Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Human monogenic disorders — a source of novel drug targets

Key Points

  • Target selection and validation is a crucial first step in developing a drug against a given disease. Human genetic analysis is an important model for the identification and/or validation of novel therapeutic targets.

  • Monogenic disorders, involving rare high-penetrance mutations, comprise the most easily interpretable component of experimental human genetics. Because mutations alter the level of activity of gene products, they can be thought of as surrogates for perfectly targeted drugs, the job of which is to antagonize or agonize a given gene product.

  • Phenotypes of some monogenic disease states are of immediate relevance to major therapeutic programmes in the biotechnology and pharmaceutical sectors. The genetics of anti-disease states, such as low blood glucose or low plasma cholesterol, provides a novel approach to new target identification.

  • Among monogenic disorders that have understood molecular bases, many of the causal genes are 'druggable' using classical pharmaceutical methodologies. New chemistries will increase the fraction of the genome that is accessible to small molecular therapeutics.

  • Of the estimated 25,000 genes in the human genome repertoire, only approximately 1,500 have known monogenic disorders that are associated with high-penetrance mutations. Therefore, most of the genome remains to be characterized in terms of monogenic phenotypes. Some of these phenotypes are likely to be relevant to therapeutic developments for medically and commercially important diseases.

  • Ascertainment and molecular characterization of the complete monogenic human genome will require dedicated efforts in clinical genetics, bringing together medical descriptions of known and novel phenotypes with improved technological methods for gene discovery.

Abstract

The decrease in new drug applications and approvals over the past several years results from an underlying crisis in drug target identification and validation. Model organisms are being used to address this problem, in combination with novel approaches such as the International HapMap Project. What has been underappreciated is that discovery of new drug targets can also be revived by traditional Mendelian genetics. A large fraction of the human gene repertoire remains phenotypically uncharacterized, and is likely to encode many unanticipated and novel phenotypes that will be of interest to pharmaceutical and biotechnological drug developers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristics of the human phenome.
Figure 2: Regulation of insulin secretion by the SUR1 receptor complex in pancreatic islet cells.
Figure 3: Mapping rare genetic disorders in founder or isolated populations.

Similar content being viewed by others

References

  1. Frantz, S. FDA publishes analysis of the pipeline problem. Nature Rev. Drug Discov. 3, 379 (2004).

    Article  CAS  Google Scholar 

  2. Sams-Dodd, F. Target-based drug discovery: is something wrong? Drug Discov. Today 10, 139–147 (2005). The most recent of several reviews that discuss the challenges facing drug development pipelines and propose various genomic approaches to improve target selection and validation.

    Article  CAS  PubMed  Google Scholar 

  3. Butcher, S. P. Target discovery and validation in the post-genomic era. Neurochem. Res. 28, 367–371 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Hardy, L. W. & Peet, N. P. The multiple orthogonal tools approach to define molecular causation in the validation of druggable targets. Drug Discov. Today 9, 117–126 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Lindsay, M. A. Target discovery. Nature Rev. Drug Discov. 2, 831–838 (2003).

    Article  CAS  Google Scholar 

  6. Wienholds, E. et al. Efficient target-selected mutagenesis in zebrafish. Genome Res. 13, 2700–2707 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mullins, M. C., Hammerschmidt, M., Haffter, P. & Nusslein-Volhard, C. Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr. Biol. 4, 189–202 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Quwailid, M. M. et al. A gene-driven ENU-based approach to generating an allelic series in any gene. Mamm. Genome. 15, 585–591 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Clark, A. T. et al. Implementing large-scale ENU mutagenesis screens in North America. Genetica 122, 51–64 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rastan, S. et al. Towards a mutant map of the mouse — new models of neurological, behavioural, deafness, bone, renal and blood disorders. Genetica 122, 47–49 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Zambrowicz, B. P. et al. Disruption and sequence identification of 2,000 genes in mouse embryonic stem cells. Nature 392, 608–611 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. The International HapMap Consortium. The International HapMap Project. Nature 426, 789–796 (2003).

  13. Cardon, L. R. & Abecasis, G. R. Using haplotype blocks to map human complex trait loci. Trends Genet. 19, 135–140 (2003). A thoughtful discussion of the methodological basis for the HapMap project, its potential, technical challenges and practical guidelines for experimental analysis of complex human traits including common diseases.

    Article  CAS  PubMed  Google Scholar 

  14. Freimer, N. & Sabatti, C. The human phenome project. Nature Genet. 34, 15–21 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Allen, M. J. & Carrey, A. H. Target identification and validation through genetics. Drug Discov. Today Targets 3, 183–190 (2004).

    Article  CAS  Google Scholar 

  16. Hirschhorn, J. N. & Daly, M. J. Genome-wide association studies for common diseases and complex traits. Nature Rev. Genet. 6, 95–108 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Leroi, A. M. Mutants (Viking Penguin Books, New York, 2003).

    Google Scholar 

  18. Brunner, H. G. & van Driel, M. A. From syndrome families to functional genomics. Nature Rev. Genet. 5, 545–551 (2004). An informative discussion of rare monogenic human disorders and their utility in dissecting basic physiological mechanisms of human development and disease.

    Article  CAS  PubMed  Google Scholar 

  19. Donnai, D. & Read, A. P. How clinicians add to knowledge of development. Lancet 362, 477–484 (2003).

    Article  PubMed  Google Scholar 

  20. Samuels, M. E. & Dube, M. P. Encyclopedia of Genetics, Genomics, Proteomics, and Bioinformatics Genetics Vol. (John Wiley & Sons, 2005).

    Google Scholar 

  21. Botstein, D. & Risch, N. Discovering genotypes underlying human phenotypes: past successes for Mendelian disease, future approaches for complex disease. Nature Genet. 33, S228–S237 (2003). An authoritative presentation of methods in human genetic discovery by key exponents in the field, with an historical discussion of past, present and future approaches in monogenic and complex trait analysis

    Article  CAS  Google Scholar 

  22. Craig, D. W. & Stephan, D. A. Applications of whole-genome high-density SNP genotyping. Expert Rev. Mol. Diagn. 5, 159–170 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Horikawa, Y. et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nature Genet. 26, 163–175 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Song, Y., Niu, T., Manson, J. E., Kwiatkowski, D. J. & Liu, S. Are variants in the CAPN10 gene related to risk of type 2 diabetes? A quantitative assessment of population and family-based association studies. Am. J. Hum. Genet. 74, 208–222 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Weedon, M. N. et al. Meta-analysis and a large association study confirm a role for calpain-10 variation in type 2 diabetes susceptibility. Am. J. Hum. Genet. 73, 1208–1212 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fingerlin, T. E. et al. Variation in three single nucleotide polymorphisms in the calpain-10 gene not associated with type 2 diabetes in a large Finnish cohort. Diabetes 51, 1644–1648 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Rokman, A. et al. Germline alterations of the RNASEL gene, a candidate HPC1 gene at 1q25, in patients and families with prostate cancer. Am. J. Hum. Genet. 70, 1299–1304 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Carpten, J. et al. Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nature Genet. 30, 181–184 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Tavtigian, S. V. et al. A candidate prostate cancer susceptibility gene at chromosome 17p. Nature Genet. 27, 172–180 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, L. et al. Role of HPC2/ELAC2 in hereditary prostate cancer. Cancer Res. 61, 6494–6499 (2001).

    CAS  PubMed  Google Scholar 

  31. Camp, N. J. & Tavtigian, S. V. Meta-analysis of associations of the Ser217Leu and Ala541Thr variants in ELAC2 (HPC2) and prostate cancer. Am. J. Hum. Genet. 71, 1475–1478 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Styrkarsdottir, U. et al. Linkage of osteoporosis to chromosome 20p12 and association to BMP2. PLoS Biol. 1, e69 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Stefansson, H. et al. Neuregulin 1 and susceptibility to schizophrenia. Am. J. Hum. Genet. 71, 877–892 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tosato, S., Dazzan, P. & Collier, D. Association between the neuregulin 1 gene and schizophrenia: a systematic review. Schizophr. Bull. 31, 613–617 (2005).

    Article  PubMed  Google Scholar 

  35. Gretarsdottir, S. et al. The gene encoding phosphodiesterase 4D confers risk of ischemic stroke. Nature Genet. 35, 131–138 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Hageman, G. S. et al. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc. Natl Acad. Sci. USA 102, 7227–7232 (2005). One of several reports of the most consistent mapping of a complex genetic trait through high-density SNP-based linkage disequilibrium analysis (see following references for replication and validation of the results).

    Article  CAS  PubMed  Google Scholar 

  37. Klein, R. J. et al. Complement factor H polymorphism in age-related macular degeneration. Science 308, 385–389 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Edwards, A. O. et al. Complement factor H polymorphism and age-related macular degeneration. Science 308, 421–424 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Haines, J. L. et al. Complement factor H variant increases the risk of age-related macular degeneration. Science 308, 419–421 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. McKusick, V. A. Online Mendelian Inheritance in Man, OMIM (McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University and National Center for Biotechnology Information, National Library of Medicine, Baltimore and Bethesda, Maryland, 2000).

    Google Scholar 

  41. Southan, C. Has the yo-yo stopped? An assessment of human protein-coding gene number. Proteomics 4, 1712–1726 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Zambrowicz, B. P. & Sands, A. T. Knockouts model the 100 best-selling drugs — will they model the next 100? Nature Rev. Drug Discov. 2, 38–51 (2003). Phenotypic description of engineered mouse knockouts in gene targets of 100 drugs that are available on the market, documenting the relevance of model-system genetics for human pharmaceutical development.

    Article  CAS  Google Scholar 

  43. IMS Health. 2004 year-end U.S. prescription and sales information and commentary. IMS Press Room web site, [online] (2005).

  44. Cohen, M. M. Jr. Persistent hyperinsulinemic hypoglycemia of infancy. Am. J. Med. Genet. A 122, 351–353 (2003).

    Article  Google Scholar 

  45. Austin, M. A., Hutter, C. M., Zimmern, R. L. & Humphries, S. E. Genetic causes of monogenic heterozygous familial hypercholesterolemia: a HuGE prevalence review. Am. J. Epidemiol. 160, 407–420 (2004).

    Article  PubMed  Google Scholar 

  46. Reihner, E. et al. Influence of pravastatin, a specific inhibitor of HMG-CoA reductase, on hepatic metabolism of cholesterol. N. Engl. J. Med. 323, 224–228 (1990).

    Article  CAS  PubMed  Google Scholar 

  47. Smith, E. P. et al. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N. Engl. J. Med. 331, 1056–1061 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Yen, S. S. Clinical applications of gonadotropin-releasing hormone and gonadotropin-releasing hormone analogs. Fertil. Steril. 39, 257–266 (1983).

    Article  CAS  PubMed  Google Scholar 

  49. Spencer, F. A. et al. Enoxaparin, a low molecular weight heparin, inhibits platelet-dependent prothrombinase assembly and activity by factor-Xa neutralization. J. Thromb. Thrombolysis 9, 223–228 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Storey, R. F. The P2Y12 receptor as a therapeutic target in cardiovascular disease. Platelets 12, 197–209 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Martens, F. M., Visseren, F. L., Lemay, J., de Koning, E. J. & Rabelink, T. J. Metabolic and additional vascular effects of thiazolidinediones. Drugs 62, 1463–1480 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Hauptman, J. B., Jeunet, F. S. & Hartmann, D. Initial studies in humans with the novel gastrointestinal lipase inhibitor Ro 18–0647 (tetrahydrolipstatin). Am. J. Clin. Nutr. 55, S309–S313 (1992).

    Article  Google Scholar 

  53. Glaspy, J. The impact of epoetin alfa on quality of life during cancer chemotherapy: a fresh look at an old problem. Semin. Hematol. 34, 20–26 (1997).

    CAS  PubMed  Google Scholar 

  54. Mohini, R. Clinical efficacy of recombinant human erythropoietin in hemodialysis patients. Semin. Nephrol. 9, 16–21 (1989).

    CAS  PubMed  Google Scholar 

  55. Kass, R. S., Arena, J. P. & Chin, S. Cellular electrophysiology of amlodipine: probing the cardiac L-type calcium channel. Am. J. Cardiol. 64, 35I–41I; discussion 41I–42I (1989).

    Article  CAS  PubMed  Google Scholar 

  56. Simon, D. B. et al. Gitelman's variant of Bartter's syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na–Cl cotransporter. Nature Genet. 12, 24–30 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. The MK-906 (Finasteride) Study Group. One-year experience in the treatment of benign prostatic hyperplasia with finasteride. J. Androl. 12, 372–375 (1991).

  58. de Grooth, G. J. et al. A review of CETP and its relation to atherosclerosis. J. Lipid Res. 45, 1967–1974 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Forrester, J. S., Makkar, R. & Shah, P. K. Increasing high-density lipoprotein cholesterol in dyslipidemia by cholesteryl ester transfer protein inhibition: an update for clinicians. Circulation 111, 1847–1854 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Hirano, K., Yamashita, S. & Matsuzawa, Y. Pros and cons of inhibiting cholesteryl ester transfer protein. Curr. Opin. Lipidol. 11, 589–596 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Brousseau, M. E. et al. Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N. Engl. J. Med. 350, 1505–1515 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Brooks-Wilson, A. et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nature Genet. 22, 336–345 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Rust, S. et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nature Genet. 22, 352–355 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Lawn, R. M. et al. The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. J. Clin. Invest. 104, R25–R31 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Singaraja, R. R. et al. Increased ABCA1 activity protects against atherosclerosis. J. Clin. Invest. 110, 35–42 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nassar, M. A. et al. Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain. Proc. Natl Acad. Sci. USA 101, 12706–12711 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Yang, Y. et al. Mutations in SCN9A, encoding a sodium channel α-subunit, in patients with primary erythermalgia. J. Med. Genet. 41, 171–174 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dib-Hajj, S. D. et al. Gain-of-function mutation in Nav1.7 in familial erythromelalgia induces bursting of sensory neurons. Brain 128, 1847–1854 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Drenth, J. P. et al. SCN9A mutations define primary erythermalgia as a neuropathic disorder of voltage gated sodium channels. J. Invest. Dermatol. 124, 1333–1338 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Robitaille, J. et al. Mutant frizzled-4 disrupts retinal angiogenesis in familial exudative vitreoretinopathy. Nature Genet. 32, 326–330 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Robas, N., O'Reilly, M., Katugampola, S. & Fidock, M. Maximizing serendipity: strategies for identifying ligands for orphan G-protein-coupled receptors. Curr. Opin. Pharmacol. 3, 121–126 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Fredriksson, R. & Schioth, H. B. The repertoire of G-protein-coupled receptors in fully sequenced genomes. Mol. Pharmacol. 67, 1414–1425 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Irani, B. G. et al. Progress in the development of melanocortin receptor selective ligands. Curr. Pharm. Des. 10, 3443–3479 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Kazmierski, W. et al. Recent progress in discovery of small-molecule CCR5 chemokine receptor ligands as HIV-1 inhibitors. Bioorg. Med. Chem. 11, 2663–2676 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Kondrashov, A. S. Direct estimates of human per nucleotide mutation rates at 20 loci causing Mendelian diseases. Hum. Mutat. 21, 12–27 (2003). A meta-analysis of spontaneously arising monogenic human disease states, leading to the most clinically relevant measure of disease-causing mutation rates.

    Article  CAS  PubMed  Google Scholar 

  76. Nachman, M. W. & Crowell, S. L. Estimate of the mutation rate per nucleotide in humans. Genetics 156, 297–304 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Eyre-Walker, A. & Keightley, P. D. High genomic deleterious mutation rates in hominids. Nature 397, 344–347 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Zlotogora, J., Shalev, S., Habiballah, H. & Barjes, S. Genetic disorders among Palestinian Arabs: 3. Autosomal recessive disorders in a single village. Am. J. Med. Genet. 92, 343–345 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. de la Chapelle, A. & Wright, F. A. Linkage disequilibrium mapping in isolated populations: the example of Finland revisited. Proc. Natl Acad. Sci. USA 95, 12416–12423 (1998). Discussion of methodological approaches to human genetic analysis in founder populations, which focused on Finland as one of the best-studied examples.

    Article  CAS  PubMed  Google Scholar 

  80. Scriver, C. R. Human genetics: lessons from Quebec populations. Annu. Rev. Genomics Hum. Genet. 2, 69–101 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Rahman, P. et al. The Newfoundland population: a unique resource for genetic investigation of complex diseases. Hum. Mol. Genet. 12, R167–R172 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Kondo, H., Hayashi, H., Oshima, K., Tahira, T. & Hayashi, K. Frizzled 4 gene (FZD4) mutations in patients with familial exudative vitreoretinopathy with variable expressivity. Br. J. Ophthalmol. 87, 1291–1295 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Omoto, S., Hayashi, T., Kitahara, K., Takeuchi, T. & Ueoka, Y. Autosomal dominant familial exudative vitreoretinopathy in two Japanese families with FZD4 mutations (H69Y and C181R). Ophthalmic Genet. 25, 81–90 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Toomes, C. et al. Mutations in LRP5 or FZD4 underlie the common familial exudative vitreoretinopathy locus on chromosome 11q. Am. J. Hum. Genet. 74, 721–730 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Toomes, C. et al. Spectrum and frequency of FZD4 mutations in familial exudative vitreoretinopathy. Invest. Ophthalmol. Vis. Sci. 45, 2083–2090 (2004).

    Article  PubMed  Google Scholar 

  86. Yoshida, S. et al. Novel mutation in FZD4 gene in a Japanese pedigree with familial exudative vitreoretinopathy. Am. J. Ophthalmol. 138, 670–671 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Qin, M. et al. Complexity of the genotype–phenotype correlation in familial exudative vitreoretinopathy with mutations in the LRP5 and/or FZD4 genes. Hum. Mutat. 26, 104–112 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Wilson, D. J. et al. A World Wide Web site for low-density lipoprotein receptor gene mutations in familial hypercholesterolemia: sequence-based, tabular, and direct submission data handling. Am. J. Cardiol. 81, 1509–1511 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Bobadilla, J. L., Macek, M. Jr, Fine, J. P. & Farrell, P. M. Cystic fibrosis: a worldwide analysis of CFTR mutations — correlation with incidence data and application to screening. Hum. Mutat. 19, 575–606 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Hurst, L. D. & Smith, N. G. Do essential genes evolve slowly? Curr. Biol. 9, 747–750 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Zambrowicz, B. & Sands, A. T. Modelling drug action in the mouse with knockouts and RNA interference. Drug Discov. Today 3, 198–207 (2004).

    Article  CAS  Google Scholar 

  92. Gardner, R. M. & Sutherland, G. R. Chromosome Abnormalities and Genetic Counselling (Oxford Univ. Press, New York, 2004).

    Google Scholar 

  93. Madan, M., Berkowitz, S. D. & Tcheng, J. E. Glycoprotein IIb/IIIa integrin blockade. Circulation 98, 2629–2635 (1998).

    Article  CAS  PubMed  Google Scholar 

  94. Workman, P. New drug targets for genomic cancer therapy: successes, limitations, opportunities and future challenges. Curr. Cancer Drug Targets 1, 33–47 (2001).

    Article  CAS  PubMed  Google Scholar 

  95. Emens, L. A. Trastuzumab: targeted therapy for the management of HER-2/neu-overexpressing metastatic breast cancer. Am. J. Ther. 12, 243–253 (2005).

    PubMed  Google Scholar 

  96. Berg, T. Modulation of protein-protein interactions with small organic molecules. Angew Chem. Int. Ed. Engl. 42, 2462–2481 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Arkin, M. R. & Wells, J. A. Small-molecule inhibitors of protein–protein interactions: progressing towards the dream. Nature Rev. Drug Discov. 3, 301–317 (2004).

    Article  CAS  Google Scholar 

  98. Pagliaro, L. et al. Emerging classes of protein–protein interaction inhibitors and new tools for their development. Curr. Opin. Chem. Biol. 8, 442–449 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Zhao, L. & Chmielewski, J. Inhibiting protein–protein interactions using designed molecules. Curr. Opin. Struct. Biol. 15, 31–34 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Nishimura, D. Y. et al. Comparative genomics and gene expression analysis identifies BBS9, a new Bardet–Biedl syndrome gene. Am. J. Hum. Genet. 77, 1021–1033 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Peltonen, L., Palotie, A. & Lange, K. Use of population isolates for mapping complex traits. Nature Rev. Genet. 1, 182–190 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Shendure, J. et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309, 1728–1732 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Goldstein, D. B., Tate, S. K. & Sisodiya, S. M. Pharmacogenetics goes genomic. Nature Rev. Genet. 4, 937–947 (2003).

    Article  CAS  PubMed  Google Scholar 

  104. Hopkins, A. L. & Groom, C. R. The druggable genome. Nature Rev. Drug Discov. 1, 727–730 (2002). The most-often cited reference for the component of the human genome that encodes classically druggable protein products, which is based on functional domains found in targets of drugs already on the market.

    Article  CAS  Google Scholar 

  105. Orth, A. P., Batalov, S., Perrone, M. & Chanda, S. K. The promise of genomics to identify novel therapeutic targets. Expert Opin. Ther. Targets 8, 587–596 (2004). Follow-up reference that updates the set of druggable gene products of the human genome.

    Article  CAS  PubMed  Google Scholar 

  106. Al-Shahrour, F., Diaz-Uriarte, R. & Dopazo, J. FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics 20, 578–580 (2004). A simple but powerful web application that can be used to extract Gene Ontology (GO) terms that are differentially represented in sets of genes within the context of genome-scale experiments; part of the Babelomics suite.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to V. McKusick and J. Amberger for data from the Online Mendelian Inheritance in Man. Thanks to M. Ludman, S. Dyack and D. Skidmore for valuable discussions of clinical genetics phenotypes. Thanks to P. Goldberg, R. Sherrington, S. Pimstone for discussions of therapeutic targets. Thanks to S. Chanda for logistic assistance. R.R.B. is supported by a Michael Smith Foundation for Health Research (MSFHR) Research Unit Infrastructure award. M.E.S. is supported by the IWK Health Centre, Capital District Health Authority and Dalhousie University Faculty of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Samuels.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Related links

Related links

DATABASES

OMIM

α-synuclein

amyloid-β A4 precursor

butyrylcholinesterase

CCR5

circadian rhythm

CYP2D6

diabetes

EPOR

ERBB2

Fabry disease

favism

fibrillin 1

fructose intolerance

GHR

HOXA1

HOXA13

hyperalphalipoproteinaemia

hypertension

hypoglycaemia

IL2RA

IL2RG

ITGA2B

language disorders

leucine-rich repeat kinase 2

MC4R

microtubule-associated protein tau

obesity

oncogene DJ1

parkin

phenylketonuria

presenilin 1

presenilin 2

PTEN-induced kinase

TPMT

transthyretin

ubiquitin carboxylterminase esterase L1

FURTHER INFORMATION

Babelomics

Cystic Fibrosis Mutation Database

Eco-Economy Indicators web site

Frontiers in Bioscience Database of Gene Knockouts

International HapMap Project

LDLR Locus web site

Online Mendelian Inheritance in Man database

PubMed

Glossary

Haplotype mapping

A technique that involves the use of combinations of 'common' DNA polymorphisms to find blocks of association with phenotypic traits.

Humanized antibodies

Antibodies in which only the parts of antibody variable regions that mediate the contact to antigens have been grafted onto a human antibody framework by means of genetic engineering techniques.

Peptidomimetics

Compounds that are derived from peptides and proteins by structural modification using, for example, unnatural amino acids, conformational restraints, isosteric replacement and cyclization.

Pleiotropic

The phenomenon in which a single gene is responsible for several distinct and seemingly unrelated phenotypic effects.

Minor allele frequency

The frequency of the less common allele of a polymorphic locus. It has a value that lies between 0 and 0.5, and can vary between populations.

Endometriosis

A common medical condition in which the tissue lining the uterus (the endometrium) is found outside the uterus, typically affecting other organs in the pelvis.

Founder populations

Populations that that have been derived from a limited pool of individuals within the last 100 or fewer generations.

Compound heterozygosity

A situation in which an inidividual is heterozygous for two different mutations at the same locus.

Proband

A subject that is ascertained on the basis of phenotype; they are often used to identify affected families for genetic studies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brinkman, R., Dubé, MP., Rouleau, G. et al. Human monogenic disorders — a source of novel drug targets. Nat Rev Genet 7, 249–260 (2006). https://doi.org/10.1038/nrg1828

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1828

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing