
As transcriptomics methodologies 
have matured, a major goal is to 
characterize tissues by identifying 
constituent cell types and analysing 
the spatial arrangements of cell 
types and gene expression patterns 
within a tissue. However, existing 
analytical tools for spatial gene 
expression data typically do not fully 
leverage the spatial information, 
instead performing spatially naive 
gene expression analyses on the 
single cells or tissue regions being 
sampled, before mapping the results 
back onto the spatial structure. Two 
new studies report bioinformatics  
analysis tools to directly identify 
genes with spatially structured 
expression patterns in tissues.

Both teams adapted statistical 
methodologies from physical 
science fields. Svensson, Teichmann 
and Stegle adapted Gaussian process 
regression from geostatistics to 
derive their SpatialDE method, in 
which gene expression variability 
is decomposed into spatial and 
non-spatial components. Gene 
expression variability that is suf-
ficiently explained by the spatial 
component (the pairwise distance 
between cells or tissue regions) 
is used to call genes as spatially 
variable. In a related but distinct 
approach, Edsgärd, Johnsson and 
Sandberg used marked point pro-
cesses from geostatistics, astronomy 
and materials physics, in which 
points are used to represent the 
spatial locations of cells or tissue 
regions, and marks on these points 
represent expression levels. Their 
method, named trendsceek, tests 
points in a pairwise manner to iden-
tify when the expression pattern of 
a gene is dependent on the distance 
between the points being analysed. 
For both methods, data simulations 
were used to refine the algorithms 

and to demonstrate that they could 
robustly identify different spatial 
patterns of gene expression.

The teams then applied their 
methods to available spatial gene 
expression data sets. Current data 
sets are largely generated by either 
RNA sequencing (RNA-seq) or 
single-molecule fluorescence in situ 
hybridization (smFISH), each with 
different complementary trade-offs.

Spatial RNA-seq-based  
methods provide expression data 
transcriptome-wide, but spatial 
resolution is typically limited to tissue 
regions encompassing ~10–100 cells 
for each sample. Both groups applied 
their analytical tools to the same 
mouse olfactory bulb RNA-seq data 
set, identifying 67 (for SpatialDE) 
and 35 (for trendsceek) genes with 
spatially structured expression pat-
terns. The relevance of various iden-
tified genes was validated through 
agreement with their known spatial 
structure from standard single-gene 
histological staining, or because they 
are known marker genes for different 
components of tissue structure. A 
noteworthy extension of SpatialDE 
is ‘automatic expression histology’ 
(AEH), whereby following the 
identification of individual genes with 
spatially structured expression, genes 
are grouped into sets with similar 
spatial partners, thus yielding insights 
into tissue histology. As an example, 
in the olfactory bulb, there were five 
distinct types of spatial expression 
pattern, each shared by between 
5 and 27 genes. For trendsceek, an 
automated procedure identifies the 
cells or tissue regions contributing to 
the upregulated expression patterns 
for each identified gene.

Both methods were also applied 
to RNA-seq data sets from breast 
cancer tissue, identifying 115 (for 
SpatialDE) and 14 (for trendsceek) 

spatially structured genes. Again, 
the identities of various genes were 
consistent with relevant tissue  
substructure: both methods 
identified extracellular matrix com-
ponents as likely architectural sub-
structure, and SpatialDE identified 
cytokines and interleukin receptors 
potentially representing structured 
regions of immune infiltration.

For smFISH data sets, as  
transcripts are imaged in situ, singe- 
cell resolution (and even subcellular 
resolution) is available, but label 
multiplexing typically limits analyses 
to hundreds of transcripts rather 
than transcriptome-wide. Both teams 
applied their methods to smFISH 
data of 249 genes in mouse  
hippocampus sections. SpatialDE 
identified 32 spatially structured 
genes, whereas trendsceek found a 
median of 54 spatially structured 
genes across 15 hippocampal regions.

Overall, SpatialDE and  
trendsceek can thus be applied to 
distinct types of spatial gene expres-
sion data. It will be interesting to 
apply them to additional tissue types, 
including side-by-side comparisons 
of the tools to examine reasons for, 
and any implications of, differences 
in numbers and identities of the 
genes identified. Finally, the authors 
note that the tools are extendible to 
additional data types, including  
spatial expression data in 3D or 
through time series.
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