Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging technologies for gene manipulation in Drosophila melanogaster

An Erratum to this article was published on 01 April 2005

Key Points

  • Many genetic tools have been developed over the past 100 years to manipulate the genome of the fruitfly Drosophila melanogaster; despite the success of most of these methods, some limitations need to be overcome. The past 3 years have seen the introduction of several new technologies that allow flies to be manipulated more easily than any other multicellular organism.

  • The new methods include the ability to create molecularly designed deletions, improved genetic-mapping technologies, strategies for creating targeted mutations, new transgenic approaches and the ability to manipulate large fragments of DNA.

  • Two transposable elements, P-elements and piggyBacs, each having different properties and mobilization characteristics, are being used to generate insertions in every gene of the D. melanogaster genome.

  • Two P-elements, located at different positions in cis or in trans on the same homologous pair of chromosomes, can be used to generate transposon-induced deficiencies.

  • A P-element that contains an internal hobo transposable element allows nested deletions to be generated from a common starting point ('deletion-generator' technology).

  • Two transposons, each of which contains an FRT site, are used to create molecularly defined deletions through Flp-mediated excision of the intervening sequence.

  • SNPs and molecularly defined P-element insertions improve and accelerate gene-mapping efforts.

  • 'Ends-out replacement gene targeting' removes a desired genomic sequence through homologous recombination.

  • Target-induced local lesions in genomes (TILLING), a technique that was first applied in Arabidopsis thaliana, quickly and efficiently identifies single-nucleotide changes in specific genes and might allow the isolation of an allelic series for structure–function analysis.

  • The bacteriophage φC31 efficiently integrates DNA at defined loci in the fly genome.

  • Recombineering facilitates gap-repair-mediated subcloning and the subsequent mutagenesis of large DNA fragments.

Abstract

The popularity of Drosophila melanogaster as a model for understanding eukaryotic biology over the past 100 years has been accompanied by the development of numerous tools for manipulating the fruitfly genome. Here we review some recent technologies that will allow Drosophila melanogaster to be manipulated more easily than any other multicellular organism. These developments include the ability to create molecularly designed deletions, improved genetic mapping technologies, strategies for creating targeted mutations, new transgenic approaches and the means to clone and modify large fragments of DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transposon-mediated gene-disruption screens.
Figure 2: Using transposons to create chromosomal aberrations.
Figure 3: Transposon-mediated mapping.
Figure 4: Homologous recombination.
Figure 5: The application of TILLING in Drosophila melanogaster.
Figure 6: Recombineering.

Similar content being viewed by others

References

  1. Rubin, G. M. & Spradling, A. C. Genetic transformation of Drosophila with transposable element vectors. Science 218, 348–353 (1982).

    CAS  PubMed  Google Scholar 

  2. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  3. Xu, T. & Rubin, G. M. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development 117, 1223–1237 (1993).

    CAS  PubMed  Google Scholar 

  4. Golic, K. G. & Golic, M. M. Engineering the Drosophila genome: chromosome rearrangements by design. Genetics 144, 1693–1711 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Adams, M. D. et al. The genome sequence of Drosophila melanogaster. Science 287, 2185–2195 (2000).

    PubMed  Google Scholar 

  6. Thibault, S. T. et al. A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nature Genet. 36, 283–287 (2004). This article describes the privately financed effort that generated piggyBac transposon insertions in many D. melanogaster genes.

    CAS  PubMed  Google Scholar 

  7. Ryder, E. & Russell, S. Transposable elements as tools for genomics and genetics in Drosophila. Brief. Funct. Genomic. Proteomic. 2, 57–71 (2003).

    CAS  PubMed  Google Scholar 

  8. Bellen, H. J. et al. The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. Genetics 167, 761–781 (2004). This paper describes the publicly financed effort that generated a P -element transposon insertion in about 40% of all D. melanogaster genes.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Parks, A. L. et al. Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nature Genet. 36, 288–292 (2004). The authors describe a privately financed effort that generated large numbers of deficiencies using P -elements and piggyBac s that contain FRT sites.

    CAS  PubMed  Google Scholar 

  10. Ryder, E. et al. The DrosDel collection: a set of P-element insertions for generating custom chromosomal aberrations in Drosophila melanogaster. Genetics 167, 797–813 (2004). The authors discuss the generation of numerous transposon insertions that contain FRT sites. These insertions will be used to generate many molecularly defined deletions covering the entire D. melanogaster genome.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhai, R. G. et al. Mapping Drosophila mutations with molecularly defined P element insertions. Proc. Natl Acad. Sci. USA 100, 10860–10865 (2003). This paper describes the use of molecularly defined P -element insertions for the rapid and low-cost genetic mapping of mutations.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gong, W. J. & Golic, K. G. Ends-out, or replacement, gene targeting in Drosophila. Proc. Natl Acad. Sci. USA 100, 2556–2561 (2003). The first report of ends-out replacement gene targeting in D. melanogaster.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Stemple, D. L. TILLING — a high-throughput harvest for functional genomics. Nature Rev. Genet. 5, 145–150 (2004).

    CAS  PubMed  Google Scholar 

  14. Henikoff, S., Till, B. J. & Comai, L. TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol. 135, 630–636 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zeidler, M. P. et al. Temperature-sensitive control of protein activity by conditionally splicing inteins. Nature Biotechnol. 22, 871–876 (2004). A report on the generation of a conditionally spliced intein, which can be incorporated in a host protein, making it temperature sensitive.

    CAS  Google Scholar 

  16. Groth, A. C., Fish, M., Nusse, R. & Calos, M. P. Construction of transgenic Drosophila by using the site-specific integrase from phage φC31. Genetics 166, 1775–1782 (2004). The first report of the use of φC31 integrase to obtain transgenic D. melanogaster.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Copeland, N. G., Jenkins, N. A. & Court, D. L. Recombineering: a powerful new tool for mouse functional genomics. Nature Rev. Genet. 2, 769–779 (2001).

    CAS  PubMed  Google Scholar 

  18. Court, D. L., Sawitzke, J. A. & Thomason, L. C. Genetic engineering using homologous recombination. Annu. Rev. Genet. 36, 361–388 (2002).

    CAS  PubMed  Google Scholar 

  19. Adams, M. D. & Sekelsky, J. J. From sequence to phenotype: reverse genetics in Drosophila melanogaster. Nature Rev. Genet. 3, 189–198 (2002).

    CAS  PubMed  Google Scholar 

  20. Morin, X., Daneman, R., Zavortink, M. & Chia, W. A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc. Natl Acad. Sci. USA 98, 15050–15055 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Spradling, A. C. et al. The Berkeley Drosophila Genome Project gene disruption project: single P-element insertions mutating 25% of vital Drosophila genes. Genetics 153, 135–177 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Beinert, N. et al. Systematic gene targeting on the X chromosome of Drosophila melanogaster. Chromosoma 113, 271–275 (2004).

    CAS  PubMed  Google Scholar 

  23. Handler, A. M. & Harrell, R. A. Germline transformation of Drosophila melanogaster with the piggyBac transposon vector. Insect Mol. Biol. 8, 449–457 (1999).

    CAS  PubMed  Google Scholar 

  24. Hacker, U., Nystedt, S., Barmchi, M. P., Horn, C. & Wimmer, E. A. piggyBac-based insertional mutagenesis in the presence of stably integrated P elements in Drosophila. Proc. Natl Acad. Sci. USA 100, 7720–7725 (2003).

    PubMed  PubMed Central  Google Scholar 

  25. Horn, C., Offen, N., Nystedt, S., Hacker, U. & Wimmer, E. A. piggyBac-based insertional mutagenesis and enhancer detection as a tool for functional insect genomics. Genetics 163, 647–661 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bonin, C. P. & Mann, R. S. A piggyBac transposon gene trap for the analysis of gene expression and function in Drosophila. Genetics 167, 1801–1811 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bellen, H. J. Ten years of enhancer detection: lessons from the fly. Plant Cell 11, 2271–2281 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Skarnes, W. C., Auerbach, B. A. & Joyner, A. L. A gene trap approach in mouse embryonic stem cells: the lacZ reported is activated by splicing, reflects endogenous gene expression, and is mutagenic in mice. Genes Dev. 6, 903–918 (1992).

    CAS  PubMed  Google Scholar 

  29. Lukacsovich, T. et al. Dual-tagging gene trap of novel genes in Drosophila melanogaster. Genetics 157, 727–742 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu, X. Q. Protein-splicing intein: Genetic mobility, origin, and evolution. Annu. Rev. Genet. 34, 61–76 (2000).

    CAS  PubMed  Google Scholar 

  31. Paulus, H. Protein splicing and related forms of protein autoprocessing. Annu. Rev. Biochem. 69, 447–496 (2000).

    CAS  PubMed  Google Scholar 

  32. Yu, W. et al. Development of a comparative genomic hybridization microarray and demonstration of its utility with 25 well-characterized 1p36 deletions. Hum. Mol. Genet. 12, 2145–2152 (2003).

    CAS  PubMed  Google Scholar 

  33. Cooley, L., Thompson, D. & Spradling, A. C. Constructing deletions with defined endpoints in Drosophila. Proc. Natl Acad. Sci. USA 87, 3170–3173 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Huet, F. et al. A deletion-generator compound element allows deletion saturation analysis for genomewide phenotypic annotation. Proc. Natl Acad. Sci. USA 99, 9948–9953 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mohr, S. E. & Gelbart, W. M. Using the P{wHy} hybrid transposable element to disrupt genes in region 54D–55B in Drosophila melanogaster. Genetics 162, 165–176 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, B., Chu, T., Harms, E., Gergen, J. P. & Strickland, S. Mapping of Drosophila mutations using site-specific male recombination. Genetics 149, 157–163 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Lindsley, D. L. & Zimm, G. G. The Genome of Drosophila melanogaster (Academic, San Diego, 1992).

  38. Berger, J. et al. Genetic mapping with SNP markers in Drosophila. Nature Genet. 29, 475–481 (2001).

    CAS  PubMed  Google Scholar 

  39. Martin, S. G., Dobi, K. C. & St Johnston, D. A rapid method to map mutations in Drosophila. Genome Biol. 2, RESEARCH0036.1–0036.12 (2001).

    Google Scholar 

  40. Nairz, K., Stocker, H., Schindelholz, B. & Hafen, E. High-resolution SNP mapping by denaturing HPLC. Proc. Natl Acad. Sci. USA 99, 10575–10580 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Verstreken, P. et al. Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Neuron 40, 733–748 (2003).

    CAS  PubMed  Google Scholar 

  42. Gong, M. & Rong, Y. S. Targeting multi-cellular organisms. Curr. Opin. Genet. Dev. 13, 215–220 (2003).

    CAS  PubMed  Google Scholar 

  43. Lum, L. et al. Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 299, 2039–2045 (2003).

    CAS  PubMed  Google Scholar 

  44. Kiger, A. et al. A functional genomic analysis of cell morphology using RNA interference. J. Biol. 2, 27 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Boutros, M. et al. Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 303, 832–835 (2004).

    CAS  PubMed  Google Scholar 

  46. Bentley, A., MacLennan, B., Calvo, J. & Dearolf, C. R. Targeted recovery of mutations in Drosophila. Genetics 156, 1169–1173 (2000). The first report of targeted gene inactivation using ethylmethane sulphonate in D. melanogaster.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Carpenter, A. E. & Sabatini, D. M. Systematic genome-wide screens of gene function. Nature Rev. Genet. 5, 11–22 (2004).

    CAS  PubMed  Google Scholar 

  48. Rong, Y. S. et al. Targeted mutagenesis by homologous recombination in D. melanogaster. Genes Dev. 16, 1568–1581 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Rong, Y. S. & Golic, K. G. A targeted gene knockout in Drosophila. Genetics 157, 1307–1312 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Rong, Y. S. & Golic, K. G. Gene targeting by homologous recombination in Drosophila. Science 288, 2013–2018 (2000).

    CAS  PubMed  Google Scholar 

  51. Seum, C. et al. Isolation of Su(var)3-7 mutations by homologous recombination in Drosophila melanogaster. Genetics 161, 1125–1136 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Elmore, T., Ignell, R., Carlson, J. R. & Smith, D. P. Targeted mutation of a Drosophila odor receptor defines receptor requirement in a novel class of sensillum. J. Neurosci. 23, 9906–9912 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Lankenau, S. et al. Knockout targeting of the Drosophila Nap1gene and examination of DNA repair tracts in the recombination products. Genetics 163, 611–623 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu, H. & Kubli, E. Sex-peptide is the molecular basis of the sperm effect in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 100, 9929–9933 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Dolezal, T., Gazi, M., Zurovec, M. & Bryant, P. J. Genetic analysis of the ADGF multigene family by homologous recombination and gene conversion in Drosophila. Genetics 165, 653–666 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sears, H. C., Kennedy, C. J. & Garrity, P. A. Macrophage-mediated corpse engulfment is required for normal Drosophila CNS morphogenesis. Development 130, 3557–3565 (2003).

    CAS  PubMed  Google Scholar 

  57. Egli, D. et al. Knockout of 'metal-responsive transcription factor' MTF-1 in Drosophila by homologous recombination reveals its central role in heavy metal homeostasis. EMBO J. 22, 100–108 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Funk, N., Becker, S., Huber, S., Brunner, M. & Buchner, E. Targeted mutagenesis of the Sap47 gene of Drosophila: flies lacking the synapse associated protein of 47 kDa are viable and fertile. BMC Neurosci. 5, 16 (2004).

    PubMed  PubMed Central  Google Scholar 

  59. Han, Z., Li, X., Wu, J. & Olson, E. N. A myocardin-related transcription factor regulates activity of serum response factor in Drosophila. Proc. Natl Acad. Sci. USA 101, 12567–12572 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Larsson, M. C. et al. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction. Neuron 43, 703–714 (2004).

    CAS  PubMed  Google Scholar 

  61. Bibikova, M., Beumer, K., Trautman, J. K. & Carroll, D. Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764 (2003).

    CAS  PubMed  Google Scholar 

  62. Porteus, M. H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763 (2003).

    PubMed  Google Scholar 

  63. Bibikova, M., Golic, M., Golic, K. G. & Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 1169–1175 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. McCallum, C. M., Comai, L., Greene, E. A. & Henikoff, S. Targeted screening for induced mutations. Nature Biotechnol. 18, 455–457 (2000). The first article to describe the use of TILLING in Arabidopsis thaliana.

    CAS  Google Scholar 

  65. Till, B. J. et al. Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res. 13, 524–530 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Greene, E. A. et al. Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164, 731–740 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Wienholds, E., Schulte-Merker, S., Walderich, B. & Plasterk, R. H. Target-selected inactivation of the zebrafish rag1 gene. Science 297, 99–102 (2002).

    CAS  PubMed  Google Scholar 

  68. Wienholds, E. et al. Efficient target-selected mutagenesis in zebrafish. Genome Res. 13, 2700–2707 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wienholds, E., Koudijs, M. J., van Eeden, F. J., Cuppen, E. & Plasterk, R. H. The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nature Genet. 35, 217–218 (2003).

    CAS  PubMed  Google Scholar 

  70. Smits, B. M., Mudde, J., Plasterk, R. H. & Cuppen, E. Target-selected mutagenesis of the rat. Genomics 83, 332–334 (2004).

    CAS  PubMed  Google Scholar 

  71. Till, B. J. et al. Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol. 4, 12 (2004).

    PubMed  PubMed Central  Google Scholar 

  72. Perry, J. A. et al. A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol. 131, 866–871 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ashburner, M. Drosophila: a Laboratory Handbook and Manual (Cold Spring Harbor Laboratory Press, Plainview, New York, 1989).

    Google Scholar 

  74. Till, B. J., Burtner, C., Comai, L. & Henikoff, S. Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res. 32, 2632–2641 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Oleykowski, C. A., Bronson Mullins, C. R., Godwin, A. K. & Yeung, A. T. Mutation detection using a novel plant endonuclease. Nucleic Acids Res. 26, 4597–4602 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Colbert, T. et al. High-throughput screening for induced point mutations. Plant Physiol. 126, 480–484 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Koundakjian, E. J., Cowan, D. M., Hardy, R. W. & Becker, A. H. The Zuker collection: a resource for the analysis of autosomal gene function in Drosophila melanogaster. Genetics 167, 203–206 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Comai, L. et al. Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. Plant J. 37, 778–786 (2004).

    CAS  PubMed  Google Scholar 

  79. Smits, B. M., van Zutphen, B. F., Plasterk, R. H. & Cuppen, E. Genetic variation in coding regions between and within commonly used inbred rat strains. Genome Res. 14, 1285–1290 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. O'Kane, C. J. & Gehring, W. J. Detection in situ of genomic regulatory elements in Drosophila. Proc. Natl Acad. Sci. USA 84, 9123–9127 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Thorpe, H. M. & Smith, M. C. In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc. Natl Acad. Sci. USA 95, 5505–5510 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Branda, C. S. & Dymecki, S. M. Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev. Cell 6, 7–28 (2004).

    CAS  PubMed  Google Scholar 

  83. Groth, A. C., Olivares, E. C., Thyagarajan, B. & Calos, M. P. A phage integrase directs efficient site-specific integration in human cells. Proc. Natl Acad. Sci. USA 97, 5995–6000 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Belteki, G., Gertsenstein, M., Ow, D. W. & Nagy, A. Site-specific cassette exchange and germline transmission with mouse ES cells expressing φC31 integrase. Nature Biotechnol. 21, 321–324 (2003).

    CAS  Google Scholar 

  85. Ortiz-Urda, S. et al. Stable nonviral genetic correction of inherited human skin disease. Nature Med. 8, 1166–1170 (2002).

    CAS  PubMed  Google Scholar 

  86. Ortiz-Urda, S. et al. φC31 integrase-mediated nonviral genetic correction of junctional epidermolysis bullosa. Hum. Gene Ther. 14, 923–928 (2003).

    CAS  PubMed  Google Scholar 

  87. Ortiz-Urda, S. et al. Injection of genetically engineered fibroblasts corrects regenerated human epidermolysis bullosa skin tissue. J. Clin. Invest. 111, 251–255 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Thyagarajan, B., Olivares, E. C., Hollis, R. P., Ginsburg, D. S. & Calos, M. P. Site-specific genomic integration in mammalian cells mediated by phage φC31 integrase. Mol. Cell Biol. 21, 3926–3934 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Olivares, E. C. et al. Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nature Biotechnol. 20, 1124–1128 (2002).

    CAS  Google Scholar 

  90. Hollis, R. P. et al. Phage integrases for the construction and manipulation of transgenic mammals. Reprod. Biol. Endocrinol. 1, 79 (2003).

    PubMed  PubMed Central  Google Scholar 

  91. Yu, D. et al. An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl Acad. Sci. USA 97, 5978–5983 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Lee, E. C. et al. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73, 56–65 (2001). This is a description of a useful recombineering system that is temperature inducible, and that can be efficiently used for recombineering-mediated gap repair and mutagenesis.

    CAS  PubMed  Google Scholar 

  93. Muyrers, J. P., Zhang, Y., Testa, G. & Stewart, A. F. Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res. 27, 1555–1557 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Muyrers, J. P. et al. Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep. 1, 239–243 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Yang, Y. & Sharan, S. K. A simple two-step, 'hit and fix' method to generate subtle mutations in BACs using short denatured PCR fragments. Nucleic Acids Res. 31, e80 (2003).

    PubMed  PubMed Central  Google Scholar 

  96. Jamsai, D., Orford, M., Fucharoen, S., Williamson, R. & Ioannou, P. A. Insertion of modifications in the β-globin locus using GET recombination with single-stranded oligonucleotides and denatured PCR fragments. Mol. Biotechnol. 23, 29–36 (2003).

    CAS  PubMed  Google Scholar 

  97. Swaminathan, S. et al. Rapid engineering of bacterial artificial chromosomes using oligonucleotides. Genesis 29, 14–21 (2001).

    CAS  PubMed  Google Scholar 

  98. Zhang, Y., Muyrers, J. P., Rientjes, J. & Stewart, A. F. Phage annealing proteins promote oligonucleotide-directed mutagenesis in Escherichia coli and mouse ES cells. BMC Mol. Biol. 4, 1 (2003).

    PubMed  PubMed Central  Google Scholar 

  99. Wild, J., Hradecna, Z. & Szybalski, W. Conditionally amplifiable BACs: switching from single-copy to high-copy vectors and genomic clones. Genome Res. 12, 1434–1444 (2002). The first article to describe a conditionally amplifiable BAC. This plasmid contains two origins of replication: one for single-copy number (useful for recombineering and clone maintenance), and another for inducible high-copy number in specific bacteria (to facilitate plasmid preparation).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Groth, A. C. & Calos, M. P. Phage integrases: biology and applications. J. Mol. Biol. 335, 667–678 (2004).

    CAS  PubMed  Google Scholar 

  101. Xie, H. B. & Golic, K. G. Gene deletions by ends-in targeting in Drosophila melanogaster. Genetics 168, 1477–1489 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Cook, L. Cooley, K. Golic, M. González-Gaitán, S. Henikoff, P. Hiesinger, K. Matthews, N. Perrimon, J. Roote, S. Russell, E. Spana, A. Spradling and B. Till for communicating unpublished results. We are particularly grateful to E. Seto and P. Verstreken for critical readings of the manuscript and K. Cook for suggestions. We apologize to colleagues whose work could not be cited owing to space limitations. H.J.B. is supported by the Howard Hughes Medical Institute, the US National Institutes of Health and NASA. We also gratefully acknowledge the constructive comments of two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo J. Bellen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

BACPAC Resource Center

Bloomington Drosophila Stock Center

DrosDel Drosophila Isogenic Deficiency Kit

Drosophila GeneTag database

Drosophila Genome Resource Center

Drosophila TILLING Project

Flybase Genome Browser

Flytrap — GFP Protein Trap database

FlyView — expression pattern of enhancer traps

Hugo Bellen's laboratory

Model Systems Genomics

NCI Frederick — Recombineering web site

P-screen database

Szeged Drosophila Stock Center

Glossary

P-ELEMENT

Transposable elements that are widely used to mutate and manipulate the genome of Drosophila melanogaster.

TRANSGENESIS

The process of introducing foreign DNA into a genome.

TRANSPOSON

A DNA element that can be mobilized within the genome; Drosophila melanogaster transposons are used for various applications, including insertional mutagenesis, gene tagging and as a carrier for transgenic DNA.

DEFICIENCY

A chromosomal aberration that is characterized by the deletion of a part of the genome.

IMPRECISE EXCISION

A P-element that is mobilized imprecisely can lead to removal of flanking genomic sequences, resulting in a local deletion.

RNA INTERFERENCE

(RNAi). A form of gene silencing in which dsRNA induces the degradation of the homologous endogenous mRNA transcripts, thereby mimicking the effect of the reduction, or loss, of gene activity.

ALLELIC SERIES

A series of alleles at the same genomic locus that can produce graded phenotypes and therefore can help to unravel different functions of the same gene.

TEMPERATURE-SENSITIVE MUTATIONS

Mutations that show a mutant phenotype at the restrictive temperature, but not at the permissive temperature. Most temperature-sensitive mutations in Drosophila melanogaster are heat-sensitive, but cold-sensitive mutations also occur.

BACTERIOPHAGE

A virus that infects and replicates in bacteria. Lytic bacteriophages kill the host cell, whereas so-called temperate phages can establish a stable relationship in which the bacteriophage genome is stably maintained within that of the host.

GENE TRAP

A DNA construct that contains a reporter-gene sequence downstream of a splice-acceptor site and that can integrate into random chromosomal locations. A gene trap sometimes also contains a splice donor site that is downstream of the marker. Integration of the gene trap into an intron allows the expression of a new mRNA that contains one or more upstream exons followed by the reporter gene.

INTEIN

'Protein introns' that autonomously splice themselves out of proteins (post-translationally), thereby generating a functional protein.

JUMP-STARTER ELEMENT

A transposable element that is inserted into the genome and that is used to create more insertions at other sites.

COMPARATIVE GENOMIC HYBRIDIZATION MICROARRAY

A high-density microarray that contains overlapping DNA clones of genomic sequences or overlapping oligonucleotides that encompass a particular genomic region. This allows chromosomal imbalances to be identified at a high resolution, and can even be used to determine exact chromosomal breakpoints.

HAPLOINSUFFICIENCY

The requirement for a diploid organism to have both functional copies of a gene or locus to produce a wild-type phenotype.

YELLOW+ (y+)

The wild-type allele of a fly gene that confers dark body colour; by contrast, yellow flies have a yellowish body colour. One copy of yellow+ is often used as a dominant genetic marker in fly trangenesis.

WHITE+ (w+)

The wild-type allele of a fly gene that confers red eyes; white flies have white eyes. One copy of white+ is often used as a dominant genetic marker in fly trangenesis.

INVERSE PCR

A method for cloning DNA that flanks a known sequence. Genomic DNA is digested and ligated into circles, and is then subjected to PCR. The PCR primers are designed to be complementary to the known sequence, but point outwards from this sequence, allowing the unknown flanking DNA to be amplified.

MEIOTIC RECOMBINATION MAPPING

Uses the recombination rate between a wild-type chromosome and a chromosome that is marked with recessive markers to obtain a recombination distance, or map unit, between two genes, mutations or markers.

MALE RECOMBINATION MAPPING

Meiotic recombination does not occur in Drosophila melanogaster males, so P-element-mediated recombination between homologous chromosomes can be used to determine the position of the mutation relative to the position of P-element insertions.

DEFICIENCY MAPPING

Uses chromosomes that have different sections deleted to locate the position of a gene of interest. Without the deficiency, the normal functional gene usually masks the effect of (that is, complements) the defective or foreign copy that we wish to identify.

GENOTYPING

Comparative methodologies are used to obtain information about the sequence of a certain genomic region between different strains of the same species or between wild-type and mutagenized strains.

BALANCER CHROMOSOMES

Chromosomes that carry lethal mutations, dominant markers and multiple inversions and that are used in trans for a chromosome that carries a lethal or sterile mutation. They are used as genetic tools because they allow lethal mutations to be propagated indefinitely.

RARE-CUTTING RESTRICTION ENZYME

Restriction enzymes that cleave a 16–18 bp recognition site. Most of these sites are not present in the host genome and can therefore be used for genome manipulations.

ZINC FINGER

A protein domain in which cysteine or cysteine–histidine residues coordinate a zinc ion. Zinc fingers are often used in DNA recognition and also in protein–protein interactions.

ISOGENIZED FLY STOCK

A starting strain of animals used for mutagenesis that contains identical pairs of chromosomes. Isogenization avoids the presence of pre-existing lethal and visible mutations.

TRANSITION

A mutation between two pyrimidines (T–C) or two purines (A–G).

ENHANCER DETECTION

A method that allows the identification of genes on the basis of their expression pattern. Engineered insertion elements carry a reporter-gene construct that is under the control of a minimal promoter that can respond to cis-acting regulatory elements near the insertion site.

PHENOTYPIC RESCUE

The ability of a DNA construct that contains the wild-type DNA sequence to rescue the phenotype of an identified genomic mutation.

POSITION EFFECT

The effect of the local chromosomal environment on the levels or patterns of transgene expression, possibly owing to local chromatin configuration or nearby cis-acting regulatory elements.

BACTERIAL ARTIFICIAL CHROMOSOME

(BAC). A single-copy cloning vector that is derived from the F-factor of Escherichia coli. BACs can contain large genomic fragments. Drosophila melanogaster BACs carry an average insert size of 163 kb. Mapping positions of D. melanogaster BACs can be seen on the Flybase Genome Browser (see Online links box).

P1 ARTIFICIAL CHROMOSOME

(PAC). A single-copy cloning vector that is derived from the F-factor of Escherichia coli. PACs can contain large genomic fragments. Drosophila melanogaster PACs carry an average insert size of 80 kb. The library represents a 6-fold coverage of the genome.

SATURATION

The stage in mutagenesis at which mutations in new genes cannot be obtained by further mutagenesis. This occurs when at least one mutation in every gene has been obtained.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venken, K., Bellen, H. Emerging technologies for gene manipulation in Drosophila melanogaster. Nat Rev Genet 6, 167–178 (2005). https://doi.org/10.1038/nrg1553

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1553

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing