Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Systematic genome-wide screens of gene function

Key Points

  • High-throughput screens, in which each gene of an organism is systematically perturbed, are now routine in yeast and are becoming feasible in other organisms.

  • Before conducting a genome-wide screen, the list of gene sequences to be targeted must be compiled and a set of gene-perturbing reagents or strains must be constructed.

  • Gene-perturbing strategies include: homologous recombination and random insertional mutagenesis to delete or mutate genes at the DNA level, and RNA interference to reduce the mRNA levels of a gene.

  • Any observable phenotype can be screened using genome-wide collections of reagents or organisms, subject to practical limitations.

  • Examples of phenotypes that have been screened so far include cell growth and proliferation, classical morphological defects and reporter-gene activity.

  • Using automated microscopy and/or automated image analysis, visual phenotypes can also be screened in a high-throughput manner.

  • Genome-wide phenotypic screens generate large, high-quality data sets, which can be used immediately to identify genes that are involved in a particular process.

  • These genome-wide data sets can also be integrated with existing genome-wide data sets, such as transcriptional profiles and annotated databases, to provide further, broader insights.

  • Future screens will probably examine more complex phenotypes in increasingly physiological contexts.

Abstract

By using genome information to create tools for perturbing gene function, it is now possible to undertake systematic genome-wide functional screens that examine the contribution of every gene to a biological process. The directed nature of these experiments contrasts with traditional methods, in which random mutations are induced and the resulting mutants are screened for various phenotypes. The first genome-wide functional screens in Caenorhabditis elegans and Drosophila melanogaster have recently been published, and screens in human cells will soon follow. These high-throughput techniques promise the rapid annotation of genomes with high-quality information about the biological function of each gene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Steps involved in the design and implementation of a systematic genome-wide functional screen.
Figure 2: High-throughput formats for screening.
Figure 3: Examples of scorable phenotypes from various screens.

Similar content being viewed by others

References

  1. Marcotte, E. M., Pellegrini, M., Thompson, M. J., Yeates, T. O. & Eisenberg, D. A combined algorithm for genome-wide prediction of protein function. Nature 402, 83–86 (1999).

    CAS  PubMed  Google Scholar 

  2. Grunenfelder, B. & Winzeler, E. A. Treasures and traps in genome-wide data sets: case examples from yeast. Nature Rev. Genet. 3, 653–661 (2002).

    PubMed  Google Scholar 

  3. von Mering, C. et al. Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417, 399–403 (2002).

    CAS  PubMed  Google Scholar 

  4. Hammerle, M. et al. Proteins of newly isolated mutants and the amino-terminal proline are essential for ubiquitin-proteasome-catalyzed catabolite degradation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae. J. Biol. Chem. 273, 25000–25005 (1998).

    CAS  PubMed  Google Scholar 

  5. Regelmann, J. et al. Catabolite degradation of fructose-1,6-bisphosphatase in the yeast Saccharomyces cerevisiae: a genome-wide screen identifies eight novel GID genes and indicates the existence of two degradation pathways. Mol. Biol. Cell 14, 1652–1663 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Snyder, M. & Gerstein, M. Genomics. Defining genes in the genomics era. Science 300, 258–260 (2003).

    CAS  PubMed  Google Scholar 

  7. Misra, S. et al. Annotation of the Drosophila melanogaster euchromatic genome: a systematic review. Genome Biol. 3, RESEARCH0083 (2002).

  8. Stein, L. Genome annotation: from sequence to biology. Nature Rev. Genet. 2, 493–503 (2001).

    CAS  PubMed  Google Scholar 

  9. Brummelkamp, T. R., Nijman, S. M., Dirac, A. M. & Bernards, R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 424, 797–801 (2003).

    CAS  PubMed  Google Scholar 

  10. Heo, W. D. & Meyer, T. Switch-of-function mutants based on morphology classification of Ras superfamily small GTPases. Cell 113, 315–328 (2003).

    CAS  PubMed  Google Scholar 

  11. Goshima, G. & Vale, R. D. The roles of microtubule-based motor proteins in mitosis: comprehensive RNAi analysis in the Drosophila S2 cell line. J. Cell Biol. 162, 1003–1016 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Rogers, S. L., Wiedemann, U., Stuurman, N. & Vale, R. D. Molecular requirements for actin-based lamella formation in Drosophila S2 cells. J. Cell Biol. 162, 1079–1088 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Adams, M. D. & Sekelsky, J. J. From sequence to phenotype: reverse genetics in Drosophila melanogaster. Nature Rev. Genet. 3, 189–198 (2002).

    CAS  PubMed  Google Scholar 

  14. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002). Describes the construction of 6,000 yeast deletion strains, and a screen for proliferation under various growth conditions.

    CAS  PubMed  Google Scholar 

  15. Hannon, G. J. RNA interference. Nature 418, 244–251 (2002).

    CAS  PubMed  Google Scholar 

  16. Dykxhoorn, D. M., Novina, C. D. & Sharp, P. A. Killing the messenger: short RNAs that silence gene expression. Nature Rev. Mol. Cell Biol. 4, 457–467 (2003).

    CAS  Google Scholar 

  17. Shi, Y. Mammalian RNAi for the masses. Trends Genet. 19, 9–12 (2003).

    PubMed  Google Scholar 

  18. McManus, M. T. & Sharp, P. A. Gene silencing in mammals by small interfering RNAs. Nature Rev. Genet 3, 737–747 (2002).

    CAS  PubMed  Google Scholar 

  19. Kamath, R. S. & Ahringer, J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods 30, 313–321 (2003).

    CAS  PubMed  Google Scholar 

  20. Hutvagner, G. & Zamore, P. D. RNAi: nature abhors a double-strand. Curr. Opin. Genet. Dev. 12, 225–232 (2002).

    CAS  PubMed  Google Scholar 

  21. Tavernarakis, N., Wang, S. L., Dorovkov, M., Ryazanov, A. & Driscoll, M. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nature Genet 24, 180–183 (2000).

    CAS  PubMed  Google Scholar 

  22. Kanemaki, M., Sanchez-Diaz, A., Gambus, A. & Labib, K. Functional proteomic identification of DNA replication proteins by induced proteolysis in vivo. Nature 423, 720–724 (2003).

    CAS  PubMed  Google Scholar 

  23. Geyer, C. R., Colman-Lerner, A. & Brent, R. 'Mutagenesis' by peptide aptamers identifies genetic network members and pathway connections. Proc. Natl Acad. Sci. USA 96, 8567–8572 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bishop, A. C., Buzko, O. & Shokat, K. M. Magic bullets for protein kinases. Trends Cell Biol. 11, 167–172 (2001).

    CAS  PubMed  Google Scholar 

  25. Winzeler, E. A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    CAS  PubMed  Google Scholar 

  26. Steinmetz, L. M. et al. Systematic screen for human disease genes in yeast. Nature Genet. 31, 400–404 (2002).

    CAS  PubMed  Google Scholar 

  27. Ross-Macdonald, P. et al. Large-scale analysis of the yeast genome by transposon tagging and gene disruption. Nature 402, 413–418 (1999).

    CAS  PubMed  Google Scholar 

  28. Deutschbauer, A. M., Williams, R. M., Chu, A. M. & Davis, R. W. Parallel phenotypic analysis of sporulation and postgermination growth in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 99, 15530–15535 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Dimmer, K. S. et al. Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. Mol. Biol. Cell 13, 847–853 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gu, Z. et al. Role of duplicate genes in genetic robustness against null mutations. Nature 421, 63–66 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Birrell, G. W., Giaever, G., Chu, A. M., Davis, R. W. & Brown, J. M. A genome-wide screen in Saccharomyces cerevisiae for genes affecting UV radiation sensitivity. Proc. Natl Acad. Sci. USA 98, 12608–12613 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bennett, C. B. et al. Genes required for ionizing radiation resistance in yeast. Nature Genet. 29, 426–434 (2001).

    CAS  PubMed  Google Scholar 

  33. Game, J. C. et al. Use of a genome-wide approach to identify new genes that control resistance of Saccharomyces cerevisiae to ionizing radiation. Radiat. Res. 160, 14–24 (2003).

    CAS  PubMed  Google Scholar 

  34. Hanway, D. et al. Previously uncharacterized genes in the UV- and MMS-induced DNA damage response in yeast. Proc. Natl Acad. Sci. USA 99, 10605–10610 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bianchi, M. M. et al. Large-scale phenotypic analysis reveals identical contributions to cell functions of known and unknown yeast genes. Yeast 18, 1397–1412 (2001).

    CAS  PubMed  Google Scholar 

  36. Chan, T. F., Carvalho, J., Riles, L. & Zheng, X. F. A chemical genomics approach toward understanding the global functions of the target of rapamycin protein (TOR). Proc. Natl Acad. Sci. USA 97, 13227–13232 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Butcher, R. A. & Schreiber, S. L. A small molecule suppressor of FK506 that targets the mitochondria and modulates ionic balance in Saccharomyces cerevisiae. Chem. Biol. 10, 521–531 (2003).

    CAS  PubMed  Google Scholar 

  38. Page, N. et al. A Saccharomyces cerevisiae genome-wide mutant screen for altered sensitivity to K1 killer toxin. Genetics 163, 875–894 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zewail, A. et al. Novel functions of the phosphatidylinositol metabolic pathway discovered by a chemical genomics screen with wortmannin. Proc. Natl Acad. Sci. USA 100, 3345–3350 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chang, M., Bellaoui, M., Boone, C. & Brown, G. W. A genome-wide screen for methyl methanesulfonate-sensitive mutants reveals genes required for S phase progression in the presence of DNA damage. Proc. Natl Acad. Sci. USA 99, 16934–16939 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Desmoucelles, C., Pinson, B., Saint-Marc, C. & Daignan-Fornier, B. Screening the yeast 'disruptome' for mutants affecting resistance to the immunosuppressive drug, mycophenolic acid. J. Biol. Chem. 277, 27036–27044 (2002).

    CAS  PubMed  Google Scholar 

  42. Gupta, S. S. et al. Antifungal activity of amiodarone is mediated by disruption of calcium homeostasis. J. Biol. Chem. 278, 28831–28839 (2003).

    CAS  PubMed  Google Scholar 

  43. Anderson, J. B. et al. Mode of selection and experimental evolution of antifungal drug resistance in Saccharomyces cerevisiae. Genetics 163, 1287–1298 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kamath, R. S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003). Describes the construction of a genome-wide collection of feedable, bacterially expressed dsRNA for C. elegans , and screening for classical phenotypes. This is the first genome-wide RNAi screen to be carried out in a multicellular organism.

    CAS  PubMed  Google Scholar 

  45. Fraser, A. G. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325–330 (2000).

    CAS  PubMed  Google Scholar 

  46. Maeda, I., Kohara, Y., Yamamoto, M. & Sugimoto, A. Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr. Biol. 11, 171–176 (2001).

    CAS  PubMed  Google Scholar 

  47. Simmer, F. et al. Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveall novel gene functions. PLOS Biology 1, E12 (2003).

    PubMed  PubMed Central  Google Scholar 

  48. Lee, S. S. et al. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nature Genet. 33, 40–48 (2003).

    CAS  PubMed  Google Scholar 

  49. Aza-Blanc, P. et al. Identification of modulators of TRAIL-induced apoptosis via RNAi-based phenotypic screening. Mol. Cell 12, 627–637 (2003).

    CAS  PubMed  Google Scholar 

  50. Ooi, S. L., Shoemaker, D. D. & Boeke, J. D. A DNA microarray-based genetic screen for nonhomologous end-joining mutants in Saccharomyces cerevisiae. Science 294, 2552–2556 (2001).

    CAS  PubMed  Google Scholar 

  51. Tong, A. H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001). Describes the first use of the synthetic genetic array strategy, in which a mutant of interest is crossed with all yeast deletion strains, allowing a genetic network to be constructed.

    CAS  PubMed  Google Scholar 

  52. Krogan, N. J. et al. Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol. Cell Biol. 23, 4207–4218 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Huang, D., Moffat, J. & Andrews, B. Dissection of a complex phenotype by functional genomics reveals roles for the yeast cyclin-dependent protein kinase Pho85 in stress adaptation and cell integrity. Mol. Cell Biol. 22, 5076–5088 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kroll, E. S., Hyland, K. M., Hieter, P. & Li, J. J. Establishing genetic interactions by a synthetic dosage lethality phenotype. Genetics 143, 95–102 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hartman, J. L., Garvik, B. & Hartwell, L. Principles for the buffering of genetic variation. Science 291, 1001–1004 (2001).

    CAS  PubMed  Google Scholar 

  56. Zhang, J. et al. Genomic scale mutant hunt identifies cell size homeostasis genes in S. cerevisiae. Curr. Biol. 12, 1992–2001 (2002).

    CAS  PubMed  Google Scholar 

  57. Jorgensen, P., Nishikawa, J. L., Breitkreutz, B. J. & Tyers, M. Systematic identification of pathways that couple cell growth and division in yeast. Science 297, 395–400 (2002).

    CAS  PubMed  Google Scholar 

  58. Wilson, W. A., Wang, Z. & Roach, P. J. Systematic identification of the genes affecting glycogen storage in the yeast Saccharomyces cerevisiae: implication of the vacuole as a determinant of glycogen level. Mol. Cell Proteomics 1, 232–242 (2002).

    CAS  PubMed  Google Scholar 

  59. Bonangelino, C. J., Chavez, E. M. & Bonifacino, J. S. Genomic screen for vacuolar protein sorting genes in Saccharomyces cerevisiae. Mol. Biol. Cell 13, 2486–2501 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Felder, T. et al. Dtrlp, a multidrug resistance transporter of the major facilitator superfamily, plays an essential role in spore wall maturation in Saccharomyces cerevisiae. Eukaryot. Cell 1, 799–810 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ghaemmaghami, S. et al. Global analysis of protein expression in yeast. Nature 425, 737–741 (2003). Reports the construction of 6,000 yeast strains that contain TAP epitope-tagged genes in their natural genomic location. Protein expression was detected by Western blot in 4,000 strains.

    CAS  PubMed  Google Scholar 

  62. Lum, L. et al. Identification of Hedgehog pathway components by RNAi in Drosophila cultured cells. Science 299, 2039–2045 (2003). Reports the screening by dsRNA against 43% of the Drosophila genome using a reporter assay.

    CAS  PubMed  Google Scholar 

  63. Chanda, S. K. et al. Genome-scale functional profiling of the mammalian AP-1 signaling pathway. Proc. Natl Acad. Sci. USA 100, 12153–12158 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Iourgenko, V. et al. Identification of a family of cAMP response element-binding protein co-activators by genome-scale functional analysis in mammalian cells. Proc. Natl Acad. Sci. USA 100, 12147–12152 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Conkright, M. D. et al. TORCs: transducers of regulated CREB activity. Mol. Cell 12, 413–423 (2003).

    CAS  PubMed  Google Scholar 

  66. Pothof, J. et al. Identification of genes that protect the C. elegans genome against mutations by genome-wide RNAi. Genes Dev. 17, 443–448 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Vastenhouw, N. L. et al. A genome-wide screen identifies 27 genes involved in transposon silencing in C. elegans. Curr. Biol. 13, 1311–1316 (2003).

    CAS  PubMed  Google Scholar 

  68. Ni, L. & Snyder, M. A genomic study of the bipolar bud site selection pattern in Saccharomyces cerevisiae. Mol. Biol. Cell 12, 2147–2170 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Chen, C. et al. An integrated functional genomics screening program reveals a role for BMP-9 in glucose homeostasis. Nature Biotechnol. 21, 294–301 (2003).

    CAS  Google Scholar 

  70. Fiscella, M. et al. TIP, a T-cell factor identified using high-throughput screening increases survival in a graft-versus-host disease model. Nature Biotechnol. 21, 302–307 (2003).

    CAS  Google Scholar 

  71. Ziauddin, J. & Sabatini, D. M. Microarrays of cells expressing defined cDNAs. Nature 411, 107–110 (2001).

    CAS  PubMed  Google Scholar 

  72. Mousses, S. et al. RNAi microarray analysis in cultured mammalian cells. Genome Res. 13, 2341–2347 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Kumar, R., Conklin, D. S. & Mittal, V. High-throughput selection of effective RNAi probes for gene silencing. Genome Res. 13, 2333–2340 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang, J. H., Chung, T. D. & Oldenburg, K. R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen 4, 67–73 (1999).

    CAS  PubMed  Google Scholar 

  75. Editorial. Whither RNAi? Nature Cell Biol. 5, 489–490 (2003).

  76. Le Bot, N., Tsai, M. C., Andrews, R. K. & Ahringer, J. TAC-1, a regulator of microtubule length in the C. elegans embryo. Curr. Biol. 13, 1499–1505 (2003).

    CAS  PubMed  Google Scholar 

  77. Csete, M. E. & Doyle, J. C. Reverse engineering of biological complexity. Science 295, 1664–1669 (2002).

    CAS  PubMed  Google Scholar 

  78. Greenspan, R. J. The flexible genome. Nature Rev. Genet. 2, 383–387 (2001).

    CAS  PubMed  Google Scholar 

  79. Bader, G. D. et al. Functional genomics and proteomics: charting a multidimensional map of the yeast cell. Trends Cell Biol. 13, 344–356 (2003).

    CAS  PubMed  Google Scholar 

  80. Vidal, M. A biological atlas of functional maps. Cell 104, 333–339 (2001).

    CAS  PubMed  Google Scholar 

  81. Michiels, F. et al. Arrayed adenoviral expression libraries for functional screening. Nature Biotechnol. 20, 1154–1157 (2002).

    CAS  Google Scholar 

  82. Shinagawa, T. & Ishii, S. Generation of Ski-knockdown mice by expressing a long double-strand RNA from an RNA polymerase II promoter. Genes Dev. 17, 1340–1345 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Rubinson, D. A. et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature Genet. 33, 401–406 (2003).

    CAS  PubMed  Google Scholar 

  84. Hemann, M. T. et al. An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nature Genet. 33, 396–400 (2003).

    CAS  PubMed  Google Scholar 

  85. Zeng, Y., Wagner, E. J. & Cullen, B. R. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9, 1327–1333 (2002).

    CAS  PubMed  Google Scholar 

  86. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    CAS  PubMed  Google Scholar 

  87. Jackson, A. L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nature Biotechnol. 21, 635–637 (2003).

    CAS  Google Scholar 

  88. Feinberg, E. H. & Hunter, C. P. Transport of dsRNA into cells by the transmembrane protein SID-1. Science 301, 1545–1547 (2003).

    CAS  PubMed  Google Scholar 

  89. Gonczy, P. et al. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408, 331–336 (2000).

    CAS  PubMed  Google Scholar 

  90. Kamath, R. S., Martinez-Campos, M., Zipperlen, P., Fraser, A. G. & Ahringer, J. Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol. 2, RESEARCH0002 (2001).

  91. Swedlow, J. R., Goldberg, I., Brauner, E. & Sorger, P. K. Informatics and quantitative analysis in biological imaging. Science 300, 100–102 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Issel-Tarver, L. et al. Saccharomyces genome database. Methods Enzymol. 350, 329–346 (2002).

    CAS  PubMed  Google Scholar 

  93. Enyenihi, A. H. & Saunders, W. S. Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae. Genetics 163, 47–54 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Zettel, M. F. et al. The budding index of Saccharomyces cerevisiae deletion strains identifies genes important for cell cycle progression. FEMS Microbiol. Lett. 223, 253–258 (2003).

    CAS  PubMed  Google Scholar 

  95. Wiederkehr, A., Meier, K. D. & Riezman, H. Identification and characterization of Saccharomyces cerevisiae mutants defective in fluid-phase endocytosis. Yeast 18, 759–773 (2001).

    CAS  PubMed  Google Scholar 

  96. Kumar, A. et al. Subcellular localization of the yeast proteome. Genes Dev. 16, 707–719 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Huh, W. K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003). Reports the construction of 6,000 yeast strains that contain GFP-tagged genes in their natural genomic location. The localization of tagged product was detected by fluorescence microscopy in 4,000 strains.

    CAS  PubMed  Google Scholar 

  98. Ashrafi, K. et al. Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421, 268–272 (2003).

    CAS  PubMed  Google Scholar 

  99. Kiger, A. et al. A functional genomic analysis of cell morphology using RNA interference. J. Biol. 2, 27 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Reboul, J. et al. C. elegans ORFeome version 1.1: experimental verification of the genome annotation and resource for proteome-scale protein expression. Nature Genet. 34, 35–41 (2003).

    PubMed  Google Scholar 

  101. Alonso, J. M. et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657 (2003). Insertional mutants in 75% of Arabidopsis genes were made, although the entire set was not screened.

    PubMed  Google Scholar 

  102. Beckers, J. & Hrabe de Angelis, M. Large-scale mutational analysis for the annotation of the mouse genome. Curr. Opin. Chem. Biol. 6, 17–23 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank D. A. Guertin for helpful discussions, and M. Boutros and N. Perrimon for sharing unpublished work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Sabatini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

ColiBase

LacZ

Model organism databases

A. thaliana (TAIR)

C. elegans (WormBase)

D. melanogaster (FlyBase)

H. sapiens (Human genome resources)

M. musculus (Mouse genome informatics)

M. musculus (Mouse genome server)

S. cerevisiae (Saccharomyces genome database)

FURTHER INFORMATION

Open Microscopy Environment

Anne Carpenter's web site

David Sabatini's laboratory

Glossary

TRANSCRIPTIONAL PROFILING

The expression of thousands of genes can be measured simultaneously by spotting an array of DNA sequences on a glass slide and hybridizing a cell population's fluorescently labelled mRNA (or reverse-transcribed cDNA) to the slide. The fluorescence intensity of each spot corresponds to the prevalence in the cells of that nucleic acid species.

YEAST TWO-HYBRID ASSAY

One protein is fused to a transcriptional activation domain and the other to a DNA-binding domain, and both fusion proteins are introduced into yeast. Expression of a reporter gene with the appropriate DNA binding sites upstream of the promoter indicates that the two proteins physically interact.

RNA INTERFERENCE

(RNAi). The process by which the introduction or expression within cells of single- or double-stranded RNA leads to the degradation of the encoded mRNA and therefore to gene suppression.

LAMELLA

The dense, actin-rich structure that extends the leading edge of a migrating cell.

microRNAs

Tiny, noncoding RNAs that are probably involved in gene regulation.

HOMOLOGOUS RECOMBINATION

The process by which segments of DNA are exchanged between two DNA duplexes that share high sequence similarity.

MOLECULAR BAR CODES

Short, unique, engineered DNA sequences that are used as tags. For example, the bar code on each yeast deletion strain allows the identity of the strain to be determined by sequencing the code or by hybridizing DNA from the strain onto a microarray.

S2 CELLS

A cell line that is isolated from dissociated Drosophila melanogaster embryos. The cell line is phagocytic, which might contribute to its susceptibility to RNAi.

INTERFERON RESPONSE

A primitive antiviral mechanism that triggers sequence-nonspecific degradation of mRNA and downregulation of cellular protein synthesis.

DEGRON TAG

A degron (degradation) tag attached to a protein of interest specifically targets the protein for rapid proteolysis if the cells are grown at high temperature (37°) and in the presence of an overexpressed ubiquitin-associated protein that recognizes the tag.

PEPTIDE APTAMER INHIBITOR

Synthetic proteins that can bind and inhibit protein function.

TRAIL

A member of the tumour necrosis factor superfamily that preferentially induces apoptosis in tumour cells while leaving normal cells intact.

NON-HOMOLOGOUS END-JOINING

(NHEJ). One of two cellular DNA-repair pathways that are involved in the repair of double-strand breaks.

SYNTHETIC LETHAL

Synthetic interactions are identified if mutations in two separate genes produce a different phenotype from either gene alone, and indicate a functional association between the two genes. Two genes have a synthetic lethal relationship if mutants in either gene are viable but the double mutation is lethal.

CALCOFLUOR

A chemical that binds the chitin-rich bud scars that remain on the cell surface after cytokinesis.

SYNTHETIC DOSAGE LETHALITY

This type of genetic interaction is detected when overexpression of a gene is lethal only if another, normally nonlethal, mutation is present.

COULTER PARTICLE COUNTER

An instrument that measures the size of particles on the basis of changes in the electrical voltage as they pass through an orifice.

EPISTATIC TESTS

These can place genes in the same or different pathways and can establish the order of gene function if they are in a single, linear pathway. Gene A is epistatic to gene B if the phenotype that results from mutation of both genes matches the phenotype that results from gene A alone (and does not match that of gene B alone).

MITOTIC INDEX

The percentage of cells in the mitotic phase of the cell cycle.

FLUORESCENCE PLATE READERS

Instruments that read the fluorescence in each well of a multiwell plate.

FLUORESCENCE RESONANCE ENERGY TRANSFER

(FRET). A phenomenon by which the energy from an excited fluorophore is transferred to an acceptor molecule at short (<100 Å) distances, leading to decreased fluorescence of the donor and increased fluorescence of the acceptor. The efficiency of energy transfer depends strongly on the distance between the donor and acceptor molecules.

FLUORESCENCE ACTIVATED CELL SORTERS

(FACS). The separation of cells or chromosomes by their fluorescence and light-scattering properties, which are measured as the particles flow in a liquid stream as they pass through laser beams. The stream is then broken into droplets, and selected droplets are electrically charged and deflected into collection vessels as they pass through an electric field.

LENTIVIRUS

A type of retrovirus that can transduce overexpression and RNAi-inducing constructs to dividing and non-dividing mammalian cells.

CELL MICROARRAYS

An array of gene-perturbing reagents (such as plasmids plus a transfection reagent) that is spotted onto a glass slide. Cells that are are plated onto the slide and that land on a spot are affected by the reagent.

Z-FACTOR

A measurement that takes into account the dynamic range of the assay (how far apart the positive controls are from the negative controls), as well as data variability (how much variation is seen in the measurements of positive and negative controls).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpenter, A., Sabatini, D. Systematic genome-wide screens of gene function. Nat Rev Genet 5, 11–22 (2004). https://doi.org/10.1038/nrg1248

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1248

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing