Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Beyond race: towards a whole-genome perspective on human populations and genetic variation

Abstract

The renewed emphasis on population-specific genetic variation, exemplified most prominently by the International HapMap Project, is complicated by a longstanding, uncritical reliance on existing population categories in genetic research. Race and other pre-existing population definitions (ethnicity, religion, language, nationality, culture and so on) tend to be contentious concepts that have polarized discussions about the ethics and science of research into population-specific human genetic variation. By contrast, a broader consideration of the multiple historical sources of genetic variation provides a whole-genome perspective on the ways i n which existing population definitions do, and do not, account for how genetic variation is distributed among individuals. Although genetics will continue to rely on analytical tools that make use of particular population histories, it is important to interpret findings in a broader genomic context.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Collins, F. S. & Mansoura, M. K. The human genome project: revealing the shared inheritance of all humankind. Cancer 91 (Suppl.), 221–225 (2001).

    Article  CAS  Google Scholar 

  2. Subramanian, G. et al. Implications of the human genome for understanding human biology and medicine. JAMA 286, 2296–2307 (2001).

    Article  CAS  Google Scholar 

  3. Chakravarti, A. Population genetics — making sense out of sequence. Nature Genet. 21, 56–60 (1999).

    Article  CAS  Google Scholar 

  4. Kruglyak, L. & Nickerson, D. A. Variation is the spice of life. Nature Genet. 27, 234–236 (2001).

    Article  CAS  Google Scholar 

  5. Foster, M. W. & Sharp, R. R. Race, ethnicity, and genomics: social classifications as proxies of biological heterogeneity. Genome Res. 12, 844–50 (2002).

    Article  CAS  Google Scholar 

  6. Risch, N. et al. Categorizations of humans in biomedical research: genes, race and disease. Genome Biol. 3, 12 (2002).

    Article  Google Scholar 

  7. Cooper, R. S., Kaufman, J. S. & Ward, R. Race and genomics. N. Engl. J. Med. 348, 1166–1170 (2003).

    Article  Google Scholar 

  8. Burchard, E. G. et al. The importance of race and ethnic background in biomedical research and clinical practice. N. Engl. J. Med. 348, 1170–1175 (2003).

    Article  Google Scholar 

  9. Freeman, H. P. The meaning of race in science — considerations for cancer research — concerns of special populations in the National Cancer Program. Cancer 82, 219–225 (1998).

    Article  CAS  Google Scholar 

  10. Collins, F. S. et al. A vision for the future of genomics research. Nature 422, 835–847 (2003).

    Article  CAS  Google Scholar 

  11. Goldstein, D. B. & Chikhi, L. Human migrations and population structure: what we know and why it matters. Annu. Rev. Genomics Hum. Genet. 3, 129–152 (2002).

    Article  CAS  Google Scholar 

  12. International HapMap Consortium. The International HapMap Project. Nature 426, 789–796 (2003).

  13. Johnson, G. C. L. et al. Haplotype tagging for the identification of common disease genes. Nature Genet. 29, 233–237 (2001).

    Article  CAS  Google Scholar 

  14. Collins, F. S., Guyer, M. S. & Chakravarti, A. Variations on a theme: cataloging human DNA sequence variation. Science 278, 1580–1581 (1997).

    Article  CAS  Google Scholar 

  15. Zhao, H. Y., Pfeiffer, R. & Gail, M. H. Haplotype analysis in population genetics and association studies. Pharmacogenomics 4, 171–178 (2003).

    Article  Google Scholar 

  16. Morton, N. E. Genetic epidemiology, genetic maps and positional cloning. Phil. Trans. R. Soc. Lond. B 358, 1701–1708 (2003).

    Article  CAS  Google Scholar 

  17. Wall, J. D. & Pritchard, J. K. Haplotype blocks and linkage disequilibrium in the human genome. Nature Rev. Genet. 4, 587–597 (2003).

    Article  CAS  Google Scholar 

  18. Cardon, L. R. & Abecasis, G. R. Using haplotype blocks to map human complex trait loci. Trends Genet. 19, 135–140 (2003).

    Article  CAS  Google Scholar 

  19. Wilson, J. F. et al. Population genetic structure of variable drug response. Nature Genet. 29, 265–269 (2001).

    Article  CAS  Google Scholar 

  20. Gabriel, S. B. et al. The structure of haplotype blocks in the human genome. Science 296, 2225–2229 (2002).

    Article  CAS  Google Scholar 

  21. Goldstein, D. B. Islands of linkage disequilibrium. Nature Genet. 29, 109–111 (2001).

    Article  CAS  Google Scholar 

  22. Daly, M. J. et al. High-resolution haplotype structure in the human genome. Nature Genet. 29, 229–232 (2001).

    Article  CAS  Google Scholar 

  23. Calafell, F. Classifying humans. Nature Genet. 33, 435–436 (2003).

    Article  CAS  Google Scholar 

  24. Van den Oord, E. J. C. G. & Neale, B. M. Will haplotype maps be useful for finding genes? Mol. Psychiatry 9, 227–236 (2004).

    Article  CAS  Google Scholar 

  25. Weiss, K. M. & Clark, A. G. Linkage disequilibrium and the mapping of complex human traits. Trends Genet. 18, 19–24 (2002).

    Article  CAS  Google Scholar 

  26. Lai, E. et al. Medical applications of haplotype-based SNP maps: learning to walk before we run. Nature Genet. 32, 353–54 (2002).

    Article  CAS  Google Scholar 

  27. Shriver, M. D. et al. Skin pigmentation, biogeographical ancestry and admixture mapping. Hum. Genet. 112, 387–399 (2003).

    PubMed  Google Scholar 

  28. Bamshad, M. J. et al. Human population genetic structure and inference of group membership. Am. J. Hum. Genet. 72, 578–589 (2003).

    Article  CAS  Google Scholar 

  29. Webster, M. T., Clegg, J. B. & Harding, R. M. Common 5′ β-globin RFLP haplotypes harbour a surprising level of ancestral sequence mosaic. Hum. Genet. 113, 123–139 (2003).

    CAS  PubMed  Google Scholar 

  30. Gower, B. A. Using genetic admixture to explain racial differences in insulin-related phenotypes. Diabetes 52, 1047–1051 (2003).

    Article  CAS  Google Scholar 

  31. Shifman, S. et al. Linkage disequilibrium patterns of the human genome across populations. Hum. Mol. Genet. 12, 771–776 (2003).

    Article  CAS  Google Scholar 

  32. Lin, J. P. et al. Genealogy construction in a historically isolated population: application to genetic studies of rheumatoid arthritis in the Pima Indian. Genet. Med. 1, 187–193 (1999).

    Article  CAS  Google Scholar 

  33. Zhou, X. et al. Genome-wide association study of systemic sclerosis susceptibility in a Choctaw Indian population with high disease prevalence. Arthritis Rheum. 48, 2585–2592 (2003).

    Article  CAS  Google Scholar 

  34. Thornton, R. American Indian Holocaust and Survival: A Population History since 1492 (Univ. Oklahoma Press, USA, 1987).

    Google Scholar 

  35. Sturm, C. Blood Politics: Race, Culture, and Identity in the Cherokee Nation of Oklahoma (Univ. California Press, USA, 2002).

    Google Scholar 

  36. Carlson, C. S. et al. Additional SNPs and linkage-disequilibrium analyses are necessary for whole-genome association studies in humans. Nature Genet. 33, 518–521 (2003).

    Article  CAS  Google Scholar 

  37. Wacholder, S., Rothman, N. & Caporaso, N. Population stratification in epidemiologic studies of common genetic variants and cancer: quantification of bias. J. Natl Cancer Inst. 92, 1151–1158 (2000).

    Article  CAS  Google Scholar 

  38. Ziv, E. & Burchard, E. G. Human population structure and genetic association studies. Pharmacogenomics 4, 431–441 (2003).

    Article  Google Scholar 

  39. Weiss, K. M. & Terwilliger, J. D. How many diseases does it take to map a gene with SNPs? Nature Genet. 26, 151–157 (2000).

    Article  CAS  Google Scholar 

  40. Cardon, L. R. & Palmer, L. J. Population stratification and spurious allelic association. Lancet 361, 598–604 (2003).

    Article  Google Scholar 

  41. Foster, M. W. & Aston, C. E. A practice approach for identifying previously unsuspected environmental contributors to SLE and other complex diseases. Environ. Health Persp. 111, 593–597 (2003).

    Article  Google Scholar 

  42. Zondervan, K. T. & Cardon, L. R. The complex interplay among factors that influence allelic association. Nature Rev. Genet. 5, 89–100 (2004).

    Article  CAS  Google Scholar 

  43. Sankar, P. & Cho, M. K. Toward a new vocabulary of human genetic variation. Science 298, 1337–1338 (2002).

    Article  CAS  Google Scholar 

  44. Jorde, L. B., Watkins, W. S. & Bamshad, M. J. Population genomics: a bridge from evolutionary history to genetic medicine. Hum. Mol. Genet. 10, 2199–2207 (2001).

    Article  CAS  Google Scholar 

  45. Broder, C. & Venter, J. C. Whole genomes: the foundation of new biology and medicine. Curr. Opin. Biotechnol. 11, 581–585 (2000).

    Article  CAS  Google Scholar 

  46. Cavalli-Sforza, L. L., Menozzi, P. & Piazza, A. The History and Geography of Human Genes (Princeton Univ. Press, USA, 1994).

    Google Scholar 

  47. Rosenberg, N. A. et al. Genetic structure of human populations. Science 298, 2381–2385 (2002).

    Article  CAS  Google Scholar 

  48. Pritchard, J. K. & Cox, N. J. The allelic architecture of human disease genes: common disease–common variant... or not? Hum. Mol. Genet. 11, 2417–2423 (2002).

    Article  CAS  Google Scholar 

  49. Reich, D. E. & Lander, E. S. On the allelic spectrum of human disease. Trends Genet. 17, 502–510 (2001).

    Article  CAS  Google Scholar 

  50. Sebastiani, P. et al. Minimal haplotype tagging. Proc. Natl Acad. Sci. USA 100, 9900–9905 (2003).

    Article  CAS  Google Scholar 

  51. Weiss, K. M. & Terwilliger, J. D. How many diseases does it take to map a gene with SNPs? Nature Genet. 26, 151–157 (2000).

    Article  CAS  Google Scholar 

  52. Clark, A. G. Finding genes underlying risk of complex disease by linkage disequilibrium mapping. Curr. Opin. Genet. Devel. 13, 296–302 (2003).

    Article  CAS  Google Scholar 

  53. Smith D. J. & Lusis A. J. The allelic structure of common disease. Hum. Mol. Genet. 11, 2455–2461 (2002).

    Article  CAS  Google Scholar 

  54. Reich, D. E. et al. Human genome sequence variation and the influence of gene history, mutation and recombination. Nature Genet. 32, 135–142 (2002).

    Article  CAS  Google Scholar 

  55. Tishkoff, S. A. & Williams, S. M. Genetic analysis of African populations: human evolution and complex disease. Nature Rev. Genet. 3, 611–621 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This publication was made possible by grants from the National Institute on Environmental Health Sciences and from the National Human Genome Research Institute. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIEHS, NHGRI or the National Institutes of Health. We also are grateful for comments made by L. D. Brooks and two anonymous reviewers on an earlier version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morris W. Foster.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

Entrez

APOE

OMIM

Alzheimer disease

FURTHER INFORMATION

International HapMap Project

Human Genome Diversity Project

Glossary

ADMIXTURE

Gene flow between differentiated populations.

BLOOD QUANTUM

A legal measure of degree of Native American ancestry. The designation of 'full blood' or some fraction such as 'quarter' or 'half' blood quantum depends on how one's nineteenth century Indian ancestors were designated (often arbitrarily) and the blood quanta of subsequent ancestors who were enrolled in federally recognized tribes.

COMMON DISEASE/COMMON VARIANT HYPOTHESIS

The view that one or a few genetic contributors account for significant numbers of cases of many common, complex diseases in most or all populations.

FOUNDER EFFECT

A situation in which a new population is founded by a small number of individuals. Similar to a bottleneck, the founder effect severely reduces genetic diversity, increasing the effect of random drift.

MICROSATELLITE

A class of repetitive DNA sequences that are made up of tandemly organized repeats that are 2–8 nucleotides in length. They can be highly polymorphic and are frequently used as molecular markers in population genetics studies.

POPULATION BOTTLENECK

A marked reduction in population size followed by the survival and expansion of a small random sample of the original population.

POPULATION STRATIFICATION

Subdivision of a population into different subgroups with potentially different marker allele frequencies and different disease prevalences. This might result in participants with a disease having different allele frequencies than those without the disease that are recruited as controls.

PROSPECTIVE COHORT

Longitudinal study of individuals initially assessed for exposure to certain risk factors and then followed over time to evaluate the progression towards specific outcomes (often disease).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foster, M., Sharp, R. Beyond race: towards a whole-genome perspective on human populations and genetic variation. Nat Rev Genet 5, 790–796 (2004). https://doi.org/10.1038/nrg1452

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1452

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing