Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hearing silence: non-neutral evolution at synonymous sites in mammals

Key Points

  • Synonymous mutations in mammals are often assumed to be free from natural selection, not only because such mutations do not alter the encoded protein, but also because neutral theory predicts that when population sizes are small, as they are in mammals, selection should be too weak to act on changes that have relatively small effects on fitness.

  • Recent evidence indicates that synonymous sites in mammals are not always neutrally evolving and numerous examples of disease-associated synonymous mutations now exist.

  • Selection might act on synonymous codon usage to maximize the efficiency of translation, to promote mRNA stability and/or to improve splicing efficiency. In mammals, there is good support for the latter two models, but less for the first possibility.

  • Although non-neutral evolution at synonymous sites means that the genomic mutation rate has been underestimated, it is unlikely to be a source of error that exceeds the uncertainties inherent in the other parameters that are used to estimate the mutation rate.

  • As synonymous sites can be subject to purifying selection, a high Ka/Ks ratio cannot be assumed to indicate positive selection on a protein. Preliminary studies indicate that the method might be misleading as often as it is correct.

  • Knowing why some synonymous sites are functional allows us to better understand how codon choice might be manipulated to increase the efficacy of transgene expression, especially when transgenes have most of their introns removed.

Abstract

Although the assumption of the neutral theory of molecular evolution — that some classes of mutation have too small an effect on fitness to be affected by natural selection — seems intuitively reasonable, over the past few decades the theory has been in retreat. At least in species with large populations, even synonymous mutations in exons are not neutral. By contrast, in mammals, neutrality of these mutations is still commonly assumed. However, new evidence indicates that even some synonymous mutations are subject to constraint, often because they affect splicing and/or mRNA stability. This has implications for understanding disease, optimizing transgene design, detecting positive selection and estimating the mutation rate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effect of isochores on synonymous codon usage and codon-usage bias.
Figure 2: Usage of certain codons is more biased near intron–exon junctions, owing to synonyms being differentially common in exonic splicing enhancers.
Figure 3: Fluctuation in rates of evolution across the BRCA1 gene.

Similar content being viewed by others

References

  1. Kreitman, M. The neutral theory is dead — long live the neutral theory. Bioessays 18, 678–683 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Kimura, M. Evolutionary rate at the molecular level. Nature 217, 624–626 (1968).

    Article  CAS  PubMed  Google Scholar 

  3. Wolfe, K. H., Sharp, P. M. & Li, W. H. Mutation rates differ among regions of the mammalian genome. Nature 337, 283–285 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Smith, N. G. C. & Hurst, L. D. The causes of synonymous rate variation in the rodent genome: can substitution rates be used to estimate the sex bias in mutation rate? Genetics 152, 661–673 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Keightley, P. D. & Eyre-Walker, A. Deleterious mutations and the evolution of sex. Science 290, 331–333 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Shabalina, S. A., Ogurtsov, A. Y., Kondrashov, V. A. & Kondrashov, A. S. Selective constraint in intergenic regions of human and mouse genomes. Trends Genet. 17, 373–376 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Lewontin, R. C. The Genetic Basis of Evolutionary Change (Columbia Univ. Press, New York, 1974).

    Google Scholar 

  8. Gillespie, J. H. Genetic drift in an infinite population: the pseudohitchhiking model. Genetics 155, 909–919 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ohta, T. & Gillespie, J. H. Development of neutral and nearly neutral theories. Theor. Pop. Biol. 49, 128–142 (1996).

    Article  CAS  Google Scholar 

  10. Ohta, T. Synonymous and nonsynonymous substitutions in mammalian genes and the nearly neutral theory. J. Mol. Evol. 40, 56–63 (1995).

    Article  CAS  PubMed  Google Scholar 

  11. Nielsen, R. Robustness of the estimator of the index of dispersion for DNA sequences. Mol. Phyl. Evol. 7, 346–351 (1997).

    Article  CAS  Google Scholar 

  12. Rodriguez-Trelles, F., Tarrio, R. & Ayala, F. J. Erratic overdispersion of three molecular clocks: GPDH, SOD, and XDH. Proc. Natl Acad. Sci. USA 98, 11405–11410 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gillespie, J. H. The Causes of Molecular Evolution (Oxford Univ. Press, Oxford, 1991).

    Google Scholar 

  14. King, J. L. & Jukes, T. H. Non-Darwinian evolution. Science 164, 788–798 (1969).

    Article  CAS  PubMed  Google Scholar 

  15. Kimura, M. Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature 267, 275–276 (1977).

    Article  CAS  PubMed  Google Scholar 

  16. Clarke, B. Darwinian evolution of proteins. Science 168, 1009–1011 (1970).

    Article  CAS  PubMed  Google Scholar 

  17. Ikemura, T. Codon usage and tRNA content in unicellular and multicellular organisms. Mol. Biol. Evol. 2, 13–34 (1985). A review of how skews in tRNA abundance correspond to biased codon usage in E. coli and S. cerevisiae . This relationship showed that synonymous sites can be functional, with selection in this model promoting efficient protein synthesis.

    CAS  PubMed  Google Scholar 

  18. Akashi, H. & Eyre-Walker, A. Translational selection and molecular evolution. Curr. Opin. Genet. Dev. 8, 688–693 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Duret, L. Evolution of synonymous codon usage in metazoans. Curr. Opin. Genet. Dev. 12, 640–649 (2002). An excellent review of evolution at synonymous sites in D. melanogaster, C. elegans and vertebrates, with particular emphasis on the effects that make it difficult to disentangle the neutral and selective forces that impinge on codon usage, particularly in mammals.

    Article  CAS  PubMed  Google Scholar 

  20. Wright, S. I., Yau, C. B., Looseley, M. & Meyers, B. C. Effects of gene expression on molecular evolution in Arabidopsis thaliana and Arabidopsis lyrata. Mol. Biol. Evol. 21, 1719–1726 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Keightley, P. D., Lercher, M. J. & Eyre-Walker, A. Evidence for widespread degradation of gene control regions in hominid genomes. PLoS Biol. 3, e42 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Woolfit, M. & Bromham, L. Population size and molecular evolution on islands. Proc. Biol. Sci. 272, 2277–2282 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sharp, P. M., Averof, M., Lloyd, A. T., Matassi, G. & Peden, J. F. DNA sequence evolution: the sounds of silence. Philos. Trans. R. Soc. Lond. B 349, 241–247 (1995).

    Article  CAS  Google Scholar 

  24. Eyre-Walker, A. An analysis of codon usage in mammals: selection or mutation bias? J. Mol. Evol. 33, 442–449 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Bernardi, G. et al. The mosaic genome of warm-blooded vertebrates. Science 228, 953–958 (1985).

    Article  CAS  PubMed  Google Scholar 

  26. Eyre-Walker, A. & Hurst, L. D. The evolution of isochores. Nature Rev. Genet. 2, 549–555 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Eyre-Walker, A. Evidence of selection on silent site base composition in mammals: potential implications for the evolution of isochores and junk DNA. Genetics 152, 675–683 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lercher, M. J., Smith, N. G., Eyre-Walker, A. & Hurst, L. D. The evolution of isochores: evidence from SNP frequency distributions. Genetics 162, 1805–1810 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Duret, L., Semon, M., Piganeau, G., Mouchiroud, D. & Galtier, N. Vanishing GC-rich isochores in mammalian genomes. Genetics 162, 1837–1847 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Vinogradov, A. E. Bendable genes of warm-blooded vertebrates. Mol. Biol. Evol. 18, 2195–2200 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Vinogradov, A. E. Isochores and tissue-specificity. Nucleic Acids Res. 31, 5212–5220 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Galtier, N., Piganeau, G., Mouchiroud, D. & Duret, L. GC-content evolution in mammalian genomes: the biased gene conversion hypothesis. Genetics 159, 907–911 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Meunier, J. & Duret, L. Recombination drives the evolution of GC-content in the human genome. Mol. Biol. Evol. 21, 984–990 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Galtier, N. Gene conversion drives GC content evolution in mammalian histones. Trends Genet. 19, 65–68 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Iida, K. & Akashi, H. A test of translational selection at 'silent' sites in the human genome: base composition comparisons in alternatively spliced genes. Gene 261, 93–105 (2000). By comparing exons within the same gene, this paper provided strong evidence for selection at synonymous sites in humans, controlling for isochore effects, regional variation in rates of evolution and transcription-associated biases.

    Article  CAS  PubMed  Google Scholar 

  36. Xing, Y. & Lee, C. Evidence of functional selection pressure for alternative splicing events that accelerate evolution of protein subsequences. Proc. Natl Acad. Sci. USA 102, 13526–13531 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pond, S. K. & Muse, S. V. Site-to-site variation of synonymous substitution rates. Mol. Biol. Evol. 22, 2375–2385 (2005). Using a new method, the authors found evidence that significant heterogeneity in the synonymous substitution rate within mammalian genes is common. Consequently, certain sites are being erroneously identified as being under positive selection.

    Article  CAS  PubMed  Google Scholar 

  38. Karlin, S. & Mrazek, J. What drives codon choices in human genes? J. Mol. Biol. 262, 459–472 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Urrutia, A. O. & Hurst, L. D. Codon usage bias covaries with expression breadth and the rate of synonymous evolution in humans, but this is not evidence for selection. Genetics 159, 1191–1199 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Urrutia, A. O. & Hurst, L. D. The signature of selection mediated by expression on human genes. Genome Res. 13, 2260–2264 (2003). The first report of a broad correlation between codon-usage bias (corrected for the isochore effect) and expression rate in human genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hughes, A. L. & Yeager, M. Comparative evolutionary rates of introns and exons in murine rodents. J. Mol. Evol. 45, 125–130 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. DeBry, R. W. & Marzluff, W. F. Selection on silent sites in the rodent H3 histone gene family. Genetics 138, 191–202 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Duret, L. & Hurst, L. D. The elevated GC content at exonic third sites is not evidence against neutralist models of isochore evolution. Mol. Biol. Evol. 18, 757–762 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Vinogradov, A. E. Within-intron correlation with base composition of adjacent exons in different genomes. Gene 276, 143–151 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Miyata, T. & Hayashida, H. Extraordinarily high evolutionary rate of pseudogenes: evidence for the presence of selective pressure against changes between synonymous codons. Proc. Natl Acad. Sci. USA 78, 5739–5743 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bustamante, C. D., Nielsen, R. & Hartl, D. L. A maximum likelihood method for analyzing pseudogene evolution: implications for silent site evolution in humans and rodents. Mol. Biol. Evol. 19, 110–117 (2002). In mammals, the rate of nucleotide substitution at synonymous sites is 70% of that in the cognate pseudogenes.

    Article  CAS  PubMed  Google Scholar 

  47. Green, P. et al. Transcription-associated mutational asymmetry in mammalian evolution. Nature Genet. 33, 514–517 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Majewski, J. Dependence of mutational asymmetry on gene-expression levels in the human genome. Am. J. Hum. Genet. 73, 688–692 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Matassi, G., Sharp, P. M. & Gautier, C. Chromosomal location effects on gene sequence evolution in mammals. Curr. Biol. 9, 786–791 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Lercher, M. J., Chamary, J. V. & Hurst, L. D. Genomic regionality in rates of evolution is not explained by clustering of genes of comparable expression profile. Genome Res. 14, 1002–1013 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Casane, D., Boissinot, S., Chang, B. H., Shimmin, L. C. & Li, W. H. Mutation pattern variation among regions of the primate genome. J. Mol. Evol. 45, 216–226 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Nachman, M. W. & Crowell, S. L. Estimate of the mutation rate per nucleotide in humans. Genetics 156, 297–304 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Majewski, J. & Ott, J. Distribution and characterization of regulatory elements in the human genome. Genome Res. 12, 1827–1836 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Keightley, P. D. & Gaffney, D. J. Functional constraints and frequency of deleterious mutations in noncoding DNA of rodents. Proc. Natl Acad. Sci. USA 100, 13402–13406 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chamary, J. V. & Hurst, L. D. Similar rates but different modes of sequence evolution in introns and at exonic silent sites in rodents: evidence for selectively driven codon usage. Mol. Biol. Evol. 21, 1014–1023 (2004). Using mouse–rat alignments, the rate and patterns of evolution were compared between introns and synonymous sites, two classes of supposedly neutral sequence. Relative to intronic sites, C residues were found to be abundant and relatively stable at synonymous sites.

    Article  CAS  PubMed  Google Scholar 

  56. Hellmann, I. et al. Selection on human genes as revealed by comparisons to chimpanzee cDNA. Genome Res. 13, 831–837 (2003). By comparing human–chimpanzee divergence at fourfold synonymous sites relative to the intergenic spacer, this study indicates that nearly 40% of (non-CpG) synonymous mutations have been eliminated by purifying selection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Subramanian, S. & Kumar, S. Neutral substitutions occur at a faster rate in exons than in noncoding DNA in primate genomes. Genome Res. 13, 838–844 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen, F. C. & Li, W. H. Genomic divergences between humans and other hominoids and the effective population size of the common ancestor of humans and chimpanzees. Am. J. Hum. Genet. 68, 444–456 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen, F. C., Vallender, E. J., Wang, H., Tzeng, C. S. & Li, W. H. Genomic divergence between human and chimpanzee estimated from large-scale alignments of genomic sequences. J. Hered. 92, 481–489 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Smith, N. G. C. & Hurst, L. D. Sensitivity of patterns of molecular evolution to alterations in methodology: a critique of Hughes and Yeager. J. Mol. Evol. 47, 493–500 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Mikkelsen, T. S. et al. Initial sequence of the chimpanzee genome and comparison with the human genome. 437, 69–87 (2005).

  62. Lu, J. & Wu, C. I. Weak selection revealed by the whole-genome comparison of the X chromosome and autosomes of human and chimpanzee. Proc. Natl Acad. Sci. USA 102, 4063–4067 (2005). Using human–chimpanzee alignments, the authors compared rates of evolution between autosomes and the X chromosome to measure the strength of selection at synonymous sites. They found that more than 90% of synonymous mutations are under weak selection, but suggest that, for the most part, selection seems to be too weak to influence substitution rates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lavner, Y. & Kotlar, D. Codon bias as a factor in regulating expression via translation rate in the human genome. Gene 345, 127–138 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Bulmer, M. Coevolution of codon usage and transfer RNA abundance. Nature 325, 728–730 (1987).

    Article  CAS  PubMed  Google Scholar 

  65. Sharp, P. M., Bailes, E., Grocock, R. J., Peden, J. F. & Sockett, R. E. Variation in the strength of selected codon usage bias among bacteria. Nucleic Acids Res. 33, 1141–1153 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Comeron, J. M. Selective and mutational patterns associated with gene expression in humans: influences on synonymous composition and intron presence. Genetics 167, 1293–1304 (2004). References 63 and 66 provide evidence that human tRNA gene-copy numbers match a proposed set of preferred codons and correlate with expression-weighted frequencies of optimal codons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kaufmann, D., Kenner, O., Nurnberg, P., Vogel, W. & Bartelt, B. In NF1, CFTR, PER3, CARS and SYT7, alternatively included exons show higher conservation of surrounding intron sequences than constitutive exons. Eur. J. Hum. Genet. 12, 139–149 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Kanaya, S., Yamada, Y., Kinouchi, M., Kudo, Y. & Ikemura, T. Codon usage and tRNA genes in eukaryotes: correlation of codon usage diversity with translation efficiency and with CG-dinucleotide usage as assessed by multivariate analysis. J. Mol. Evol. 53, 290–298 (2001). Unlike yeast, flies and worms, codon usage in the genes that encode ribosomal proteins and histones is not significantly biased in humans, which indicates that the primary factor influencing codon-usage diversity in these species is not translation efficiency.

    Article  CAS  PubMed  Google Scholar 

  69. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. dos Reis, M., Savva, R. & Wernisch, L. Solving the riddle of codon usage preferences: a test for translational selection. Nucleic Acids Res. 32, 5036–5044 (2004). By measuring the extent to which tRNA copy-number and codon usage are co-adapted across genomes, the authors find no evidence for translational selection in humans.

    Article  CAS  PubMed  Google Scholar 

  71. Carlini, D. B. & Stephan, W. In vivo introduction of unpreferred synonymous codons into the Drosophila Adh gene results in reduced levels of ADH protein. Genetics 163, 239–243 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Levy, J. P., Muldoon, R. R., Zolotukhin, S. & Link, C. J. Jr. Retroviral transfer and expression of a humanized, red-shifted green fluorescent protein gene into human tumor cells. Nature Biotechnol. 14, 610–614 (1996).

    Article  CAS  Google Scholar 

  73. Zolotukhin, S., Potter, M., Hauswirth, W. W., Guy, J. & Muzyczka, N. A 'humanized' green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J. Virol. 70, 4646–4654 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kim, C. H., Oh, Y. & Lee, T. H. Codon optimization for high-level expression of human erythropoietin (EPO) in mammalian cells. Gene 199, 293–301 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Lercher, M. J., Urrutia, A. O., Pavlicek, A. & Hurst, L. D. A unification of mosaic structures in the human genome. Hum. Mol. Genet. 12, 2411–2415 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Semon, M., Mouchiroud, D. & Duret, L. Relationship between gene expression and GC-content in mammals: statistical significance and biological relevance. Hum. Mol. Genet. 14, 421–427 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Vinogradov, A. E. Dualism of gene GC content and CpG pattern in regard to expression in the human genome: magnitude versus breadth. Trends Genet. 21, 639–643 (2005)

    Article  CAS  PubMed  Google Scholar 

  78. Chamary, J. V. & Hurst, L. D. Evidence for selection on synonymous mutations affecting stability of mRNA secondary structure in mammals. Genome Biol. 6, R75 (2005). Provides evidence that the preference for C at synonymous sites (as shown in reference 55) could be explained by selection that favours thermodynamically stable mRNA secondary structures. Moreover, had synonymous substitutions occurred at locations other than those that were observed in the mouse lineage, the mRNA would have been less stable.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Buratti, E. & Baralle, F. E. Influence of RNA secondary structure on the pre-mRNA splicing process. Mol. Cell. Biol. 24, 10505–10514 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shen, L. X., Basilion, J. P. & Stanton, V. P. Jr. Single-nucleotide polymorphisms can cause different structural folds of mRNA. Proc. Natl Acad. Sci. USA 96, 7871–7876 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Duan, J. et al. Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum. Mol. Genet. 12, 205–216 (2003). A well-worked example of how a synonymous mutation can affect mRNA stability. Of six naturally occurring synonymous SNPs in the DRD2 gene, only the mutation that decreases mRNA half-life and induced a conspicuous change in predicted secondary structure was linked to disease.

    Article  CAS  PubMed  Google Scholar 

  82. Capon, F. et al. A synonymous SNP of the corneodesmosin gene leads to increased mRNA stability and demonstrates association with psoriasis across diverse ethnic groups. Hum. Mol. Genet. 13, 2361–2368 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Smith, N. G. & Hurst, L. D. The effect of tandem substitutions on the correlation between synonymous and nonsynonymous rates in rodents. Genetics 153, 1395–1402 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Seffens, W. & Digby, D. mRNAs have greater negative folding free energies than shuffled or codon choice randomized sequences. Nucleic Acids Res. 27, 1578–1584 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cohen, B. & Skiena, S. Natural selection and algorithmic design of mRNA. J. Comp. Biol. 10, 419–432 (2003).

    Article  CAS  Google Scholar 

  86. Schroeder, R., Barta, A. & Semrad, K. Strategies for RNA folding and assembly. Nature Rev. Mol. Cell Biol. 5, 908–919 (2004).

    Article  CAS  Google Scholar 

  87. Huynen, M. A., Konings, D. A. & Hogeweg, P. Equal G and C contents in histone genes indicate selection pressures on mRNA secondary structure. J. Mol. Evol. 34, 280–291 (1992).

    Article  CAS  PubMed  Google Scholar 

  88. Duan, J. & Antezana, M. A. Mammalian mutation pressure, synonymous codon choice, and mRNA degradation. J. Mol. Evol. 57, 694–701 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Cartegni, L., Chew, S. L. & Krainer, A. R. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nature Rev. Genet. 3, 285–298 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Pagani, F. & Baralle, F. E. Genomic variants in exons and introns: identifying the splicing spoilers. Nature Rev. Genet. 5, 389–396 (2004). References 89 and 90 are excellent reviews of how exonic mutations can disrupt the pre-mRNA splicing process.

    Article  CAS  PubMed  Google Scholar 

  91. Eskesen, S. T., Eskesen, F. N. & Ruvinsky, A. Natural selection affects frequencies of AG and GT dinucleotides at the 5′ and 3′ ends of exons. Genetics 167, 543–550 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fairbrother, W. G., Yeh, R. F., Sharp, P. A. & Burge, C. B. Predictive identification of exonic splicing enhancers in human genes. Science 297, 1007–1013 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Wang, Z. et al. Systematic identification and analysis of exonic splicing silencers. Cell 119, 831–845 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Blencowe, B. J. Exonic splicing enhancers: mechanism of action, diversity and role in human genetic diseases. Trends Biochem. Sci. 25, 106–110 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Willie, E. & Majewski, J. Evidence for codon bias selection at the pre-mRNA level in eukaryotes. Trends Genet. 20, 534–538 (2004). The first demonstration that codons associated with splicing are increasingly preferred near intron–exon junctions.

    Article  CAS  PubMed  Google Scholar 

  96. Chamary, J. V. & Hurst, L. D. Biased codon usage near intron-exon junctions: selection on splicing enhancers, splice-site recognition or something else? Trends Genet. 21, 256–259 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Parmley, J. L., Chamary, J. V. & Hurst, L. D. Evidence for purifying selection against synonymous mutations in mammalian exonic splicing enhancers. Mol. Biol. Evol. 12 October 2005 (10.1093/molbev/msj035).

  98. Hurst, L. D. & Pal, C. Evidence for purifying selection acting on silent sites in BRCA1. Trends Genet. 17, 62–65 (2001). The first evidence from mammals that a K a/K s > 1 peak is due to a dip in the synonymous substitution rate, which reference 99 later revealed to coincide with the location of an ESE.

    Article  CAS  PubMed  Google Scholar 

  99. Orban, T. I. & Olah, E. Purifying selection on silent sites — a constraint from splicing regulation? Trends Genet. 17, 252–253 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Pagani, F., Raponi, M. & Baralle, F. E. Synonymous mutations in CFTR exon 12 affect splicing and are not neutral in evolution. Proc. Natl Acad. Sci. USA 102, 6368–6372 (2005). About 30% of synonymous mutations in exon 12 of CFTR are associated with splicing disruption.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fairbrother, W. G., Holste, D., Burge, C. B. & Sharp, P. A. Single nucleotide polymorphism-based validation of exonic splicing enhancers. PLoS Biol. 2, e268 (2004). As one approaches intron–exon junctions in humans, predicted ESE density increases while SNP density decreases. Additionally, the authors suggest that one-fifth of mutations that might potentially disrupt ESEs have been eliminated by purifying selection.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Carlini, D. B. & Genut, J. E. Synonymous SNPs provide evidence for selective constraint on human exonic splicing enhancers. J. Mol. Evol. 30 November 2005 (10.1007/s00239-005-0055-x).

  103. Cusack, B. P. & Wolfe, K. H. Changes in alternative splicing of human and mouse genes are accompanied by faster evolution of constitutive exons. Mol. Biol. Evol. 22, 2198–2208 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Purvis, I. J. et al. The efficiency of folding of some proteins is increased by controlled rates of translation in vivo. A hypothesis. J. Mol. Biol. 193, 413–417 (1987).

    Article  CAS  PubMed  Google Scholar 

  105. Cortazzo, P. et al. Silent mutations affect in vivo protein folding in Escherichia coli. Biochem. Biophys. Res. Comm. 293, 537–541 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Thanaraj, T. A. & Argos, P. Ribosome-mediated translational pause and protein domain organization. Protein Sci. 5, 1594–1612 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Oresic, M. & Shalloway, D. Specific correlations between relative synonymous codon usage and protein secondary structure. J. Mol. Biol. 281, 31–48 (1998).

    Article  CAS  PubMed  Google Scholar 

  108. Netzer, W. J. & Hartl, F. U. Recombination of protein domains facilitated by co-translational folding in eukaryotes. Nature 388, 343–349 (1997).

    Article  CAS  PubMed  Google Scholar 

  109. Plotkin, J. B., Robins, H. & Levine, A. J. Tissue-specific codon usage and the expression of human genes. Proc. Natl Acad. Sci. USA 101, 12588–12591 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hurst, L. D. The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet. 18, 486 (2002).

    Article  PubMed  Google Scholar 

  111. Carlini, D. B., Chen, Y. & Stephan, W. The relationship between third-codon position nucleotide content, codon bias, mRNA secondary structure and gene expression in the drosophilid alcohol dehydrogenase genes Adh and Adhr. Genetics 159, 623–633 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Carlini, D. B. Context-dependent codon bias and mRNA longevity in the yeast transcriptome. Mol. Biol. Evol. 22, 1403–1411 (2005).

    Article  CAS  PubMed  Google Scholar 

  113. Adkins, R. M., Gelke, E. L., Rowe, D. & Honeycutt, R. L. Molecular phylogeny and divergence time estimates for major rodent groups: evidence from multiple genes. Mol. Biol. Evol. 18, 777–791 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Grantham, R., Gautier, C. & Gouy, M. Codon frequencies in 119 individual genes confirm consistent choices of degenerate bases according to genome type. Nucleic Acids Res. 8, 1893–1912 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Akashi, H. Molecular evolution between Drosophila melanogaster and D. simulans: reduced codon bias, faster rates of amino acid substitution, and larger proteins in D. melanogaster. Genetics 144, 1297–1307 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Kryukov, G. V., Schmidt, S. & Sunyaev, S. Small fitness effect of mutations in highly conserved non-coding regions. Hum. Mol. Genet. 14, 2221–2229 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Piganeau, G., Mouchiroud, D., Duret, L. & Gautier, C. Expected relationship between the silent substitution rate and the GC content: implications for the evolution of isochores. J. Mol. Evol. 54, 129–133 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Denecke, J., Kranz, C., Kemming, D., Koch, H. G. & Marquardt, T. An activated 5′ cryptic splice site in the human ALG3 gene generates a premature termination codon insensitive to nonsense-mediated mRNA decay in a new case of congenital disorder of glycosylation type Id (CDG-Id). Hum. Mut. 23, 477–486 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Aretz, S. et al. Familial adenomatous polyposis: aberrant splicing due to missense or silent mutations in the APC gene. Hum. Mut. 24, 370–380 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. O'Driscoll, M., Ruiz-Perez, V. L., Woods, C. G., Jeggo, P. A. & Goodship, J. A. A splicing mutation affecting expression of ataxia-telangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nature Genet. 33, 497–501 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Ishibashi, F. et al. Improved superoxide-generating ability by interferon γ due to splicing pattern change of transcripts in neutrophils from patients with a splice site mutation in CYBB gene. Blood 98, 436–441 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Flusser, H. et al. Mild glycine encephalopathy (NKH) in a large kindred due to a silent exonic GLDC splice mutation. Neurology 64, 1426–1430 (2005).

    Article  CAS  PubMed  Google Scholar 

  123. Harteveld, C. L. et al. An α-thalassemia phenotype in a Dutch Hindustani, caused by a new point mutation that creates an alternative splice, donor site in the first exon of the α2-globin gene. Hemoglobin 28, 255–259 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Wicklow, B. A. et al. Severe subacute GM2 gangliosidosis caused by an apparently silent HEXA mutation (V324V) that results in aberrant splicing and reduced HEXA mRNA. Am. J. Med. Genet. Part A 127A, 158–166 (2004).

    Article  PubMed  Google Scholar 

  125. Xie, J. L., Pabon, D., Jayo, A., Butta, N. & Gonzalez-Manchon, C. Type I Glanzmann thrombasthenia caused by an apparently silent β3 mutation that results in aberrant splicing and reduced β3 mRNA. Thromb. Haemost. 93, 897–903 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Buchroithner, B. et al. Analysis of the LAMB3 gene in a junctional epidermolysis bullosa patient reveals exonic splicing and allele-specific nonsense-mediated mRNA decay. Lab. Invest. 84, 1279–1288 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Du, Y. Z., Dickerson, C., Aylsworth, A. S. & Schwartz, C. E. A silent mutation, C924T (G308G), in the L1CAM gene results in X linked hydrocephalus (HSAS). J. Med. Genet. 35, 456–462 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Amati-Bonneau, P. et al. Sporadic optic atrophy due to synonymous codon change altering mRNA splicing of OPA1. Clin. Genet. 67, 102–103 (2005).

    CAS  PubMed  Google Scholar 

  129. Fernandez-Cadenas, I. et al. Splicing mosaic of the myophosphorylase gene due to a silent mutation in McArdle disease. Neurology 61, 1432–1434 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Mizuguchi, T. et al. Heterozygous TGFBR2 mutations in Marfan syndrome. Nature Genet. 36, 855–860 (2004).

    Article  CAS  PubMed  Google Scholar 

  131. Hoopengardner, B., Bhalla, T., Staber, C. & Reenan, R. Nervous system targets of RNA editing identified by comparative genomics. Science 301, 832–836 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Sémon, M., Lobry, J. R. & Duret, L. No evidence for tissue-specific adaption of synonymous codon usage in human. Mol. Biol. Evol. 9 November 2005 (10.1093/molbev/msj053).

Download references

Acknowledgements

The authors wish to thank K. Wolfe, F. Kondrashov and an anonymous reviewer for helpful comments on the manuscript. J.V.C. and J.L.P. were funded by the UK Biotechnology and Biological Sciences Research Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. V. Chamary or Laurence D. Hurst.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Laurence Hurst's homepage

Glossary

Effective population size (Ne)

The number of individuals in a population that contribute to the next generation.

Codon usage

The relative frequency at which alternative codons specifying a particular amino acid are used.

Positive selection

Also known as Darwinian selection. Natural selection that promotes the spread of a new mutation through the population, resulting in a fixed difference between species.

Molecular clock

A model of sequence evolution in which the number of changes that occur between two lineages accumulate at a constant rate, therefore allowing the estimation of the time since lineage divergence from the number of changes that have occurred.

Biased gene conversion

Gene conversion is a process by which similar genomic fragments become identical. If, after the DNA-repair system recognizes GC:AT mismatches in a heteroduplex (for example, arising during recombination between paired sister chromosomes), mismatches are resolved in favour of certain bases, the process is considered to be biased. Typically, biased gene conversion favours GC over AT in GC:AT mismatches.

Expression breadth

The proportion of tissues in which a given gene is expressed.

Expression rate

The average level of gene expression across all tissues in which a given gene is expressed.

Synonymous substitution rate (Ks)

The ratio of the number of synonymous differences (corrected for multiple hits) between two orthologous genes to the number of sites in the gene at which synonymous mutations could occur.

Intronic substitution rate (Ki)

The number of differences per site (corrected for multiple hits) between orthologous introns.

Purifying selection

Also known as negative selection. Selection that eliminates a new mutation from the population, therefore removing changes from the population and maintaining the status quo.

Iso-acceptor tRNA

Any tRNAs molecule that is charged by the single aminoacyl-tRNA synthetase which is specific to a given amino acid. The entire complement of tRNAs is divided into 20 iso-accepting groups, with each group being associated with a particular synthetase.

MicroRNAs

Short non-coding RNAs (22 nucleotides long) that can repress gene expression by base pairing to target mRNAs.

Non-synonymous substitution rate (Ka)

The ratio of the number of non-synonymous differences (corrected for multiple substitutions at the same site) between two orthologous genes to the number of sites at which non-synonymous mutations could occur.

Sliding-window plot

A graphical representation of a sequence in which subsections, sometimes overlapping, of a given size (a window) are successively analysed.

Synergistic epistasis

The interaction between mutations that causes their combined effect on fitness to be greater than would be expected from their individual (multiplicative) effects.

Transgene

Foreign DNA that is experimentally inserted into totipotent embryonic cells or into unicellular organisms.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chamary, J., Parmley, J. & Hurst, L. Hearing silence: non-neutral evolution at synonymous sites in mammals. Nat Rev Genet 7, 98–108 (2006). https://doi.org/10.1038/nrg1770

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1770

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing