calzada, J. P. A family of microRNAs present in plants and animals. Plant Cell 22 Dec 2006 (doi:10.1105/tpc.106.044420).

    Article  CAS  Google Scholar 

  128. Rajagopalan, R., Vaucheret, H., Trejo, J., Bartel, D. P. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev. 20, 3407–3425.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We regret that due to space constraints, we are unable to cite the work of many colleagues who have made key contributions to the field. We thank K. Birnbaum for insightful discussions about gene regulation in plants, and V. Ambros, M. Hammell, S. Small and N. Sokol for helpful comments on a preliminary version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolaus Rajewsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

FURTHER INFORMATION

The Rajewsky laboratory web site

NYU Department of Biology and Center for Comparative Functional Genomics

Glossary

Bilaterians

Members of the animal kingdom that have bilateral symmetry — the property of having two similar sides, with definite upper and lower surfaces, and anterior and posterior ends.

Acoel flatworms

A basal bilaterian clade that diverged from the rest of bilaterians before the split between protostomes and deuterostomes.

Synteny

Collinearity in the order of genes or other DNA sequences in chromosomal regions of two species or in the same species.

Clade

A group of organisms that includes a common ancestor and all of its descendants, representing a distinct branch on a phylogenetic tree.

Cnidarians

Radially symmetrical animals that have sac-like bodies with only one opening. They include jellyfish, corals, hydra and anemones.

ChIP-chip analysis

A method that combines chromatin immunoprecipitation with microarray technology to identify in vivo targets of a transcription factor.

Deep sequencing

Sequencing to high coverage, where coverage (or depth) corresponds to the average number of times that a nucleotide is sequenced.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, K., Rajewsky, N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 8, 93–103 (2007). https://doi.org/10.1038/nrg1990

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1990

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing