Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The evolution of sex: empirical insights into the roles of epistasis and drift

Key Points

  • The origin and maintenance of sexual reproduction is one of the oldest and most intriguing problems in evolutionary biology.

  • Most models assume that the advantage of sex relies on the increased production of genetic variation, which can be used by natural selection. For this to occur, there must be forces that systematically diminish this variation (that is, that cause 'negative linkage disequilibrium'), such as genetic drift or negative epistasis.

  • Recent laboratory-based experiments that use microbes or comparative genomic analyses of microcrustaceans and nematodes have shown the ability of sex to facilitate adaptation and slow down maladaptation, but have not revealed whether drift or epistasis is the main responsible force.

  • Direct and indirect empirical studies of epistasis have been numerous, but have not provided decisive support for negative epistasis.

  • Frustration with the equivocal evidence for negative epistasis has stimulated two recent developments: studies of genetic drift as a cause of low genetic variation, and studies that combine the effects of more than one mechanism (the so-called 'pluralist approaches').

  • Recent in silico studies point at a possible two-way evolutionary relationship between recombination and negative epistasis. By selecting for more robust and modular genomes, sex might promote negative epistasis as well as long-term evolvability. So, sex modulates genome architecture, by which it might forge its own evolution.

Abstract

Despite many years of theoretical and experimental work, the explanation for why sex is so common as a reproductive strategy continues to resist understanding. Recent empirical work has addressed key questions in this field, especially regarding rates of mutation accumulation in sexual and asexual organisms, and the roles of negative epistasis and drift as sources of adaptive constraint in asexually reproducing organisms. At the same time, new ideas about the evolution of sexual recombination are being tested, including intriguing suggestions of an important interplay between sex and genetic architecture, which indicate that sex and recombination could have affected their own evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Epistasis, linkage disequilibrium and the direct and indirect effects of sex.
Figure 2: The relationship between robustness, redundancy and epistasis.
Figure 3: The relationship between epistasis and genome complexity.

Similar content being viewed by others

References

  1. Maynard Smith, J. The Evolution of Sex (Cambridge Univ. Press, Cambridge, 1978).

    Google Scholar 

  2. Bell, G. The Masterpiece of Nature: The Evolution and Genetics of Sexuality (Univ. California Press, Berkeley, 1982).

    Google Scholar 

  3. Michod, R. E. & Levin, B. R. The Evolution of Sex (Sinauer, Sunderland, 1988). A good starting point for learning the fundamental issues of the problem of the evolutionary origin and maintenance of sex.

    Google Scholar 

  4. Otto, S. P. & Lenormand, T. Resolving the paradox of sex and recombination. Nature Rev. Genet. 3, 252–261 (2002). A comprehensive review of sex theories that summarizes the various theoretical arguments in a unified population genetics framework.

    Article  CAS  PubMed  Google Scholar 

  5. Kondrashov, A. S. Classification of hypotheses on the advantage of amphimixis. J. Hered. 84, 372–387 (1993). An exhaustive list of all the hypotheses put forward to explain the advantage of sexual reproduction over asexuality. Special attention is given to the many variation-and-selection models.

    Article  CAS  PubMed  Google Scholar 

  6. Bernstein, H., Byerly, H. C., Hopf, F. & Michod, R. E. DNA damage, mutation and the evolution of sex. Science 229, 1277–1281 (1985).

    Article  CAS  PubMed  Google Scholar 

  7. Zeyl, C., Bell, G. & Green, D. M. Sex and the spread of retrotransposon Ty3 in experimental populations of Saccharomyces cerevisiae. Genetics 143, 1567–1577 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Goddard, M. R. & Burt, A. Recurrent invasion and extinction of a selfish gene. Proc. Natl Acad. Sci. USA 96, 13880–13885 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goddard, M. R., Greig, D. & Burt, A. Outcrossed sex allows a selfish gene to invade yeast populations. Proc. R. Soc. B Biol. Sci. 268, 2537–2542 (2001).

    Article  CAS  Google Scholar 

  10. Lenski, R. E. A distinction between the origin and maintenance of sex. J. Evol. Biol. 12, 1034–1035 (1999).

    Article  Google Scholar 

  11. Fisher, R. A. The Genetical Theory of Natural Selection (Oxford Univ. Press, Oxford, 1930).

    Book  Google Scholar 

  12. Barton, N. H. A general model for the evolution of recombination. Genet. Res. 65, 123–144 (1995). A rigorous mathematical treatment, which unifies the various sex hypotheses using a modifiers-of-recombination approach, and explores the conditions for the short- and long-term advantages of sex and recombination.

    Article  CAS  PubMed  Google Scholar 

  13. Otto, S. P. & Barton N. H. The evolution of recombination: removing the limits to natural selection. Genetics 147, 879–906 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Feldman, M. W., Christiansen, F. B. & Brooks, L. D. Evolution of recombination in a constant environment. Proc. Natl Acad. Sci. USA 77, 4838–4841 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Feldman, M. W., Otto, S. P. & Christiansen, F. B. Population genetic perspective of the evolution of recombination. Annu. Rev. Genet. 30, 261–295 (1997).

    Article  Google Scholar 

  16. Muller, H. J. Some genetic aspects of sex. Am. Nat. 8, 118–138 (1932).

    Article  Google Scholar 

  17. Crow, J. F. & Kimura, M. Evolution in sexual and asexual populations. Am. Nat. 99, 439–450 (1965).

    Article  Google Scholar 

  18. Hill, W. G. & Robertson, A. The effect of linkage on the limits to artificial selection. Genet. Res. 8, 269–294 (1966).

    Article  CAS  PubMed  Google Scholar 

  19. Gerrish, P. J. & Lenski, R. E. The fate of competing beneficial mutations in an asexual population. Genetica 102–103, 127–144 (1998).

    Article  PubMed  Google Scholar 

  20. Roze, D. & Barton, N. H. The Hill–Robertson effect and the evolution of recombination. Genetics 173, 1793–1811 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Muller, H. J. The relationship of recombination to mutational advance. Mutat. Res. 1, 2–9 (1964).

    Article  Google Scholar 

  22. Haigh, J. The accumulation of deleterious mutations in a population — Muller's ratchet. Theor. Pop. Biol. 14, 251–267 (1978).

    Article  CAS  Google Scholar 

  23. Charlesworth, B., Morgan, M. T. & Charlesworth, D. The effect of deleterious mutations on neutral molecular variation. Genetics 134, 1289–1303 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Rice, W. R. & Chippindale, A. K. Sexual recombination and the power of natural selection. Science 294, 555–559 (2001). Provides strong evidence in support of sex speeding up adaptation by allowing beneficial mutations to spread without the load of deleterious mutations at linked loci.

    Article  CAS  PubMed  Google Scholar 

  25. Rice, W. R. Experimental tests of the adaptive significance of sexual recombination. Nature Rev. Genet. 3, 241–251 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Peck, J. A ruby in the rubbish: beneficial mutations, deleterious mutations and the evolution of sex. Genetics 137, 597–606 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kondrashov, A. S. Deleterious mutations as an evolutionary factor. I. The advantage of recombination. Genet. Res. 44, 199–217 (1984).

    Article  CAS  PubMed  Google Scholar 

  28. Kondrashov, A. S. Muller's ratchet under epistatic selection. Genetics 136, 1469–1473 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hamilton, W. D., Axelrod, R. & Tanese, R. Sexual reproduction as an adaptation to resist parasites (a review). Proc. Natl Acad. Sci. USA 87, 3566–3573 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Waxman, D. & Peck, J. R. Sex and adaptation in a changing environment. Genetics 153, 1041–1053 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Howard, R. S. & Lively, C. M. The ratchet and the Red Queen: maintenance of sex in parasites. J. Evol. Biol. 15, 648–656 (2002).

    Article  Google Scholar 

  32. Otto, S. P. & Nuismier, S. L. Species interactions and the evolution of sex. Science 304, 1018–1020 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Chao, L. Evolution of sex in RNA viruses. Trends Ecol. Evol. 7, 147–151 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Chao, L., Tran, T. T. & Tran, T. T. The advantage of sex in the RNA virus φ6. Genetics 147, 983–995 (1997).

    Google Scholar 

  35. Paland, S. & Lynch, M. Transitions to asexuality result in excess amino acid substitutions. Science 311, 990–992 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Cutter, A. D. & Payseur, B. A. Rates of deleterious mutation and the evolution of sex in Caenorhabditis. J. Evol. Biol. 16, 812–822 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Stearns, S. C. The selection-arena hypothesis. Experientia Suppl. 55, 337–349 (1987).

    Article  CAS  PubMed  Google Scholar 

  38. Otto, S. P. & Hastings, I. M. Mutation and selection within the individual. Genetica 102–103, 507–524 (1998).

    Article  PubMed  Google Scholar 

  39. Adami, C. Digital genetics: unraveling the genetic basis of evolution. Nature Rev. Genet. 7, 109–118 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Misevic, D., Lenski, R. E. & Ofria, C. in Artificial Life IX: Proceedings of the 9th International Conference on the Simulation and Synthesis of Living Systems (eds Pollack, J., Bedau, M., Husbands, P., Ikegami, T. & Watson, R. A.) 340–345 (MIT Press, Massachusetts, 2004).

    Google Scholar 

  41. Lynch, M., Bürger, R., Butcher, D. & Gabriel, W. The mutational meltdown in asexual populations. J. Heredity 84, 339–344 (1993).

    Article  CAS  Google Scholar 

  42. Froissart, R. et al. Co-infection weakens selection against epistatic mutations in RNA viruses. Genetics 168, 9–19 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zeyl, C. & Bell, G. The advantage of sex in evolving yeast populations. Nature 388, 465–468 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Greig, D., Borts, R. H. & Louis, E. J. The effect of sex on adaptation to high temperature in heterozygous and homozygous yeast. Proc. R. Soc. B Biol. Sci. 265, 1017–1023 (1998).

    Article  CAS  Google Scholar 

  45. Colegrave, N., Kaltz, O. & Bell, G. The ecology and genetics of fitness in Chlamydomonas. VIII. The dynamics of adaptation to novel environments after a single episode of sex. Evolution 56, 14–21 (2002).

    Article  PubMed  Google Scholar 

  46. Colegrave, N. Sex releases the speed limit on evolution. Nature 420, 664–666 (2002). Demonstration that the advantage of sex in adapting populations depends on population size.

    Article  CAS  PubMed  Google Scholar 

  47. Poon, A. & Chao, L. Drift increases the advantage of sex in RNA bacteriophage φ6. Genetics 166, 19–24 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Goddard, M. R., Godfray, H. C. J. & Burt, A. Sex increases the efficacy of natural selection in experimental yeast populations. Nature 434, 636–640 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Grimbert, B. & Zeyl, C. The effects of sex and mutation rate on the adaptation in test tubes and to mouse hosts by Saccharomyces cerevisiae. Evolution 59, 431–438 (2005).

    Article  Google Scholar 

  50. de Visser, J. A. G. M. & Hoekstra, R. Synergistic epistasis between loci affecting fitness: evidence in plant and fungi. Genet. Res. 71, 39–49 (1998).

    Article  Google Scholar 

  51. Sanjuán, R., Moya, A. & Elena, S. F. The contribution of epistasis to the architecture of fitness in an RNA virus. Proc. Natl Acad. Sci. USA 43, 15376–15379 (2004).

    Article  CAS  Google Scholar 

  52. Zeyl, C. The number of mutations selected during adaptation in a laboratory population of Saccharomyces cerevisiae. Genetics 169, 1825–1831 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mukai, T. The genetic structure of natural populations of Drosophila melanogaster. VII. Synergistic interaction of spontaneous mutant polygenes controlling viability. Genetics 61, 749–761 (1969).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. de Visser, J. A. G. M., Hoekstra, R. & van den Ende, H. The effect of sex and deleterious mutations on fitness in Chlamydomonas. Proc. R. Soc. B Biol. Sci. 263, 193–200 (1996).

    Article  Google Scholar 

  55. Whitlock, M. C. & Bourguet, D. Factors affecting the genetic load in Drosophila: synergistic epistasis and correlations among fitness components. Evolution 54, 1654–1660 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Salathé, P. & Ebert, D. The effect of parasitism and inbreeding on the competitive ability in Daphnia magna: evidence for synergistic epistasis. J. Evol. Biol. 16, 976–985 (2003).

    Article  PubMed  Google Scholar 

  57. Lenski, R. E., Ofria, C., Collier, T. C. & Adami, C. Genome complexity, robustness and genetic interactions in digital organisms. Nature 400, 661–664 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Bonhoeffer, S., Chappey, C., Parkin, N. T., Whitcomb, J. M. & Petropoulos, C. J. Evidence for positive epistasis in HIV-1. Science 306, 1547–1550 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Burch, C. L. & Chao, L. Epistasis and its relationship to canalization in the RNA virus φ6. Genetics 167, 559–567 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Maisnier-Patin, S. et al. Genomic buffering mitigates the effects of deleterious mutations in bacteria. Nature Genet. 37, 1376–1379 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Sanjuán, R. Quantifying antagonistic epistasis in a multifunctional RNA structure of the Rous sarcoma virus. J. Gen. Virol. 87, 1595–1602 (2006).

    Article  PubMed  CAS  Google Scholar 

  62. de Visser, J. A. G. M., Hoekstra, R. & van den Ende, H. Test of interactions between genetic markers that affect fitness in Aspergillus niger. Evolution 51, 1499–1505 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Elena, S. F. & Lenski, R. E. Test of synergistic interactions among deleterious mutations in bacteria. Nature 390, 395–398 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Elena, S. F. Little evidence for synergism among deleterious mutations in a nonsegmented RNA virus. J. Mol. Evol. 49, 703–707 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. de la Peña, M., Elena, S. F. & Moya, A. Effect of deleterious mutation accumulation on the fitness of RNA bacteriophage MS2. Evolution 54, 686–691 (2000).

    Article  PubMed  Google Scholar 

  66. Kelly, J. K. Epistasis in monkeyflowers. Genetics 171, 1917–1931 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. van Opijnen, T., Boerlijst, M. C. & Berkhout, B. Effects of random mutation in the human immunodeficiency virus type 1 transcriptional promoter on viral fitness in different host cell environments. J. Virol. 80, 6678–6685 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Otto, S. P. & Feldman, M. W. Deleterious mutations, variable epistatic interactions, and the evolution of recombination. Theor. Popul. Biol. 51, 134–147 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Crow, J. F. & Kimura, M. Efficiency of truncation selection. Proc. Natl Acad. Sci. USA 76, 396–399 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kondrashov, A. S. Deleterious mutations and the evolution of sexual reproduction. Nature 336, 435–440 (1988).

    Article  CAS  PubMed  Google Scholar 

  71. Szathmáry, E. Do deleterious mutations act synergistically? Metabolic control theory provides a partial answer. Genetics 133, 127–132 (1993). The first study of the contribution of metabolism and ecology to epistasis using metabolic control theory.

    PubMed  PubMed Central  Google Scholar 

  72. Kondrashov, A. S. Contamination of the genome by very slightly deleterious mutations: why have we not died 100 times over? J. Theor. Biol. 175, 583–894 (1995).

    Article  CAS  PubMed  Google Scholar 

  73. Otto, S. P. & Barton, N. H. Selection for recombination in small populations. Evolution 55, 1921–1931 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Martin, G., Otto, S. P. & Lenormand, T. Selection for recombination in structured populations. Genetics 172, 593–609 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. de Visser, J. A. G. M. & Rozen, D. E. Clonal interference and the periodic selection of new beneficial mutations in Escherichia coli. Genetics 172, 2093–2100 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Keightley, P. D. & Otto, S. P. Interference among deleterious mutations favours sex and recombination in finite populations. Nature 443, 89–92 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Kim, Y. & Orr, H. A. Adaptation in sexuals vs asexuals: clonal interference and the Fisher–Muller model. Genetics 171, 1377–1386 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. West, S. A., Lively, C. M. & Read, A. F. A pluralistic approach to sex and recombination. J. Evol. Biol. 12, 1003–1012 (1999). For readers interested in learning more about pluralistic theories, this is the right starting point. A collection of articles discussing this approach was published in the same issue of the Journal of Evolutionary Biology.

    Article  Google Scholar 

  79. Howard, R. S. & Lively, C. M. Parasitism, mutation accumulation and the maintenance of sex. Nature 367, 554–557 (1994).

    Article  CAS  PubMed  Google Scholar 

  80. Cooper, T. F., Lenski, R. E. & Elena, S. F. Parasites and mutational load: an experimental test of a pluralistic theory for the evolution of sex. Proc. R. Soc. B Biol. Sci. 272, 311–317 (2005).

    Article  Google Scholar 

  81. Buckling, A., Wei, Y., Massey, R. C., Brockhurst, M. A. & Hochberg, M. E. Antagonistic coevolution with parasites increases the cost of host deleterious mutations. Proc. R. Soc. B Biol. Sci. 273, 45–49 (2005).

    Article  Google Scholar 

  82. Stevens, L., Guiyun, Y. & Pray, L. A. Consequences of inbreeding on invertebrate host susceptibility to parasitic infections. Evolution 51, 2032–2039 (1997).

    Article  PubMed  Google Scholar 

  83. Coltman, D. W., Pilkington, J. G., Smith, J. A. & Pemberton, J. M. Parasite-mediated selection against inbred soay sheep in a free-living, island population. Evolution 53, 1259–1267 (1999).

    PubMed  Google Scholar 

  84. Haag, C. R., Sakwinska, O. & Ebert, D. Test of synergisytic interaction between infection and inbreeding in Daphnia magna. Evolution 57, 777–783 (2003).

    Article  PubMed  Google Scholar 

  85. Szafraniec, K., Borts, R. H. & Korona, R. Environmental stress and mutational load in diploid strains of the yeast Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 98, 1107–1112 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Vassilieva, L. L., Hook, A. M. & Lynch, M. The fitness of spontaneous mutation in Caenorhabditis elegans. Evolution 54, 1234–1246 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Shabalina, S. A., Yampolsky, L. Y. & Kondrashov, A. S. Rapid decline of fitness in panmictic populations of Drosophila melanogaster maintained under relaxed natural selection. Proc. Natl Acad. Sci. USA 94, 13034–13039 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kishony, R. & Leibler, S. Environmental stress can alleviate the average deleterious effect of mutations. J. Biol. 2, 14 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Gordo, I. & Charlesworth, B. The speed of Muller's ratchet with background selection, and the degeneration of Y chromosomes. Genet. Res. 78, 149–161 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Killick, S. C., Carlsson, A. M., West, S. A. & Little, T. J. Testing the pluralistic approach to sex: the influence of environment on synergistic interactions between mutation load and parasitism in Daphnia magna. J. Evol. Biol. 19, 1603–1611 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. You, L. & Yin, J. Dependence of epistasis on environment and mutation severity as revealed by in silico mutagenesis of phage T7. Genetics 160, 1273–1281 (2002).

    PubMed  PubMed Central  Google Scholar 

  92. Segrè, D., DeLuna, A., Church, G. M. & Kishony, R. Modular epistasis in yeast metabolism. Nature Genet. 37, 77–83 (2005). An innovative study that uses metabolic flux balance analysis to study metabolic principles that affect epistasis.

    Article  PubMed  CAS  Google Scholar 

  93. de Visser, J. A. G. M. et al. Evolution and detection of genetic robustness. Evolution 57, 1959–1972 (2003). A review on the mechanisms that promote the evolution of genetic robustness and its consequences, as well as approaches to studying this.

    PubMed  Google Scholar 

  94. Wagner, A. Robustness, evolvability, and neutrality. FEBS Lett. 579, 1772–1778 (2005).

    Article  CAS  PubMed  Google Scholar 

  95. Elena, S. F., Carrasco, P., Daròs, J. A. & Sanjuán, R. Mechanisms of genetic robustness in RNA viruses. EMBO Reps. 7, 168–173 (2006).

    Article  CAS  Google Scholar 

  96. Bershtein, S., Segal, M., Bekerman, R., Tokuriki, N. & Tawfik, D. S. Robustness–epistasis link shapes the fitness landscape of a randomly drifting protein. Nature 444, 929–932 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Rutherford, S. L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 396, 336–342 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Fares, M. A., Ruiz-González, M. X., Moya, A., Elena, S. F. & Barrio, E. Endosymbiotic bacteria: GroEL buffers against deleterious mutations. Nature 417, 398 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. From molecular to modular cell biology. Nature 402, C47–C52 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Wagner, A. Distributed robustness versus redundancy as causes of mutational robustness. BioEssays 27, 176–188 (2004).

    Article  CAS  Google Scholar 

  101. Gardner, A. & Kalinka, A. T. Recombination and the evolution of mutational robustness. J. Theor. Biol. 241, 707–715 (2006). The first mathematical treatment of the evolution of robustness that considers the long-term cost of mutation accumulation. It shows that robustness can evolve in sexual, but not in asexual, populations.

    Article  PubMed  Google Scholar 

  102. Malmberg, R. L. The evolution of epistasis and the advantage of recombination in populations of bacteriophage T4. Genetics 86, 607–621 (1977). The first study (known to us) to investigate the effect of recombination on epistasis (instead of the other way around).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Stearns, S. C. Safeguards and spurs. Nature 424, 501–504 (2004).

    Article  CAS  Google Scholar 

  104. Azevedo, R. B. R., Lohaus, R., Srinivasan, S., Dang, K. K. & Burch, C. L. Sexual reproduction selects for robustness and negative epistasis in artificial gene networks. Nature 440, 87–90 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Misevic, D., Ofria, C. & Lenski, R. E. Sexual reproduction reshapes the genetic architecture of digital organisms. Proc. R. Soc. B Biol. Sci. 273, 457–464 (2005). A beautiful demonstration, using the powerful approach of digital life, that the evolution of sex cannot be understood without looking at the evolution of genome architecture.

    Article  Google Scholar 

  106. Pál, C. & Hurst, L. D. Evidence for co-evolution of gene order and recombination rate. Nature Genet. 33, 392–395 (2003).

    Article  PubMed  CAS  Google Scholar 

  107. Sanjuán, R. & Elena, S. F. Epistasis correlates with genome complexity. Proc. Natl Acad. Sci. USA 103, 14402–1 4405.

    Article  CAS  Google Scholar 

  108. Lawrence, J. G. & Roth, J. R. Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143, 1843–1860 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Kirschner, M. & Gerhart, J. Evolvability. Proc. Natl Acad. Sci. USA 95, 8420–8427 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Fraser, H. B. Modularity and evolutionary constraints on proteins. Nature Genet. 37, 351–352 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Rendel, J. M., Sheldon, B. L. & Finlay, D. E. Canalization of development of scutellar bristles in Drosophila by control of the scute locus. Genetics 52, 1137–1151 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Baatz, M. & Wagner, G. P. Adaptive inertia caused by hidden pleiotropic effects. Theor. Popul. Biol. 51, 49–66 (1997).

    Article  Google Scholar 

  113. Nedelcu, A. M., Marcu, O. & Michod, R. E. Sex as a response to oxidative stress: a twofold increase in cellular reactive oxygen species activates sex genes. Proc. R. Soc. B Biol. Sci. 271, 1591–1596 (2004).

    Article  CAS  Google Scholar 

  114. Bruggeman, J., Debets, A. J. M., Wijngaarden, P. J., de Visser, J. A. G. M. & Hoekstra, R. F. Sex slows down the accumulation of deleterious mutations in the homothallic fungus Aspergillus nidulans. Genetics 164, 479–485 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Peters, A. D. & Keightley, P. D. A test of epistasis among induced mutations in Caenorhabditis elegans. Genetics 156, 1635–1647 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Szafraniec, K., Wloch, D. M., Sliwa, P., Borts, R. H. & Korona, R. Small fitness effects and weak genetic interactions between deleterious mutations in heterozygous loci of the yeast Saccharomyces cerevisiae. Genet. Res. 82, 19–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Rivero, A., Balloux, F. & West, S. A. Testing for epistasis between deleterious mutations in a parasitoid wasp. Evolution 57, 1698–1703 (2003).

    Article  PubMed  Google Scholar 

  118. Wloch, D. M., Szafraniec, K., Borts, R. H. & Korona, R. Direct estimate of the mutation rate and the distribution of fitness effects in the yeast Saccharomyces cerevisiae. Genetics 159, 441–452 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Lynch, M. & Conery, J. S. The origins of genome complexity. Science 302, 1401–1404 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Lynch, M. The origin of eukaryotic gene structure. Mol. Biol. Evol. 23, 450–468 (2006). A thoughtful discussion of the mechanisms contributing to genome complexity with particular attention to the role of neutral variation and drift.

    Article  CAS  PubMed  Google Scholar 

  121. Lynch, M. & Conery, J. S. The evolutionary fate and consequence of duplicate genes. Science 290, 1151–1155 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Ohno, S. Evolution by Gene Duplication (Springer, New York, 1970).

    Book  Google Scholar 

  123. Krakauer, D. C. & Plotkin, J. B. Redundancy, antiredundancy, and the robustness of genomes. Proc. Natl Acad. Sci. USA 99, 1405–1409 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Drake, J. W., Charlesworth, B., Charlesworth, D. & Crow, J. F. Rates of spontaneous mutation. Genetics 148, 1667–1686 (1998). A comprehensive compilation of mutation rates for many different organisms, comparing different methods of measurement.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Malpica, J. M. et al. The rate and character of spontaneous mutation in an RNA virus. Genetics 162, 1505–1511 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Elena, S. F. & Moya, A. Rate of deleterious mutation and the distribution of its effects on fitness in vesicular stomatitis virus. J. Evol. Biol. 12, 1078–1088 (1999).

    Article  Google Scholar 

  127. Ochman, H., Elwyn, S. & Moran, N. A. Calibrating bacterial evolution. Proc. Natl Acad. Sci. USA 96, 12638–12643 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kibota, T. T. & Lynch, M. Estimates of the genomic mutation rate deleterious to overall fitness in E. coli. Nature 381, 694–696 (1996).

    Article  CAS  PubMed  Google Scholar 

  129. Lenski, R. E., Winkworth, C. L. & Riley, M. A. Rates of DNA sequence evolution in experimental populations of Escherichia coli during 20,000 generations. J. Mol. Evol. 56, 498–508 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Schultz, S. T., Lynch, M. & Willis, J. H. Spontaneous deleterious mutation in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 96, 11393–11398 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Shaw, R. G., Byers, D. L. & Darmo, E. Spontaneous mutational effects on reproductive traits of Arabidopsis thaliana. Genetics 155, 369–378 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Keightley, P. D. & Caballero, A. Genomic mutation rates for lifetime reproductive output and lifespan in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 94, 3823–3827 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Vassilieva, L. L. & Lynch, M. The rate of spontaneous mutation for life-history traits in Caenorhabditis elegans. Genetics 151, 119–129 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Denver, D. R., Morris, K., Lynch, M. & Thomas, W. K. High mutation rate and predominance of insertions in the Caenorhabditis elegans genome. Nature 430, 679–682 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Deng, H. W., Li, J., Pfrender, M. E., Li, J. L. & Deng, H. Upper limit of the rate and per generation effects of deleterious mutations. Genet. Res. 88, 57–65 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. García-Dorado, A. & Caballero, A. The mutational rate of Drosophila viability decline: tinkering with old data. Genet. Res. 80, 99–105 (2002).

    Article  PubMed  Google Scholar 

  137. Ohnishi, M. Spontaneous and ethyl methanosulfonate-induced mutations controlling viability in Drosophila melanogaster. II. Heterozygous effect of polygenic mutations. Genetics 87, 547–556 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Mukai, T. The genetic structure of natural populations of Drosophila melanogaster. I. Spontaneous mutation rate of polygenes controlling viability. Genetics 50, 1–19 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Mukai, T., Chigusa, S. I., Mettler, L. E. & Crow, J. F. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics 72, 335–355 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Keightley, P. D. & Eyre-Walker, A. Deleterious mutations and the evolution of sex. Science 290, 331–333 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Eyre-Walker, A. & Keightley, P. D. High genomic deleterious mutation rates in hominids. Nature 397, 344–347 (1999).

    Article  CAS  PubMed  Google Scholar 

  142. Kondrashov, A. S. Direct estimates of human per nucleotide mutation rates at 20 loci causing mendelian diseases. Hum. Mut. 21, 12–27 (2002).

    Article  CAS  Google Scholar 

  143. Nachman, M. W. & Crowell, S. L. Estimate of the mutation rate per nucleotide in humans. Genetics 156, 297–304 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Bataillon, T. M. Estimation of spontaneous genome-wide mutation rate parameters: whither beneficial mutations? Heredity 84, 497–501 (2000).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

J.A.G.M.d.V. is supported by an Innovational Research Incentives grant from the Netherlands Organization of Scientific Research. S.F.E. is supported by grants from the Spanish Ministerio de Educación y Ciencia-FEDER, the Generalitat Valenciana and the EMBO Young Investigator Program. We thank D. Aanen, F. Debets, R. Hoekstra, A. Kondrashov, S. Otto, J. Peck, R. Sanjuán and C. Zeyl for comments and discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. Arjan G. M. de Visser or Santiago F. Elena.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Arjan de Visser's homepage

Santiago Elena's homepage

Glossary

Recombinational load

A decrease in mean fitness due to the break up of co-adapted (that is, epistatic) gene combinations by recombination.

Drift

A change in genotype frequencies due to chance variation. Also known as random or genetic drift.

Epistasis

Deviation from independent (that is, multiplicative) gene action on a polygenically encoded phenotype, or on fitness.

Anisogamy

The condition in which the male and female gametes are of different sizes.

Sexual selection

Selection among individuals of one sex that is exerted through competition for mates, or through the mating preference of the opposite sex.

Directional selection

Natural selection that promotes the continued change of a phenotype in one direction.

Linkage disequilibrium

Deviation in a population from a random distribution of alleles at different loci, denoted by D. D < 0 reflects the relative absence of individuals with particular allele combinations, D > 0 reflects the relative abundance of such individuals.

Stabilizing selection

A form of selection that results in intermediate phenotypes having greater fitness than extreme phenotypes.

Fisher–Muller hypothesis

The theory that, through recombination, sex speeds up adaptation by bringing together beneficial mutations that have arisen in different genetic backgrounds.

Muller's ratchet

The process by which the genome of an asexual population accumulates deleterious mutations in an irreversible manner, owing to the chance loss of individuals with the lowest number of mutations.

Background selection

The interfering effect of selection against deleterious mutations at loci that are linked to another locus that is under positive selection.

Segmented bacteriophage

A bacterial virus that has a genome that is divided into several fragments (chromosomes), which can be encapsidated into either the same or different viral particles, and allows reassortment of segments in co-infected bacteria.

Selective interference

The situation in which the fixation of an allele at a locus affects the probability of fixation of alleles at other linked loci.

Digital organisms

Computer-generated organisms that mutate and evolve inside the memory of a computer, where they compete for CPU time, on which they depend for their replication.

Mutational meltdown

The process by which small populations accumulate deleterious mutations leading to loss of fitness and a concomitant decline in effective population size. The decline in population size further accelerates Muller's ratchet and enhances the likelihood of extinction.

Purifying selection

Selection against deleterious alleles.

Clonal interference

Competition between multiple beneficial mutations that have arisen in different individuals in an asexual population.

Isogenic

Genetically identical.

Fitness components

All the traits of an organism that contribute to its reproductive success.

Compensatory mutation

A mutation that has a beneficial effect that depends on the presence of a deleterious mutation at another locus.

Truncation selection

A form of selection such that individuals with a phenotype below or above a certain threshold have a relative fitness of zero or one, respectively.

Deme

A local population of organisms of a sexual species that actively interbreed with one another and share a distinct gene pool.

Robustness

The invariance of a phenotype or fitness in the face of genetic perturbations (for example, mutations) or environmental perturbations.

Evolvability

The long-term ability of a population or lineage to evolve new adaptive changes and prevent extinction.

Modularity

A specific form of genome architecture in which organismal or sub-organismal functions are encoded by discrete, contiguous parts of the genome.

Pleiotropic constraint

Evolutionary constraint that is caused when a gene that is under selection due to a positive effect on one trait has simultaneous negative side effects on other traits, which limit or prevent its selection.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Visser, J., Elena, S. The evolution of sex: empirical insights into the roles of epistasis and drift. Nat Rev Genet 8, 139–149 (2007). https://doi.org/10.1038/nrg1985

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1985

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing