Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The makings of maleness: towards an integrated view of male sexual development

Key Points

  • The correct development of two distinct sexes from a sexually undifferentiated, bipotential embryo is a multi-step process that is essential for mammalian reproduction.

  • Disorders of sexual development in humans are surprisingly common, but most remain unexplained at the molecular level.

  • In mammals, male development is initiated by the expression of the male-determining Y-chromosomal gene Sry in the bipotential genital ridge, resulting in the differentiation of Sertoli cells. These in turn orchestrate the differentiation of all other cell types in the developing testes.

  • Hormones produced by the testes influence the development of other male sexual characteristics: anti-Müllerian hormone results in the degeneration of the female-specific Müllerian duct, insulin-like 3 hormone is responsible for testicular descent, and androgens control the male-specific differentiation of the genital tract, prostate, external genitalia and brain.

  • In addition to steroid hormones, a specific set of genes is required for each differentiation step. These sets of genes build a network of gene regulation and signal-transduction pathways, which involves a common series of 'hub' genes that are important for most, if not all, processes, in addition to tissue-specific genes.

  • Evidence exists that Sry and/or other genes are directly involved in sexual dimorphism of the brain.

  • Further work is required to unravel the broader spectrum of events that are involved in male development, moving beyond the issue of how testes differentiate.

  • Included in this is the challenge to resolve the mechanisms that drive the coordination and integration of the different systems (testes, genital tract, accessory organs, external genitalia and brain) that contribute to normal male anatomy and physiology.

Abstract

As the mammalian embryo develops, it must engage one of the two distinct programmes of gene activity, morphogenesis and organogenesis that characterize males and females. In males, sexual development hinges on testis determination and differentiation, but also involves many coordinated transcriptional, signalling and endocrine networks that underpin the masculinization of other organs and tissues, including the brain. Here we bring together current knowledge about these networks, identify gaps in the overall picture, and highlight the known defects that lead to disorders of male sexual development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Major steps in male sexual differentiation.
Figure 2: Histological and gene-expression map of an early embryonic testis.
Figure 3: Schematic representation of the differentiation of the male genital tract.
Figure 4: Development of the external genitalia.
Figure 5: Morphological and gene-expression changes during prostate development.
Figure 6: Overview of genetic pathways that drive male sexual differentiation in mammals.

Similar content being viewed by others

References

  1. Jost, A. Recherches sur la differentiation sexuelle de l'embryon de lapin. Arch. Anat. Microsc. Morphol. Exp. 36, 271–315 (1947) (in French).

    Google Scholar 

  2. Gubbay, J. et al. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346, 245–250 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Sinclair, A. H. et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346, 240–244 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Miyamoto, N., Yoshida, M., Kuratani, S., Matsuo, I. & Aizawa, S. Defects of urogenital development in mice lacking Emx2. Development 124, 1653–1664 (1997).

    CAS  PubMed  Google Scholar 

  5. Tevosian, S. G. et al. Gonadal differentiation, sex determination and normal Sry expression in mice require direct interaction between transcription partners GATA4 and FOG2. Development 129, 4627–4634 (2002).

    CAS  PubMed  Google Scholar 

  6. Birk, O. et al. The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature 403, 909–913 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Achermann, J. C., Ito, M., Ito, M., Hindmarsh, P. C. & Jameson, J. L. A mutation in the gene encoding steroidogenic factor-1 causes XY sex reversal and adrenal failure in humans. Nature Genet. 22, 125–126 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Achermann, J. et al. Gonadal determination and adrenal development are regulated by the orphan nuclear receptor steroidogenic factor-1, in a dose dependent manner. J. Clin. Endocrinol. Metab. 87, 1829–1833 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Ozisik, G., Achermann, J. C. & Jameson, J. L. The role of SF1 in adrenal and reproductive function: insight from naturally occurring mutations in humans. Mol. Genet. Metab. 76, 85–91 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Englert, C. WT1 — more than a transcription factor? Trends Biochem. Sci. 23, 389–393 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Ludbrook, L. M. & Harley, V. R. Sex determination: a 'window' of DAX1 activity. Trends Endocrinol. Metab. 15, 116–121 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Berta, P. et al. Genetic evidence equating SRY and the male sex determining gene. Nature 348, 448–450 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Jäger, R. J., Anvret, M., Hall, K. & Scherer, G. A human XY female with a frame shift mutation in the candidate testis-determining gene SRY. Nature 348, 452–454 (1990).

    Article  PubMed  Google Scholar 

  14. Koopman, P., Gubbay, J., Vivian, N., Goodfellow, P. & Lovell-Badge, R. Male development of chromosomally female mice transgenic for Sry. Nature 351, 117–121 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Wilhelm, D. et al. Sertoli cell differentiation is induced both cell-autonomously and through prostaglandin signaling during mammalian sex determination. Dev. Biol. 287, 111–124 (2005). This work includes the generation and characterization of the first antibody to mouse SRY.

    Article  CAS  PubMed  Google Scholar 

  16. Bullejos, M. & Koopman, P. Spatially dynamic expression of Sry in mouse genital ridges. Dev. Dyn. 221, 201–205 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Nef, S. et al. Testis determination requires insulin receptor family function in mice. Nature 426, 291–295 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Hammes, A. et al. Two splice variants of the Wilms' tumor 1 gene have distinct functions during sex determination and nephron formation. Cell 106, 319–329 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Parma, P., Pailhoux, E. & Cotinot, C. Reverse transcription-polymerase chain reaction analysis of genes involved in gonadal differentiation in pigs. Biol. Reprod. 61, 741–748 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Salas-Cortes, L. et al. The human SRY protein is present in fetal and adult Sertoli cells and germ cells. Int. J. Dev. Biol. 43, 135–140 (1999).

    CAS  PubMed  Google Scholar 

  21. Harry, J. L., Koopman, P., Brennan, F. E., Graves, J. A. M. & Renfree, M. B. Widespread expression of the testis-determining gene SRY in a marsupial. Nature Genet. 11, 347–349 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Eicher, E. M., Washburn, L. L., Whitney, J. B. & Morrow, K. E. Mus poschiavinus Y chromosome in the C57BL/6J murine genome causes sex reversal. Science 217, 535–537 (1982).

    Article  CAS  PubMed  Google Scholar 

  23. Bullejos, M. & Koopman, P. Delayed Sry and Sox9 expression in developing mouse gonads underlies B6-YDOM sex reversal. Dev. Biol. 278, 473–481 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Taketo, T. et al. Expression of SRY proteins in both normal and sex-reversed XY fetal mouse gonads. Dev. Dyn. 233, 612–622 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Nagamine, C., Morohashi, K., Carlisle, C. & Chang, D. Sex reversal caused by Mus musculus domesticus Y chromosomes linked to variant expression of the testis-determining gene Sry. Dev. Biol. 216, 182–194 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Hoffenberg, R. & Jackson, W. P. Gonadal dysgenesis: modern concepts. BMJ 29, 1457–1462 (1957).

    Article  Google Scholar 

  27. Pontiggia, A. et al. Sex-reversing mutations affect the architecture of SRY–DNA complexes. EMBO J. 13, 6115–6124 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schmitt-Ney, M. et al. Two novel SRY missense mutations reducing DNA binding identified in XY females and their mosaic fathers. Am. J. Hum. Genet. 56, 862–869 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Jäger, R., Harley, V., Pfeiffer, R., Goodfellow, P. & Scherer, G. A familial mutation in the testis-determining gene SRY shared by both sexes. Hum. Genet. 90, 350–355 (1992).

    Article  PubMed  Google Scholar 

  30. Harley, V. R. et al. DNA binding activity of recombinant SRY from normal males and XY females. Science 255, 453–456 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Baldazzi, L. et al. Two new point mutations of the SRY gene identified in two Italian 46, XY females with gonadal dysgenesis. Clin. Genet. 64, 258–260 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Shahid, M. et al. Two new novel point mutations localized upstream and downstream of the HMG box region of the SRY gene in three Indian 46,XY females with sex reversal and gonadal tumour formation. Mol. Hum. Reprod. 10, 521–526 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Shahid, M., Dhillon, V. S., Aslam, M. & Husain, S. A. Three new novel point mutations localized within and downstream of high-mobility group-box region in SRY gene in three Indian females with Turner syndrome. J. Clin. Endocrinol. Metab. 90, 2429–2435 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. McElreavey, K., Vilain, E., Herskowitz, I. & Fellous, M. A regulatory cascade hypothesis for mammalian sex determination: SRY represses a negative regulator of male development. Proc. Natl Acad. Sci. USA 90, 3368–3372 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Burgoyne, P. S., Buehr, M., Koopman, P., Rossant, J. & McLaren, A. Cell-autonomous action of the testis-determining gene: Sertoli cells are exclusively XY in XX–XY chimaeric mouse testes. Development 102, 443–450 (1988).

    CAS  PubMed  Google Scholar 

  36. Adams, I. & McLaren, A. Sexually dimorphic development of mouse primordial germ cells: switching from oogenesis to spermatogenesis. Development 129, 1155–1164 (2002).

    CAS  PubMed  Google Scholar 

  37. Malki, S. et al. Prostaglandin D2 induces nuclear import of the sex-determining factor SOX9 via its cAMP-PKA phosphorylation. EMBO J. 24, 1798–1809 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kent, J., Wheatley, S. C., Andrews, J. E., Sinclair, A. H. & Koopman, P. A male-specific role for SOX9 in vertebrate sex determination. Development 122, 2813–2822 (1996).

    CAS  PubMed  Google Scholar 

  39. Morais da Silva, S. et al. Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nature Genet. 14, 62–68 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Schepers, G., Wilson, M., Wilhelm, D. & Koopman, P. SOX8 is expressed during testis differentiation in mice and synergizes with SF1 to activate the Amh promoter in vitro. J. Biol. Chem. 278, 28101–28108 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Foster, J. W. et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372, 525–530 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Wagner, T. et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 79, 1111–1120 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Vidal, V., Chaboissier, M., de Rooij, D. & Schedl, A. Sox9 induces testis development in XX transgenic mice. Nature Genet. 28, 216–217 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Huang, B., Wang, S., Ning, Y., Lamb, A. & Bartley, J. Autosomal XX sex reversal caused by duplication of SOX9. Am. J. Med. Genet. 87, 349–353 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Bishop, C. E. et al. A transgenic insertion upstream of Sox9 is associated with dominant XX sex reversal in the mouse. Nature Genet. 26, 490–494 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Chaboissier, M. C. et al. Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Development 131, 1891–901 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Barrionuevo, F. et al. Homozygous inactivation of Sox9 causes complete XY sex reversal in mice. Biol. Reprod. 74, 195–201 (2006). References 46 and 47 showed for the first time that null mutation of Sox9 results in complete XY sex reversal in mice.

    Article  CAS  PubMed  Google Scholar 

  48. DeFalco, T. J. et al. Sex-specific apoptosis regulates sexual dimorphism in the Drosophila embryonic gonad. Dev. Cell 5, 205–216 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Capel, B. The battle of the sexes. Mech. Dev. 92, 89–103 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Swain, A. & Lovell-Badge, R. Mammalian sex determination: a molecular drama. Genes Dev. 13, 755–767 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Schmahl, J., Eicher, E., Washburn, L. & Capel, B. Sry induces cell proliferation in the mouse gonad. Development 127, 65–73 (2000).

    CAS  PubMed  Google Scholar 

  52. Capel, B., Albrecht, K. H., Washburn, L. L. & Eicher, E. M. Migration of mesonephric cells into the mammalian gonad depends on Sry. Mech. Dev. 84, 127–131 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Martineau, J., Nordqvist, K., Tilmann, C., Lovell-Badge, R. & Capel, B. Male-specific cell migration into the developing gonad. Curr. Biol. 7, 958–968 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Cupp, A. S., Kim, G. H. & Skinner, M. K. Expression and action of neurotropin-3 and nerve growth factor in embryonic and early postnatal rat testis development. Biol. Reprod. 63, 1617–1628 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Ricci, G., Catizone, A. & Galderi, M. Pleiotropic activity of hepatocyte growth factor during embryonic testis development. Mech. Dev. 118, 19–28 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. Smith, C. A., McClive, P. J., Hudson, Q. & Sinclair, A. H. Male-specific cell migration into the developing gonad is a conserved process involving PDGF signalling. Dev. Biol. 284, 337–350 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Buehr, M., Gu, S. & McLaren, A. Mesonephric contribution to testis differentiation in the fetal mouse. Development 117, 273–281 (1993).

    CAS  PubMed  Google Scholar 

  58. Jeanes, A. et al. Evaluation of candidate markers for the peritubular myoid cell lineage in the developing mouse testis. Reproduction 130, 509–516 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Clark, A. M., Garland, K. K. & Russell, L. D. Desert hedgehog (Dhh) gene is required in the mouse testis for formation of adult-type Leydig cells and normal development of peritubular cells and seminiferous tubules. Biol. Reprod. 63, 1825–1838 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Bitgood, M. J., Shen, L. & McMahon, A. P. Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr. Biol. 6, 298–304 (1996).

    Article  CAS  PubMed  Google Scholar 

  61. Pierucci-Alves, F., Clark, A. & Russell, L. A developmental study of the Desert hedgehog-null mouse testis. Biol. Reprod. 65, 1392–1402 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Canto, P., Vilchis, F., Soderlund, D., Reyes, E. & Mendez, J. P. A heterozygous mutation in the desert hedgehog gene in patients with mixed gonadal dysgenesis. Mol. Hum. Reprod. 11, 833–836 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Canto, P., Soderlund, D., Reyes, E. & Mendez, J. P. Mutations in the Desert hedgehog (DHH) gene in patients with 46,XY complete pure gonadal dysgenesis. J. Clin. Endocrinol. Metab. 89, 4480–4483 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Umehara, F., Tate, G., Itoh, K. & Osame, M. Minifascicular neuropathy: a new concept of the human disease caused by Desert hedgehog gene mutation. Cell. Mol. Biol. 48, 187–189 (2002).

    CAS  PubMed  Google Scholar 

  65. Brennan, J., Karl, J. & Capel, B. Divergent vascular mechanisms downstream of Sry establish the arterial system in the XY gonad. Dev. Biol. 244, 418–428 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Bullejos, M., Bowles, J. & Koopman, P. Extensive vascularization of developing mouse ovaries revealed by caveolin-1 expression. Dev. Dyn. 225, 95–99 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Jeays-Ward, K. et al. Endothelial and steroidogenic cell migration are regulated by WNT4 in the developing mammalian gonad. Development 130, 3663–3670 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Kitamura, K. et al. Mutation of ARX causes abnormal development of forebrain and testes in mice and X-linked lissencephaly with abnormal genitalia in humans. Nature Genet. 32, 359–369 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Kato, M. et al. Mutations of ARX are associated with striking pleiotropy and consistent genotype-phenotype correlation. Hum. Mutat. 23, 147–159 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Tang, P., Park, D. J., Marshall Graves, J. A. & Harley, V. R. ATRX and sex differentiation. Trends Endocrinol. Metab. 15, 339–344 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Brennan, J., Tilmann, C. & Capel, B. Pdgfr-α mediates testis cord organization and fetal Leydig cell development in the XY gonad. Genes Dev. 17, 800–810 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gnessi, L. et al. Leydig cell loss and spermatogenic arrest in platelet-derived growth factor (PDGF)-A-deficient mice. J. Cell Biol. 149, 1019–1026 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tanaka, S. S., Yamaguchi, Y. L., Tsoi, B., Lickert, H. & Tam, P. P. IFITM/Mil/fragilis family proteins IFITM1 and IFITM3 play distinct roles in mouse primordial germ cell homing and repulsion. Dev. Cell 9, 745–756 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Molyneaux, K. A. et al. The chemokine SDF1/CXCL12 and its receptor CXCR4 regulate mouse germ cell migration and survival. Development 130, 4279–4286 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. McLaren, A. & Southee, D. Entry of mouse embryonic germ cells into meiosis. Dev. Biol. 187, 107–113 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Hilscher, B. et al. Kinetics of gametogenesis. I. Comparative histological and autoradiographic studies of oocytes and transitional prospermatogonia during oogenesis and prespermatogenesis. Cell Tissue Res. 154, 443–470 (1974).

    Article  CAS  PubMed  Google Scholar 

  77. McLaren, A. Germ and somatic cell lineages in the developing gonad. Mol. Cell. Endocrinol. 163, 3–9 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Koubova, J. et al. Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc. Natl Acad. Sci. USA 103, 2474–2479 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bowles, J. et al. Retinoid signaling determines germ cell fate in mice. Science 312, 596–600 (2006). References 78 and 79 provide evidence that the entry into meiosis is not a cell-autonomous property of germ cells, but is induced by retinoic acid.

    Article  CAS  PubMed  Google Scholar 

  80. Kurohmaru, M., Kanai, Y. & Hayashi, Y. A cytological and cytoskeletal comparison of Sertoli cells without germ cell and those with germ cells using the W/WV mutant mouse. Tissue Cell 24, 895–903 (1992).

    Article  CAS  PubMed  Google Scholar 

  81. Adham, I. M. & Agoulnik, A. I. Insulin-like 3 signalling in testicular descent. Int. J. Androl. 27, 257–265 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Kaleva, M. & Toppari, J. Cryptorchidism: an indicator of testicular dysgenesis? Cell Tissue Res. 322, 167–172 (2005).

    Article  PubMed  Google Scholar 

  83. Ivell, R. & Hartung, S. The molecular basis of cryptorchidism. Mol. Hum. Reprod. 9, 175–181 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Hutson, J. M., Hasthorpe, S. & Heyns, C. F. Anatomical and functional aspects of testicular descent and cryptorchidism. Endocr. Rev. 18, 259–280 (1997).

    CAS  PubMed  Google Scholar 

  85. Roberts, L. M., Visser, J. A. & Ingraham, H. A. Involvement of a matrix metalloproteinase in MIS-induced cell death during urogenital development. Development 129, 1487–1496 (2002).

    CAS  PubMed  Google Scholar 

  86. Imbeaud, S. et al. Molecular genetics of the persistent mullerian duct syndrome: a study of 19 families. Hum. Mol. Genet. 3, 125–131 (1994).

    Article  CAS  PubMed  Google Scholar 

  87. Hoshiya, M. et al. Persistent Mullerian duct syndrome caused by both a 27-bp deletion and a novel splice mutation in the MIS type II receptor gene. Birth Defects Res. A 67, 868–874 (2003).

    Article  CAS  Google Scholar 

  88. Behringer, R. R. The in vivo roles of mullerian-inhibiting substance. Curr. Top. Dev. Biol. 29, 171–187 (1994).

    Article  CAS  PubMed  Google Scholar 

  89. Chen, M. Y., Carpenter, D. & Zhao, G. Q. Expression of bone morphogenetic protein 7 in murine epididymis is developmentally regulated. Biol. Reprod. 60, 1503–1508 (1999).

    Article  CAS  PubMed  Google Scholar 

  90. Hu, J. et al. Developmental expression and function of Bmp4 in spermatogenesis and in maintaining epididymal integrity. Dev. Biol. 276, 158–171 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Zhao, G. Q., Chen, Y. X., Liu, X. M., Xu, Z. & Qi, X. Mutation in Bmp7 exacerbates the phenotype of Bmp8a mutants in spermatogenesis and epididymis. Dev. Biol. 240, 212–222 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Settle, S. et al. The BMP family member Gdf7 is required for seminal vesicle growth, branching morphogenesis, and cytodifferentiation. Dev. Biol. 234, 138–150 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Benson, G. V. et al. Mechanisms of reduced fertility in Hoxa-10 mutant mice: uterine homeosis and loss of maternal Hoxa-10 expression. Development 122, 2687–2696 (1996).

    CAS  PubMed  Google Scholar 

  94. Hsieh-Li, H. M. et al. Hoxa 11 structure, extensive antisense transcription, and function in male and female fertility. Development 121, 1373–1385 (1995).

    CAS  PubMed  Google Scholar 

  95. Sonnenberg-Riethmacher, E., Walter, B., Riethmacher, D., Godecke, S. & Birchmeier, C. The c-ros tyrosine kinase receptor controls regionalization and differentiation of epithelial cells in the epididymis. Genes Dev. 10, 1184–1193 (1996).

    Article  CAS  PubMed  Google Scholar 

  96. Mendive, F. et al. Defective postnatal development of the male reproductive tract in LGR4 knockout mice. Dev. Biol. 290, 421–434 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Samuel, C. S. et al. The relaxin gene-knockout mouse: a model of progressive fibrosis. Ann. NY Acad. Sci. 1041, 173–181 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Basciani, S. et al. Expression of platelet-derived growth factor (PDGF) in the epididymis and analysis of the epididymal development in PDGF-A, PDGF-B, and PDGF receptor β deficient mice. Biol. Reprod. 70, 168–177 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Cuppens, H. & Cassiman, J. J. CFTR mutations and polymorphisms in male infertility. Int. J. Androl. 27, 251–256 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Hildebrand, M. Reproductive Systems and Urogenital Ducts. Analysis of Vertebrate Structures (John Wiley & Sons Inc., New York, 1995).

    Google Scholar 

  101. Cobb, J. & Duboule, D. Comparative analysis of genes downstream of the Hoxd cluster in developing digits and external genitalia. Development 132, 3055–3067 (2005). This study investigated whether a similar Hox expression pattern in distinct tissues leads to the modulation of the same or different target genes.

    Article  CAS  PubMed  Google Scholar 

  102. Villee, D. B. & Crigler, J. F. Jr. The adrenogenital syndrome. Clin. Perinatol. 3, 211–220 (1976).

    Article  CAS  PubMed  Google Scholar 

  103. Pinsky, L., Erickson, R. P. & Schimke, R. N. Genetic Disorders of Human Sexual Development (Oxford Univ. Press, New York, 1999).

    Google Scholar 

  104. Dravis, C. et al. Bidirectional signaling mediated by ephrin-B2 and EphB2 controls urorectal development. Dev. Biol. 271, 272–290 (2004). This paper suggests for the first time that impaired transduction of both forward and reverse components of Eph–ephrin signalling can lead to hypospadias in mice.

    Article  CAS  PubMed  Google Scholar 

  105. Goodman, F. R. et al. Novel HOXA13 mutations and the phenotypic spectrum of hand-foot-genital syndrome. Am. J. Hum. Genet. 67, 197–202 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Grier, D. G. et al. The pathophysiology of HOX genes and their role in cancer. J. Pathol. 205, 154–171 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Innis, J. W. et al. Polyalanine expansion in HOXA13: three new affected families and the molecular consequences in a mouse model. Hum. Mol. Genet. 13, 2841–2851 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Manson, J. M. & Carr, M. C. Molecular epidemiology of hypospadias: review of genetic and environmental risk factors. Birth Defects Res. A 67, 825–836 (2003).

    Article  CAS  Google Scholar 

  109. Cunha, G. R. et al. The endocrinology and developmental biology of the prostate. Endocr. Rev. 8, 338–362 (1987).

    Article  CAS  PubMed  Google Scholar 

  110. Timms, B. G., Mohs, T. J. & Didio, L. J. Ductal budding and branching patterns in the developing prostate. J. Urol. 151, 1427–1432 (1994).

    Article  CAS  PubMed  Google Scholar 

  111. Marker, P. C., Donjacour, A. A., Dahiya, R. & Cunha, G. R. Hormonal, cellular, and molecular control of prostatic development. Dev. Biol. 253, 165–174 (2003). This paper provides an excellent overview of the development of the prostate.

    Article  CAS  PubMed  Google Scholar 

  112. Zhang, T. J., Hoffman, B. G., Ruiz de Algara, T. & Helgason, C. D. SAGE reveals expression of Wnt signalling pathway members during mouse prostate development. Gene Expr. Patterns 6, 310–324 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Dewing, P., Shi, T., Horvath, S. & Vilain, E. Sexually dimorphic gene expression in mouse brain precedes gonadal differentiation. Brain Res. Mol. Brain Res. 118, 82–90 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. De Vries, G. J. et al. A model system for study of sex chromosome effects on sexually dimorphic neural and behavioral traits. J. Neurosci. 22, 9005–9014 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Clépet, C. et al. The human SRY transcript. Hum. Mol. Genet. 2, 2007–2012 (1993).

    Article  PubMed  Google Scholar 

  116. Lahr, G. et al. Transcription of the Y chromosomal gene, Sry, in adult mouse brain. Brain Res. Mol. Brain Res. 33, 179–182 (1995).

    Article  CAS  PubMed  Google Scholar 

  117. Mayer, A., Lahr, G., Swaab, D., Pilgrim, C. & Reisert, I. The Y-chromosomal genes SRY and ZFY are transcribed in adult human brain. Neurogenetics 281–288 (1998).

  118. Mayer, A., Mosler, G., Just, W., Pilgrim, C. & Reisert, I. Developmental profile of Sry transcripts in mouse brain. Neurogenetics 3, 25–30 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Dewing, P. et al. Direct regulation of adult brain function by the male-specific factor SRY. Curr. Biol. 16, 415–420 (2006). This provocative study indicates that the male-determining factor SRY has a direct role in brain sexual dimorphism.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Svingen, A. Combes and C. Spiller for helpful comments on the manuscript, and G. Yamada for help with Supplementary information S1. DW acknowledges grant funding by the US National Institutes of Health. PK is an Australian Professorial Research Fellow of the Australian Research Council and acknowledges grant funding by the Australian Research Council and the National Health and Medical Research Council, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Koopman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

OMIM

androgen insensitivity syndrome

ATRX syndrome

congenital bilateral aplasia of vas deferens

hand-foot-genital syndrome

Swyer syndrome

FURTHER INFORMATION

Koopman's homepage

Glossary

Hypospadias

Incorrect placement of the urethral opening in males, not at the tip of the penis.

Eutherian mammals

Mammals that have a placenta; includes all mammals except monotremes and marsupials.

Ovotestes

Gonads in which ovarian and testicular tissue are present together.

XY true hermaphroditism

This condition comprises the presence of both ovarian and testicular tissue either in the same gonad as an ovotestis, or an ovary and a testis.

XY gonadal dysgenesis

This can lead to pure gonadal dysgenesis, in which patients have streak gonads (undeveloped gonadal structures), Müllerian structures (owing to insufficient AMH secretion) and a complete absence of virilization. Alternatively, patients can have dysgenetic testes. In this case, enough AMH is produced to regress the Müllerian duct and there might be enough testosterone for partial virilization.

Campomelic dysplasia

A syndrome that is characterized by skeletal abnormalities and sex reversal, caused by mutations in SOX9.

Lissencephaly

A brain malformation that is characterized by the incomplete development of the folds of the outer region of the brain (the cerebral cortex), which causes the surface of the brain to appear abnormally thickened and unusually smooth.

Ovarian follicle

A cyst in which the oocyte matures.

Cryptorchidism

The condition of having undescended testes.

Persistent Müllerian duct syndrome

A rare form of male pseudohermaphroditism that is most commonly characterized by bilateral fallopian tubes and a uterus combined with an otherwise more or less normal male phenotype.

Anlage

A group of cells that are destined to become a specific structure or tissue in the adult, but have not yet differentiated.

Branchial arches

A series of paired segmental structures that are composed of ectoderm, mesoderm and neural crest cells that are positioned on each side of the developing pharynx. In mammals, the branchial arches contribute to pharyngeal organs and to the connective, skeletal, neural and vascular tissues of the head and neck.

Congenital adrenal hyperplasia

A condition that is in most cases due to CYP21 deficiency, and is characterized by the deficiency in the hormones cortisol and aldosterone and an overproduction of androgens, which results in ambiguous genitalia in females.

Substantia nigra

A region of the ventral midbrain that contains pigment and sends afferent dopamine-releasing neurons to the striatum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilhelm, D., Koopman, P. The makings of maleness: towards an integrated view of male sexual development. Nat Rev Genet 7, 620–631 (2006). https://doi.org/10.1038/nrg1903

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1903

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing