Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Estimating recombination rates from population-genetic data

Key Points

  • One effect of recombination is to determine the extent of linkage disequilibrium in population DNA samples.

  • Direct measurement of the recombination rate is difficult and often impractical. For this reason, population-genetic methods are often used to infer recombination rates from patterns of variation among DNA sequences.

  • Population-genetic methods can detect variation in the recombination rate at the level of single genes.

  • Although simple parsimony methods allow the number of recombination events to be counted, most recombination events are missed using this approach.

  • Sophisticated statistical approaches use population-genetic models to estimate recombination rates.

  • Several statistical methods that estimate the population recombination rate have been developed. These are influenced by population history, but can provide important insights into details of the recombination process.

  • Biologically important inferences can be drawn from these estimators even if the underlying assumptions are oversimplified.

  • Discrepancies between estimated and experimentally measured rates can reveal important biological processes.

  • Estimated recombination rates enable the detailed interpretation of linkage disequilibrium and haplotype data.

Abstract

Obtaining an accurate measure of how recombination rates vary across the genome has implications for understanding the molecular basis of recombination, its evolutionary significance and the distribution of linkage disequilibrium in natural populations. Although measuring the recombination rate is experimentally challenging, good estimates can be obtained by applying population-genetic methods to DNA sequences taken from natural populations. Statistical methods are now providing insights into the nature and scale of variation in the recombination rate, particularly in humans. Such knowledge will become increasingly important owing to the growing use of population-genetic methods in biomedical research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ancestral genealogies and the effects of recombination.
Figure 2: The behaviour of estimators is largely independent of genomic region.
Figure 3: Estimating local recombination rate variation in a known recombination hotspot.
Figure 4: Blocks and the interplay of recombination rate and demography.

Similar content being viewed by others

References

  1. Hartl, D. L. & Clark, A. G. Principles of Population Genetics (Sinauer, Sunderland, 1998).

    Google Scholar 

  2. Weiss, K. M. & Clark, A. G. Linkage disequilibrium and the mapping of complex human traits. Trends Genet. 18, 19–24 (2002). This work highlights issues that are related to the application of LD data to association studies.

    CAS  PubMed  Google Scholar 

  3. Kaplan, N. & Morris, R. Prospects for association-based fine mapping of a susceptibility gene for a complex disease. Theor. Popul. Biol. 60, 181–191 (2001).

    CAS  PubMed  Google Scholar 

  4. Jeffreys, A. J., Ritchie, A. & Neumann, R. High resolution analysis of haplotype diversity and meiotic crossover in the human TAP2 recombination hotspot. Hum. Mol. Genet. 9, 725–733 (2000).

    CAS  PubMed  Google Scholar 

  5. Badge, R. M., Yardley, J., Jeffreys, A. J. & Armour, J. A. Crossover breakpoint mapping identifies a subtelomeric hotspot for male meiotic recombination. Hum. Mol. Genet. 9, 1239–1244 (2000).

    CAS  PubMed  Google Scholar 

  6. Cullen, M., Erlich, H., Klitz, W. & Carrington, M. Molecular mapping of a recombination hotspot located in the second intron of the human TAP2 locus. Am. J. Hum. Genet. 56, 1350–1358 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhao, H. Family-based association studies. Stat. Methods Med. Res. 9, 563–87 (2000).

    CAS  PubMed  Google Scholar 

  8. Cardon, L. R. & Bell, J. I. Association study designs for complex diseases. Nature Rev. Genet. 2, 91–99 (2001).

    CAS  PubMed  Google Scholar 

  9. Jeffreys, A. J., Murray, J. & Neumann, R. High-resolution mapping of crossovers in human sperm defines a minisatellite-associated recombination hotspot. Mol. Cell 2, 267–273 (1998).

    CAS  PubMed  Google Scholar 

  10. Fearnhead, P. & Donnelly, P. Estimating recombination rates from population genetic data. Genetics 159, 1299–1318 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Fearnhead, P. & Donnelly, P. Approximate likelihood methods for estimating local recombination rates. J. R. Stat. Soc. Ser. B Stat. Methodol. 64, 657–680 (2002).

    Google Scholar 

  12. Kuhner, M. K., Yamato, J. & Felsenstein, J. Maximum likelihood estimation of recombination rates from population data. Genetics 156, 1393–1401 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Stephens, M. & Donnelly, P. Inference in molecular population genetics. J. R. Stat. Soc. Ser. B Stat. Methodol. 62, 605–635 (2000).

    Google Scholar 

  14. Pritchard, J. K. & Przeworski, M. Linkage disequilibrium in humans: models and data. Am. J. Hum. Genet. 69, 1–14 (2001). A comprehensive review of LD and its dependence on demography; the paper also examines the connection between theoretical models and experimental data.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Golding, G. B. The sampling distribution of linkage disequilibrium. Genetics 108, 257–274 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kruglyak, L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nature Genet. 22, 139–144 (1999).

    CAS  PubMed  Google Scholar 

  17. Calafell, F., Grigorenko, E. L., Chikanian, A. A. & Kidd, K. K. Haplotype evolution and linkage disequilibrium: a simulation study. Hum. Hered. 51, 85–96 (2000).

    Google Scholar 

  18. Wang, N., Akey, J. M., Zhang, K., Chakraborty, R. & Jin, L. Distribution of recombination crossovers and the origin of haplotype blocks: the interplay of population history, recombination, and mutation. Am. J. Hum. Genet. 71, 1227–1234 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Barton, N. H. Genetic hitchhiking. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 355, 1553–1562 (2000).

    CAS  Google Scholar 

  20. Charlesworth, B., Nordborg, M. & Charlesworth, D. The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. Genet. Res. 70, 155–174 (1997).

    CAS  PubMed  Google Scholar 

  21. Chapman, N. H. & Thompson, E. A. Linkage disequilibrium mapping: the role of population history, size, and structure. Adv. Genet. 42, 413–437 (2001).

    CAS  PubMed  Google Scholar 

  22. Freimer, N. B., Service, S. K. & Slatkin, M. Expanding on population studies. Nature Genet. 17, 371–373 (1997).

    CAS  PubMed  Google Scholar 

  23. Hudson, R. R. The sampling distribution of linkage disequilibrium under an infinite allele model without selection. Genetics 109, 611–631 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Garner, C. & Slatkin, M. On selecting markers for association studies: patterns of linkage disequilibrium between two and three diallelic loci. Genet. Epidemiol 24, 57–67 (2003).

    PubMed  Google Scholar 

  25. Phillips, M. S. et al. Chromosome-wide distribution of haplotype blocks and the role of recombination hot spots. Nature Genet. 33, 382–387 (2003). A study of a dense marker map on chromosome 19 that, together with a detailed theoretical analysis, highlights problems in defining haplotype blocks.

    CAS  PubMed  Google Scholar 

  26. Cardon, L. R. & Abecasis, G. R. Using haplotype blocks to map human complex trait loci. Trends Genet. 19, 135–140 (2003).

    CAS  PubMed  Google Scholar 

  27. Akey, J. M., Zhang, K., Xiong, M. M. & Jin, L. The effect of single nucleotide polymorphism identification strategies on estimates of linkage disequilibrium. Mol. Biol. Evol. 20, 232–242 (2003).

    CAS  PubMed  Google Scholar 

  28. Nielsen, R. & Signorovitch, J. Correcting for ascertainment bias when analyzing SNP data: applications to the estimation of linkage disequilibrium. Theor. Popul. Biol. 63, 245–255 (2003).

    PubMed  Google Scholar 

  29. Rannala, B. & Slatkin, M. Likelihood analysis of disequilibrium mapping, and related problems. Am. J. Hum. Genet. 62, 459–473 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zollner, S. & von Haeseler, A. A coalescent approach to study linkage disequilibrium between single-nucleotide polymorphisms. Am. J. Hum. Genet. 66, 615–628 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Nordborg, M. & Tavare, S. Linkage disequilibrium: what history has to tell us. Trends Genet. 18, 83–90 (2002). A careful attempt at discussing the effects of population history on LD in a genealogical framework.

    CAS  PubMed  Google Scholar 

  32. Stumpf, M. P. H. & Goldstein, D. B. Genealogical and evolutionary inference with the human Y chromosome. Science 291, 1738–1742 (2001).

    CAS  PubMed  Google Scholar 

  33. Donnelly, P. & Tavare, S. Coalescents and genealogical structure under neutrality. Annu. Rev. Genet. 29, 401–421 (1995).

    CAS  PubMed  Google Scholar 

  34. Nordborg, M. in Handbook of Statistical Genetics (eds Balding, D. J. M. B. & Cannings, C.) 179–212 (Wiley, Chichester, 2000). A modern exposition of the coalescent and its application in modern population genetics.

    Google Scholar 

  35. Hudson, R. R. in Oxford Surveys in Evolutionary Biology (ed. Futuyama, D. J. A.) 1–43 (Oxford University Press, Oxford, 1990).

    Google Scholar 

  36. Tavare, S. A genealogical view of some stochastic-models in population-genetics. Stochastic Processes and their Applications Abstr. 19, 10 (1985).

    Google Scholar 

  37. Tavare, S., Balding, D. J., Griffiths, R. C. & Donnelly, P. Inferring coalescence times from DNA sequence data. Genetics 145, 505–518 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Stephens, M. in Handbook of Statistical Genetics (eds Balding, D. J. M. B. & Cannings, C.) 213–238 (Wiley, Chichester, 2001). A detailed and highly accessible account of statistical inference in population genetics using the coalescent.

    Google Scholar 

  39. Griffiths, R. C. & Marjoram, P. Ancestral inference from samples of DNA sequences with recombination. J. Comput. Biol. 3, 479–502 (1996).

    CAS  PubMed  Google Scholar 

  40. Hudson, R. R. & Kaplan, N. L. The coalescent process in models with selection and recombination. Genetics 120, 831–840 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wiuf, C. & Hein, J. The ancestry of a sample of sequences subject to recombination. Genetics 151, 1217–1228 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wiuf, C. & Hein, J. Recombination as a point process along sequences. Theor. Popul. Biol. 55, 248–259 (1999).

    CAS  PubMed  Google Scholar 

  43. Kuhner, M. K., Beerli, P., Yamato, J. & Felsenstein, J. Usefulness of single nucleotide polymorphism data for estimating population parameters. Genetics 156, 439–447 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Weir, B. S. Inferences about linkage disequilibrium. Biometrics 35, 235–254 (1979).

    CAS  PubMed  Google Scholar 

  45. Myers, S. R. & Griffiths, R. C. Bounds on the minimum number of recombination events in a sample history. Genetics 163, 375–394 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wiuf, C. On the minimum number of topologies explaining a sample of DNA sequences. Theor. Popul. Biol. 62, 357–363 (2002).

    PubMed  Google Scholar 

  47. Posada, D. & Crandall, K. A. Evaluation of methods for detecting recombination from DNA sequences: computer simulations. Proc. Natl Acad. Sci. USA 98, 13757–13762 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wiuf, C., Christensen, T. & Hein, J. A simulation study of the reliability of recombination detection methods. Mol. Biol. Evol. 18, 1929–1939 (2001).

    CAS  PubMed  Google Scholar 

  49. McVean, G. A. A genealogical interpretation of linkage disequilibrium. Genetics 162, 987–991 (2002). This paper discusses LD in a genealogical framework and shows how features of the genealogy are connected to LD summary statistics.

    PubMed  PubMed Central  Google Scholar 

  50. Myers, S. The Detection of Recombination Events Using DNA Sequence Data. Thesis, Univ. Oxford (2003).

    Google Scholar 

  51. Wiuf, C. & Hein, J. On the number of ancestors to a DNA sequence. Genetics 147, 1459–1468 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kingman, J. F. C. The coalescent. Stochastic Processes and their Applications 13, 235–248 (1982).

    Google Scholar 

  53. Rosenberg, N. A. & Nordborg, M. Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. Nature Rev. Genet. 3, 380–390 (2002).

    CAS  PubMed  Google Scholar 

  54. Wiuf, C. & Posada, D. A coalescent model of recombination hotspots. Genetics 164, 407–417 (2003).

    PubMed  PubMed Central  Google Scholar 

  55. Cavalli-Sforza, L. L., Mennazzi, P. & Piazza, A. The History and Geography of Human Genes (Princeton Univ. Press, Princeton, 1996).

    Google Scholar 

  56. Rannala, B. Gene genealogy in a population of variable size. Heredity 78, 417–423 (1997).

    PubMed  Google Scholar 

  57. Wakeley, J. & Lessard, S. Theory of the effects of population structure and sampling on patterns of linkage disequilibrium applied to genomic data from humans. Genetics 164, 1043–1053 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Nordborg, M. Linkage disequilibrium, gene trees and selfing: an ancestral recombination graph with selfing. Genetics 154, 923–929 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hey, J. & Wakeley, J. A coalescent estimator of the population recombination rate. Genetics 145, 833–846 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Wall, J. D. A comparison of estimators of the population recombination rate. Mol. Biol. Evol. 17, 156–163 (2000).

    CAS  PubMed  Google Scholar 

  61. Cox, D. R. & Hinkley, D. V. Theoretical Statistics (Chapman and Hall, London, 1974).

    Google Scholar 

  62. Casella, G. & Berger, R. L. Statistical Inference (Duxbury, Pacific Grove, 2002).

    Google Scholar 

  63. Steel, M. & Penny, D. Parsimony, likelihood, and the role of models in molecular phylogenetics. Mol. Biol. Evol. 17, 839–850 (2000).

    CAS  PubMed  Google Scholar 

  64. Reich, D. E. et al. Linkage disequilibrium in the human genome. Nature 411, 199–204 (2001).

    CAS  PubMed  Google Scholar 

  65. Gabriel, S. B. et al. The structure of haplotype blocks in the human genome. Science 296, 2225–2229 (2002). An influential experimental study that investigates the presence of haplotype blocks in different populations across 52 genomic regions.

    CAS  PubMed  Google Scholar 

  66. Jeffreys, A. J., Kauppi, L. & Neumann, R. Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nature Genet. 29, 217–222 (2001). A beautiful experimental study of recombination hotspots and associated patterns of LD in a human population sample.

    CAS  PubMed  Google Scholar 

  67. Clark, A. G. et al. Haplotype structure and population genetic inferences from nucleotide-sequence variation in human lipoprotein lipase. Am. J. Hum. Genet. 63, 595–612 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Hudson, R. R. Two-locus sampling distributions and their application. Genetics 159, 1805–1817 (2001). The first study to estimate recombination rates using pairwise approximation to the likelihood.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. McVean, G., Awadalla, P. & Fearnhead, P. A coalescent-based method for detecting and estimating recombination from gene sequences. Genetics 160, 1231–1241 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, N. & Stephens, M. A new multilocus model for linkage disequilibrium, with application to exploring variations in recombination rate. Genetics (in the press).

  71. Fearnhead, P. Consistency of estimators of the population-scaled recombination rate. Theor. Popul. Biol. 64, 67–79 (2003).

    PubMed  Google Scholar 

  72. Ardlie, K. G., Kruglyak, L. & Seielstad, M. Patterns of linkage disequilibrium in the human genome. Nature Rev. Genet. 3, 299–309 (2002).

    CAS  PubMed  Google Scholar 

  73. Stumpf, M. P. & Goldstein, D. B. Demography, recombination hotspot intensity, and the block structure of linkage disequilibrium. Curr. Biol. 13, 1–8 (2003).

    CAS  PubMed  Google Scholar 

  74. Stumpf, M. P. Haplotype diversity and the block structure of linkage disequilibrium. Trends Genet. 18, 226–228 (2002).

    CAS  PubMed  Google Scholar 

  75. Reich, D. E. et al. Human genome sequence variation and the influence of gene history, mutation and recombination. Nature Genet. 32, 135–142 (2002).

    CAS  PubMed  Google Scholar 

  76. Frisse, L. et al. Gene conversion and different population histories may explain the contrast between polymorphism and linkage disequilibrium levels. Am. J. Hum. Genet. 69, 831–843 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Sabeti, P. C. et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832–837 (2002).

    CAS  PubMed  Google Scholar 

  78. Przeworski, M. & Wall, J. D. Why is there so little intragenic linkage disequilibrium in humans? Genet. Res. 77, 143–151 (2001).

    CAS  PubMed  Google Scholar 

  79. Griffiths, R. C. & Tavare, S. Ancestral inference in population-genetics. Stat. Sci. 9, 307–319 (1994).

    Google Scholar 

  80. Smith, J. M., Smith, N. H., O'Rourke, M. & Spratt, B. G. How clonal are bacteria? Proc. Natl Acad. Sci. USA 90, 4384–4388 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Smith, J. M. The detection and measurement of recombination from sequence data. Genetics 153, 1021–1027 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Holmes, E. C. On the origin and evolution of the human immunodeficiency virus (HIV). Biol. Rev 76, 239–254 (2001).

    CAS  PubMed  Google Scholar 

  83. Fu, Y. X. Estimating mutation rate and generation time from longitudinal samples of DNA sequences. Mol. Biol. Evol. 18, 620–626 (2001).

    CAS  PubMed  Google Scholar 

  84. Awadalla, P. The evolutionary genomics of pathogen recombination. Nature Rev. Genet. 4, 50–60 (2003).

    CAS  PubMed  Google Scholar 

  85. Drummond, A. J., Nicholls, G. K., Rodrigo, A. G. & Solomon, W. Estimating mutation parameters, population history and genealogy simultaneously from temporally spaced sequence data. Genetics 161, 1307–1320 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Grassly, N. C. & Holmes, E. C. A likelihood method for the detection of selection and recombination using nucleotide sequences. Mol. Biol. Evol. 14, 239–247 (1997).

    CAS  PubMed  Google Scholar 

  87. Hey, J. & Harris, E. Population bottlenecks and patterns of human polymorphism. Mol. Biol. Evol. 16, 1423–1426 (1999).

    CAS  PubMed  Google Scholar 

  88. Nordborg, M. & Donnelly, P. The coalescent process with selfing. Genetics 146, 1185–1195 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Przeworski, M. The signature of positive selection at randomly chosen loci. Genetics 160, 1179–1189 (2002).

    PubMed  PubMed Central  Google Scholar 

  90. Posada, D. & Wiuf, C. Simulating haplotype blocks in the human genome. Bioinformatics 19, 289–290 (2003).

    CAS  PubMed  Google Scholar 

  91. Gillespie, J. H. Population Genetics: a Concise Guide (Johns Hopkins Univ. Press, Baltimore, 1998).

    Google Scholar 

  92. Wall, J. D. Recombination and the power of statistical tests of neutrality. Genet. Res. 74, 65–79 (1999).

    Google Scholar 

  93. Brown, C. J., Garner, E. C., Dunker, A. K. & Joyce, P. The power to detect recombination using the coalescent. Mol. Biol. Evol. 18, 1421–1424 (2001).

    CAS  PubMed  Google Scholar 

  94. Gillespie, J. H. The Causes of Molecular Evolution (Oxford Univ. Press, Oxford, 1991).

    Google Scholar 

  95. Przeworski, M., Charlesworth, B. & Wall, J. D. Genealogies and weak purifying selection. Mol. Biol. Evol. 16, 246–252 (1999).

    CAS  PubMed  Google Scholar 

  96. Johnson, G. C. et al. Haplotype tagging for the identification of common disease genes. Nature Genet. 29, 233–237 (2001). This paper pioneered the concept of haplotype tagging to describe genetic variation.

    CAS  PubMed  Google Scholar 

  97. Wall, J. D. & Pritchard, J. K. Assessing the performance of haplotype block models of linkage disequilibrium. Am. J. Hum. Genet. 73, 502–515 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Wall, J. D. & Pritchard, J. K. Haplotype blocks and linkage disequilibrium in the human genome. Nature Rev. Genet. 4, 587–597 (2003).

    CAS  PubMed  Google Scholar 

  99. Anderson, E. C. & Novembre, J. Finding haplotype block boundaries by using the minimum-description-length principle. Am. J. Hum. Genet. 73, 336–354 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Koivisto, M. et al. in Pac. Symp. Biocomput. 2003 (eds Altman, R. B., Dukner, A. K., Hunter, L., Jung, T. A. & Klein, T. E.) 502–513 (World Scientific, Singapore, 2002).

    Google Scholar 

  101. Liu, J. S. Monte Carlo Strategies in Scientific Computing (Springer, New York, 2003).

    Google Scholar 

  102. Nielsen, R. Estimation of population parameters and recombination rates from single nucleotide polymorphisms. Genetics 154, 931–942 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Stephens, M., Smith, N. J. & Donnelly, P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68, 978–989 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Watterson, G. A. On the number of segregating sites in genetic models without recombination. Theor. Popul. Biol. 7, 256–276 (1975).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Jeffreys and P. Donnelly for useful discussions, and C. Wiuf, M. Slatkin, L. Cardon, G. Coop, C. Spencer and three anonymous referees for their helpful comments on earlier drafts of this manuscript. Generous support through research fellowships from the Wellcome Trust (to M.P.H.S) and the Royal Society (to G.A.T.M.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Related links

Related links

DATABASES

LocusLink

LTA

LTB

FURTHER INFORMATION

Michael Stumpf's laboratory

Gilean McVean's laboratory

LTA and LTB genotypes

SHOX genotypes

Data of Gabriel et al.

PHASE software

Glossary

LINKAGE DISEQUILIBRIUM

(LD). A measure of genetic associations between alleles at different loci, which indicates whether allelic or marker associations on the same chromosome are more common than expected.

MARGINAL GENEALOGY

The part of a genealogical graph that corresponds to a single locus or stretch of DNA that is inherited without recombination.

MARKER ASCERTAINMENT

The process by which new genetic markers are obtained — for example, by re-sequencing a subset of chromosomes in a population sample. If those markers are population-specific then inferences that are based on them in other populations might be biased through so-called ascertainment bias.

HAPLOTYPE

The combination of alleles or genetic markers that is found on a single chromosome of a given individual.

INFINITE SITES MUTATION MODEL

A model that assumes that there are an infinite number of nucleotide sites and consequently that each new mutation occurs at a different locus.

FOUR-GAMETE TEST

(FGT). If all four possible gametes are observed for two bi-allelic loci then this test infers that a recombination event must have occurred between them (under an infinite sites mutation model).

PER-GENERATION RECOMBINATION RATE

(r). The probability of a recombination event occurring during meiosis.

EFFECTIVE POPULATION SIZE

(Ne). The size of the ideal constant-size population, in which the effects of random drift would be the same as those seen in the actual population.

POPULATION RECOMBINATION RATE

(ρ). Population-genetic parameters are generally proportional to the product of a molecular per-generation rate (for example, the per-generation recombination rate, r) and the effective population size (Ne). The population recombination rate has therefore often been defined as ρ = 4Ner.

CENSUS POPULATION SIZE

Actual population size (total number of individuals) as compared to the theoretical effective population size.

ESTIMATOR

A statistical method that is used to obtain a numerical estimate for a quantity of interest, such as a model parameter.

SUMMARY STATISTIC

A statistical function that summarizes complex data in terms of simple numbers (examples include the mean and variance).

VARIANCE

A statistic that quantifies the dispersion of data about the mean.

LIKELIHOOD SURFACE

The likelihood of a parameter is proportional to the probability of obtaining the observed data under a parametric model given the model parameter. The likelihood surface is a function/curve that specifies how well the data agrees with the predictions made by a parametric model for different values of the model parameter.

MARKOV CHAIN MONTE CARLO

A computational technique for the efficient numerical calculation of likelihoods.

RECURSION

A repeated mathematical operation that is often used to aid numerical analysis.

GENE CONVERSION

The non-reciprocal transfer of genetic information between homologous genes as a consequence of mismatch repair after heteroduplex formation.

PHASING

Determining the haplotype phase (the arrangement of alleles at two loci on homologous chromosomes) from genotype data using statistical methods.

ASSOCIATION STUDIES

A set of methods that are used to correlate polymorphisms in genotype to polymorphisms in phenotype in populations.

MODEL MIS-SPECIFICATION

The consequence of using a parametric model in the inference process that is different from the true model under which the data was generated.

CPG ISLANDS

Genome sequences of >200 base pairs that have high G+C content and CpG frequency.

TEMPLATE SWITCHING

The process by which RNA templates are switched between viral genomes during reverse transcription.

BOTTLENECK

A temporary marked reduction in population size.

SELECTIVE SWEEP

The process by which positive selection for a mutation eliminates neutral variation at linked sites.

HARDY–WEINBERG EQUILIBRIUM

A state in which the frequency of each diploid genotype at a locus equals that expected from the random union of alleles.

HAPLOTYPE-BASED APPROACH

An approach to association studies in which the co-inheritance of phenotypes and haplotypes — as opposed to single markers — is statistically analysed.

TAGGING APPROACH

Identifying sub-sets of markers ('tags') that describe patterns of association or haplotypes among larger marker sets.

MINIMUM-DESCRIPTION LENGTH APPROACHES

A concept from information theory, in which all of the information contained in a system (for example, a sample of DNA sequences) is described in the most compact form possible.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stumpf, M., McVean, G. Estimating recombination rates from population-genetic data. Nat Rev Genet 4, 959–968 (2003). https://doi.org/10.1038/nrg1227

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg1227

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing