Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Detecting RNA modifications in the epitranscriptome: predict and validate

Key Points

  • Modified nucleotides are present in many RNA species and have multiple roles in the global regulation and fine-tuning of gene expression.

  • Despite growing interest in the discovery and analysis of RNA modification profiles and their dynamics, conventional methods for transcriptome-wide profiling are laborious and time-consuming.

  • Next-generation sequencing brings new perspectives for global analysis of RNA modification in different cells and tissues under various physiological conditions. Current methods and technologies applied for RNA modification analysis at the transcriptome level are discussed.

  • Most of these techniques use high-throughput DNA sequencing, coupled to the use of specific chemical reagents or specific antibodies to reveal modified RNA nucleotides.

  • An epitranscriptome analysis should be followed by thorough validation of obtained candidate sites by complementary orthogonal approaches.

  • Experimental and bioinformatic approaches and challenges for global analysis of RNA modification are discussed.

Abstract

RNA modifications are emerging players in the field of post-transcriptional regulation of gene expression, and are attracting a comparable degree of research interest to DNA and histone modifications in the field of epigenetics. We now know of more than 150 RNA modifications and the true potential of a few of these is currently emerging as the consequence of a leap in detection technology, principally associated with high-throughput sequencing. This Review outlines the major developments in this field through a structured discussion of detection principles, lays out advantages and drawbacks of new high-throughput methods and presents conventional biophysical identification of modifications as meaningful ways for validation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reverse transcription-based techniques for detection of modified nucleotides.
Figure 2: Enrichment strategies in analysis of RNA modifications.
Figure 3: Library preparation issues.
Figure 4: Mass spectrometry approaches for validation of RNA modification.
Figure 5: Methods for validation of modified RNA nucleotides.

Similar content being viewed by others

References

  1. Frye, M., Jaffrey, S. R., Pan, T., Rechavi, G. & Suzuki, T. RNA modifications: what have we learned and where are we headed? Nat. Rev. Genet. 17, 365–372 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Saletore, Y. et al. The birth of the epitranscriptome: deciphering the function of RNA modifications. Genome Biol. 13, 175 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schwartz, S. Cracking the epitranscriptome. RNA 22, 169–174 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Witkin, K. L. et al. RNA editing, epitranscriptomics, and processing in cancer progression. Cancer Biol. Ther. 16, 21–27 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Roundtree, I. A. & He, C. RNA epigenetics — chemical messages for posttranscriptional gene regulation. Curr. Opin. Chem. Biol. 30, 46–51 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Liu, N. & Pan, T. RNA epigenetics. Transl Res. 165, 28–35 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Spenkuch, F., Motorin, Y. & Helm, M. Pseudouridine: still mysterious, but never a fake (uridine)! RNA Biol. 11, 1540–1554 (2014).

    Article  PubMed  Google Scholar 

  8. Machnicka, M. A. et al. MODOMICS: a database of RNA modification pathways — 2013 update. Nucleic Acids Res. 41, D262–D267 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Helm, M. & Alfonzo, J. D. Posttranscriptional RNA modifications: playing metabolic games in a cell's chemical Legoland. Chem. Biol. 21, 174–185 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Holley, R. W. et al. Structure of a ribonucleic acid. Science 147, 1462–1465 (1965).

    Article  CAS  PubMed  Google Scholar 

  11. Ban, E. & Song, E. J. Recent developments and applications of capillary electrophoresis with laser-induced fluorescence detection in biological samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 929, 180–186 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Karijolich, J. & Yu, Y. T. Spliceosomal snRNA modifications and their function. RNA Biol. 7, 192–204 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Zinshteyn, B. & Nishikura, K. Adenosine-to-inosine RNA editing. Wiley Interdiscip. Rev. Syst. Biol. Med. 1, 202–209 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu, B. et al. Methylation as a crucial step in plant microRNA biogenesis. Science 307, 932–935 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Motorin, Y. & Helm, M. RNA nucleotide methylation. Wiley Interdiscip. Rev. RNA 2, 611–631 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Moss, B., Gershowitz, A., Stringer, J. R., Holland, L. E. & Wagner, E. K. 5′-terminal and internal methylated nucleosides in herpes simplex virus type 1 mRNA. J. Virol. 23, 234–239 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Nichols, J. L. & Welder, L. The modified nucleotide constituents of human prostatic cancer cell (MA-160) poly(A)-containing RNA. Biochim. Biophys. Acta 608, 1–18 (1980).

    Article  CAS  PubMed  Google Scholar 

  18. Rottman, F. M., Desrosiers, R. C. & Friderici, K. Nucleotide methylation patterns in eukaryotic mRNA. Prog. Nucleic Acid. Res. Mol. Biol. 19, 21–38 (1976).

    Article  CAS  PubMed  Google Scholar 

  19. Limbach, P. A. & Paulines, M. J. Going global: the new era of mapping modifications in RNA. Wiley Interdiscip. Rev. RNA 8, e1367 (2016).

    Article  Google Scholar 

  20. Song, C. X., Yi, C. & He, C. Mapping recently identified nucleotide variants in the genome and transcriptome. Nat. Biotechnol. 30, 1107–1116 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jia, G. et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7, 885–887 (2011). This is the first demonstration of dynamics in mRNA modification by enzymatic demethylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ebhardt, H. A. et al. Meta-analysis of small RNA-sequencing errors reveals ubiquitous post-transcriptional RNA modifications. Nucleic Acids Res. 37, 2461–2470 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Findeiss, S., Langenberger, D., Stadler, P. F. & Hoffmann, S. Traces of post-transcriptional RNA modifications in deep sequencing data. Biol. Chem. 392, 305–313 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Ryvkin, P. et al. HAMR: high-throughput annotation of modified ribonucleotides. RNA 19, 1684–1692 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Alon, S. et al. Systematic identification of edited microRNAs in the human brain. Genome Res. 22, 1533–1540 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dominissini, D., Moshitch-Moshkovitz, S., Amariglio, N. & Rechavi, G. Adenosine-to-inosine RNA editing meets cancer. Carcinogenesis 32, 1569–1577 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Hauenschild, R. et al. The reverse transcription signature of N-1-methyladenosine in RNA-Seq is sequence dependent. Nucleic Acids Res. 43, 9950–9964 (2015). This is a combination of the cDNA signature concept with machine learning to predict modification sites.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Tserovski, L. et al. High-throughput sequencing for 1-methyladenosine (m1A) mapping in RNA. Methods 107, 110–121 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Gustafsson, C. & Persson, B. C. Identification of the rrmA gene encoding the 23S rRNA m1G745 methyltransferase in Escherichia coli and characterization of an m1G745-deficient mutant. J. Bacteriol. 180, 359–365 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, X. et al. Transcriptome-wide mapping reveals reversible and dynamic N1-methyladenosine methylome. Nat. Chem. Biol. 12, 311–316 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Dominissini, D. et al. The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature 530, 441–446 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Talkish, J., May, G., Lin, Y., Woolford, J. L. Jr & McManus, C. J. Mod-seq: high-throughput sequencing for chemical probing of RNA structure. RNA 20, 713–720 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Weeks, K. M. Advances in RNA structure analysis by chemical probing. Curr. Opin. Struct. Biol. 20, 295–304 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sakurai, M., Yano, T., Kawabata, H., Ueda, H. & Suzuki, T. Inosine cyanoethylation identifies A-to-I RNA editing sites in the human transcriptome. Nat. Chem. Biol. 6, 733–740 (2010). This is pioneering work on the use of selective chemicals for transcriptome-wide detection of modifications.

    Article  CAS  PubMed  Google Scholar 

  35. Suzuki, T., Ueda, H., Okada, S. & Sakurai, M. Transcriptome-wide identification of adenosine-to-inosine editing using the ICE-seq method. Nat. Protoc. 10, 715–732 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Bakin, A. & Ofengand, J. Four newly located pseudouridylate residues in Escherichia coli 23S ribosomal RNA are all at the peptidyltransferase center: analysis by the application of a new sequencing technique. Biochemistry 32, 9754–9762 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Schwartz, S. et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159, 148–162 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lovejoy, A. F., Riordan, D. P. & Brown, P. O. Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae. PLoS ONE 9, e110799 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Carlile, T. M. et al. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515, 143–146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, X. et al. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome. Nat. Chem. Biol. 11, 592–597 (2015). In this paper, a chemical pulldown is combined with thorough validation of pseudouridine in mRNA.

    Article  CAS  PubMed  Google Scholar 

  41. Amort, T. et al. Long non-coding RNAs as targets for cytosine methylation. RNA Biol. 10, 1003–1008 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Schaefer, M., Pollex, T., Hanna, K. & Lyko, F. RNA cytosine methylation analysis by bisulfite sequencing. Nucleic Acids Res. 37, e12 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Squires, J. E. et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res. 40, 5023–5033 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Edelheit, S., Schwartz, S., Mumbach, M. R., Wurtzel, O. & Sorek, R. Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5C within archaeal mRNAs. PLoS Genet. 9, e1003602 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Burgess, A. L., David, R. & Searle, I. R. Conservation of tRNA and rRNA 5-methylcytosine in the kingdom Plantae. BMC Plant Biol. 15, 199 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Militello, K. T., Chen, L. M., Ackerman, S. E., Mandarano, A. H. & Valentine, E. L. A map of 5-methylcytosine residues in Trypanosoma brucei tRNA revealed by sodium bisulfite sequencing. Mol. Biochem. Parasitol. 193, 122–126 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schaefer, M. RNA 5-methylcytosine analysis by bisulfite sequencing. Methods Enzymol. 560, 297–329 (2015). The adaptation of bisulfite sequencing from DNA to RNA has strongly affected the field by pointing out the possibility for transcriptome-wide studies.

    Article  CAS  PubMed  Google Scholar 

  48. Krueger, F., Kreck, B., Franke, A. & Andrews, S. R. DNA methylome analysis using short bisulfite sequencing data. Nat. Methods 9, 145–151 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Booth, M. J., Marsico, G., Bachman, M., Beraldi, D. & Balasubramanian, S. Quantitative sequencing of 5-formylcytosine in DNA at single-base resolution. Nat. Chem. 6, 435–440 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Van Haute, L. et al. Deficient methylation and formylation of mt-tRNAMet wobble cytosine in a patient carrying mutations in NSUN3. Nat. Commun. 7, 12039 (2016). This shows the combined application of three different methods for the detection of m5C and derivatives in mitochondrial RNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Behm-Ansmant, I., Helm, M. & Motorin, Y. Use of specific chemical reagents for detection of modified nucleotides in RNA. J. Nucleic Acids 2011, 408053 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zheng, G. et al. Efficient and quantitative high-throughput tRNA sequencing. Nat. Methods 12, 835–837 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Clark, W. C., Evans, M. E., Dominissini, D., Zheng, G. & Pan, T. tRNA base methylation identification and quantification via high-throughput sequencing. RNA 22, 1771–1784 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cozen, A. E. et al. ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments. Nat. Methods 12, 879–884 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zaringhalam, M. & Papavasiliou, F. N. Pseudouridylation meets next-generation sequencing. Methods 107, 63–72 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Hussain, S., Aleksic, J., Blanco, S., Dietmann, S. & Frye, M. Characterizing 5-methylcytosine in the mammalian epitranscriptome. Genome Biol. 14, 215 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Jeltsch, A. et al. Mechanism and biological role of Dnmt2 in nucleic acid methylation. RNA Biol. http://dx.doi.org/10.1080/15476286.2016.1191737 (2016).

  58. Poirier, M. C. Antisera specific for carcinogen-DNA adducts and carcinogen-modified DNA: applications for detection of xenobiotics in biological samples. Mutat. Res. 288, 31–38 (1993).

    Article  CAS  PubMed  Google Scholar 

  59. Strickland, P. T. & Boyle, J. M. Immunoassay of carcinogen-modified DNA. Prog. Nucleic Acid. Res. Mol. Biol. 31, 1–58 (1984).

    Article  CAS  PubMed  Google Scholar 

  60. Sawicki, D. L., Erlanger, B. F. & Beiser, S. M. Immunochemical detection of minor bases in nucleic acids. Science 174, 70–72 (1971).

    Article  CAS  PubMed  Google Scholar 

  61. Vold, B. S., Longmire, M. E. & Keith, D. E. Jr. Thiolation and 2-methylthio- modification of Bacillus subtilis transfer ribonucleic acids. J. Bacteriol. 148, 869–876 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Milstone, D. S., Vold, B. S., Glitz, D. G. & Shutt, N. Antibodies to N6-(Δ2-isopentenyl) adenosine and its nucleotide: interaction with purified tRNAs and with bases, nucleosides and nucleotides of the isopentenyladenosine family. Nucleic Acids Res. 5, 3439–3455 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Munns, T. W., Liszewski, M. K. & Hahn, B. H. Antibody-nucleic acid complexes. Antigenic domains within nucleosides as defined by solid-phase immunoassay. Biochemistry 23, 2958–2964 (1984).

    Article  CAS  PubMed  Google Scholar 

  64. Horowitz, S., Horowitz, A., Nilsen, T. W., Munns, T. W. & Rottman, F. M. Mapping of N6-methyladenosine residues in bovine prolactin mRNA. Proc. Natl Acad. Sci. USA 81, 5667–5671 (1984). This paper uses an antibody to show the presence of m6A in mammalian mRNA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012). References 65 and 66 are two pioneering studies combining antibody-based pulldown and high-throughput sequencing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mishima, E. et al. Immuno-northern blotting: detection of RNA modifications by using antibodies against modified nucleosides. PLoS ONE 10, e0143756 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Delatte, B. et al. RNA biochemistry. Transcriptome- wide distribution and function of RNA hydroxymethylcytosine. Science 351, 282–285 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Linder, B. et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods 12, 767–772 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schwartz, S. et al. High-resolution mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell 155, 1409–1421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jacinto, F. V., Ballestar, E. & Esteller, M. Methyl-DNA immunoprecipitation (MeDIP): hunting down the DNA methylome. Biotechniques 44, 35–43 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Chen, K. et al. High-resolution N6 -methyladenosine (m6A) map using photo-crosslinking-assisted m6A sequencing. Angew. Chem. Int. Ed. 54, 1587–1590 (2015).

    Article  CAS  Google Scholar 

  73. Arluison, V., Buckle, M. & Grosjean, H. Pseudouridine synthetase Pus1 of Saccharomyces cerevisiae: kinetic characterisation, tRNA structural requirement and real-time analysis of its complex with tRNA. J. Mol. Biol. 289, 491–502 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Müller, S. et al. Target recognition, RNA methylation activity and transcriptional regulation of the Dictyostelium discoideum Dnmt2-homologue (DnmA). Nucleic Acids Res. 41, 8615–8627 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Motorin, Y., Lyko, F. & Helm, M. 5-Methylcytosine in RNA: detection, enzymatic formation and biological functions. Nucleic Acids Res. 38, 1415–1430 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Hussain, S. et al. NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep. 4, 255–261 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Metodiev, M. D. et al. NSUN4 is a dual function mitochondrial protein required for both methylation of 12S rRNA and coordination of mitoribosomal assembly. PLoS Genet. 10, e1004110 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Khoddami, V. & Cairns, B. R. Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nat. Biotechnol. 31, 458–464 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Khoddami, V. & Cairns, B. R. Transcriptome-wide target profiling of RNA cytosine methyltransferases using the mechanism-based enrichment procedure Aza-IP. Nat. Protoc. 9, 337–361 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Haag, S. et al. NSUN6 is a human RNA methyltransferase that catalyzes formation of m5C72 in specific tRNAs. RNA 21, 1532–1543 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gu, X., Liu, Y. & Santi, D. V. The mechanism of pseudouridine synthase I as deduced from its interaction with 5-fluorouracil-tRNA. Proc. Natl Acad. Sci. USA 96, 14270–14275 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Spedaliere, C. J. & Mueller, E. G. Not all pseudouridine synthases are potently inhibited by RNA containing 5-fluorouridine. RNA 10, 192–199 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cahova, H., Winz, M. L., Hofer, K., Nubel, G. & Jaschke, A. NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs. Nature 519, 374–377 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Kivioja, T. et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods 9, 72–74 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Qin, Y. et al. High-throughput sequencing of human plasma RNA by using thermostable group II intron reverse transcriptases. RNA 22, 111–128 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nottingham, R. M. et al. RNA-seq of human reference RNA samples using a thermostable group II intron reverse transcriptase. RNA 22, 597–613 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kielpinski, L. J., Boyd, M., Sandelin, A. & Vinther, J. Detection of reverse transcriptase termination sites using cDNA ligation and massive parallel sequencing. Methods Mol. Biol. 1038, 213–231 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Sooknanan, R., Pease, J. & Doyle, K. Novel methods for rRNA removal and directional, ligation-free RNA-seq library preparation. Nat. Methods 7 http://www.nature.com/app_notes/nmeth/2010/101310/full/nmeth.f.313.html (2010).

  90. Marchand, V., Blanloeil-Oillo, F., Helm, M. & Motorin, Y. Illumina-based RiboMethSeq approach for mapping of 2′-O-Me residues in RNA. Nucleic Acids Res. 44, e135 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Birkedal, U. et al. Profiling of ribose methylations in RNA by high-throughput sequencing. Angew. Chem. Int. Ed. 54, 451–455 (2015).

    CAS  Google Scholar 

  92. Taoka, M. et al. The complete chemical structure of Saccharomyces cerevisiae rRNA: partial pseudouridylation of U2345 in 25S rRNA by snoRNA snR9. Nucleic Acids Res. 44, 8951–8961 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hafner, M. et al. RNA-ligase-dependent biases in miRNA representation in deep-sequenced small RNA cDNA libraries. RNA 17, 1697–1712 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Munafo, D. B. & Robb, G. B. Optimization of enzymatic reaction conditions for generating representative pools of cDNA from small RNA. RNA 16, 2537–2552 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Raabe, C. A. et al. The rocks and shallows of deep RNA sequencing: examples in the Vibrio cholerae RNome. RNA 17, 1357–1366 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shen, Y., Zheng, K. X., Duan, D., Jiang, L. & Li, J. Label-free microRNA profiling not biased by 3′ end 2′-O-methylation. Anal. Chem. 84, 6361–6365 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Mourato, L. L., Beland, F. A. & Marques, M. M. 32P-postlabeling of N-(deoxyguanosin-8-yl)arylamine adducts: a comparative study of labeling efficiencies. Chem. Res. Toxicol. 12, 661–669 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Sun, W. J. et al. RMBase: a resource for decoding the landscape of RNA modifications from high-throughput sequencing data. Nucleic Acids Res. 44, D259–D265 (2016).

    Article  CAS  PubMed  Google Scholar 

  99. Bantscheff, M., Schirle, M., Sweetman, G., Rick, J. & Kuster, B. Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem. 389, 1017–1031 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Addepalli, B., Lesner, N. P. & Limbach, P. A. Detection of RNA nucleoside modifications with the uridine-specific ribonuclease MC1 from Momordica charantia. RNA 21, 1746–1756 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cao, X. & Limbach, P. A. Enhanced detection of post-transcriptional modifications using a mass-exclusion list strategy for RNA modification mapping by LC-MS/MS. Anal. Chem. 87, 8433–8440 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wetzel, C. & Limbach, P. A. Mass spectrometry of modified RNAs: recent developments. Analyst 141, 16–23 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Ross, R., Cao, X., Yu, N. & Limbach, P. A. Sequence mapping of transfer RNA chemical modifications by liquid chromatography tandem mass spectrometry. Methods 107, 73–78 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wetzel, C. & Limbach, P. A. The global identification of tRNA isoacceptors by targeted tandem mass spectrometry. Analyst 138, 6063–6072 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Kellner, S. et al. Absolute and relative quantification of RNA modifications via biosynthetic isotopomers. Nucleic Acids Res. 42, e142 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sakaguchi, Y., Miyauchi, K., Kang, B. I. & Suzuki, T. Nucleoside analysis by hydrophilic interaction liquid chromatography coupled with mass spectrometry. Methods Enzymol. 560, 19–28 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Fu, L. et al. Simultaneous quantification of methylated cytidine and adenosine in cellular and tissue RNA by nano-flow liquid chromatography-tandem mass spectrometry coupled with the stable isotope-dilution method. Anal. Chem. 87, 7653–7659 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cai, W. M. et al. A platform for discovery and quantification of modified ribonucleosides in RNA: application to stress-induced reprogramming of tRNA modifications. Methods Enzymol. 560, 29–71 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Basanta-Sanchez, M., Temple, S., Ansari, S. A., D'Amico, A. & Agris, P. F. Attomole quantification and global profile of RNA modifications: epitranscriptome of human neural stem cells. Nucleic Acids Res. 44, e26 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Huang, W. et al. Determination of DNA and RNA methylation in circulating tumor cells by mass spectrometry. Anal. Chem. 88, 1378–1384 (2016).

    Article  CAS  PubMed  Google Scholar 

  111. Helm, M., Florentz, C., Chomyn, A. & Attardi, G. Search for differences in post-transcriptional modification patterns of mitochondrial DNA-encoded wild-type and mutant human tRNALys and tRNALeu(UUR). Nucleic Acids Res. 27, 756–763 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Suzuki, T. & Suzuki, T. Chaplet column chromatography: isolation of a large set of individual RNAs in a single step. Methods Enzymol. 425, 231–239 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Sharma, S., Watzinger, P., Kotter, P. & Entian, K. D. Identification of a novel methyltransferase, Bmt2, responsible for the N-1-methyl-adenosine base modification of 25S rRNA in Saccharomyces cerevisiae. Nucleic Acids Res. 41, 5428–5443 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Buchhaupt, M. et al. Partial methylation at Am100 in 18S rRNA of baker's yeast reveals ribosome heterogeneity on the level of eukaryotic rRNA modification. PLoS ONE 9, e89640 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bourgeois, G. et al. Eukaryotic rRNA modification by yeast 5-methylcytosine-methyltransferases and human proliferation-associated antigen p120. PLoS ONE 10, e0133321 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kellner, S., Burhenne, J. & Helm, M. Detection of RNA modifications. RNA Biol. 7, 237–247 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Grosjean, H., Droogmans, L., Roovers, M. & Keith, G. Detection of enzymatic activity of transfer RNA modification enzymes using radiolabeled tRNA substrates. Methods Enzymol. 425, 55–101 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Keith, G. Mobilities of modified ribonucleotides on two-dimensional cellulose thin-layer chromatography. Biochimie 77, 142–144 (1995).

    Article  CAS  PubMed  Google Scholar 

  119. Stanley, J. & Vassilenko, S. A different approach to RNA sequencing. Nature 274, 87–89 (1978).

    Article  CAS  PubMed  Google Scholar 

  120. Juhling, F. et al. tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Res. 37, D159–D162 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Yu, Y. T., Shu, M. D. & Steitz, J. A. A new method for detecting sites of 2′-O-methylation in RNA molecules. RNA 3, 324–331 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhao, X. & Yu, Y. T. Detection and quantitation of RNA base modifications. RNA 10, 996–1002 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hengesbach, M., Meusburger, M., Lyko, F. & Helm, M. Use of DNAzymes for site-specific analysis of ribonucleotide modifications. RNA 14, 180–187 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pyle, A. M., Chu, V. T., Jankowsky, E. & Boudvillain, M. Using DNAzymes to cut, process, and map RNA molecules for structural studies or modification. Methods Enzymol. 317, 140–146 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Liu, N. et al. Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA 19, 1848–1856 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Liu, N. & Pan, T. Probing RNA modification status at single-nucleotide resolution in total RNA. Methods Enzymol. 560, 149–159 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Liu, N. & Pan, T. Probing N6-methyladenosine (m6A) RNA modification in total RNA with SCARLET. Methods Mol. Biol. 1358, 285–292 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Saikia, M. et al. A systematic, ligation-based approach to study RNA modifications. RNA 12, 2025–2033 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Dai, Q. et al. Identification of recognition residues for ligation-based detection and quantitation of pseudouridine and N6-methyladenosine. Nucleic Acids Res. 35, 6322–6329 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hiley, S. L. et al. Detection and discovery of RNA modifications using microarrays. Nucleic Acids Res. 33, e2 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Maden, B. E., Corbett, M. E., Heeney, P. A., Pugh, K. & Ajuh, P. M. Classical and novel approaches to the detection and localization of the numerous modified nucleotides in eukaryotic ribosomal RNA. Biochimie 77, 22–29 (1995).

    Article  CAS  PubMed  Google Scholar 

  132. Aschenbrenner, J. & Marx, A. Direct and site-specific quantification of RNA 2′-O-methylation by PCR with an engineered DNA polymerase. Nucleic Acids Res. 44, 3495–3502 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dong, Z. W. et al. RTL-P: a sensitive approach for detecting sites of 2′-O-methylation in RNA molecules. Nucleic Acids Res. 40, e157 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kellner, S., Kollar, L. B., Ochel, A., Ghate, M. & Helm, M. Structure-function relationship of substituted bromomethylcoumarins in nucleoside specificity of RNA alkylation. PLoS ONE 8, e67945 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kellner, S., Seidu-Larry, S., Burhenne, J., Motorin, Y. & Helm, M. A multifunctional bioconjugate module for versatile photoaffinity labeling and click chemistry of RNA. Nucleic Acids Res. 39, 7348–7360 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sakurai, M. et al. A biochemical landscape of A-to-I RNA editing in the human brain transcriptome. Genome Res. 24, 522–534 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Müller, M. et al. Dynamic modulation of Dnmt2-dependent tRNA methylation by the micronutrient queuine. Nucleic Acids Res. 43, 10952–10962 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Vilfan, I. D. et al. Analysis of RNA base modification and structural rearrangement by single-molecule real-time detection of reverse transcription. J. Nanobiotechnol. 11, 8 (2013).

    Article  CAS  Google Scholar 

  139. Wescoe, Z. L., Schreiber, J. & Akeson, M. Nanopores discriminate among five C5-cytosine variants in DNA. J. Am. Chem. Soc. 136, 16582–16587 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Kellner, S. et al. Profiling of RNA modifications by multiplexed stable isotope labelling. Chem. Commun. (Camb.) 50, 3516–3518 (2014).

    Article  CAS  Google Scholar 

  141. Wasserstein, R. L. & Lazar, N. A. The ASA's statement on p-values: context, process, and purpose. Am. Stat. 70, 129–133 (2016).

    Article  Google Scholar 

  142. Rieder, D., Amort, T., Kugler, E., Lusser, A. & Trajanoski, Z. meRanTK: methylated RNA analysis ToolKit. Bioinformatics 32, 782–785 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Alon, S. et al. The majority of transcripts in the squid nervous system are extensively recoded by A-to-I RNA editing. eLife 4, e05198 (2015).

    Article  CAS  PubMed Central  Google Scholar 

  144. Hauenschild, R. et al. CoverageAnalyzer (CAn): a tool for inspection of modification signatures in RNA sequencing profiles. Biomolecules 6, 42 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  145. Durairaj, A. & Limbach, P. A. Mass spectrometry of the fifth nucleoside: a review of the identification of pseudouridine in nucleic acids. Anal. Chim. Acta 623, 117–125 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Duffy, E. E. et al. Tracking distinct RNA populations using efficient and reversible covalent chemistry. Mol. Cell 59, 858–866 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ladner, J. E. & Schweizer, M. P. Effects of dilute HCl on yeast tRNAPhe and E. coli tRNA1fMet. Nucleic Acids Res. 1, 183–192 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Schleich, H. G., Wintermeyer, W. & Zachau, H. G. Replacement of wybutine by hydrazines and its effect on the active conformation of yeast tRNAPhe. Nucleic Acids Res. 5, 1701–1713 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Peattie, D. A. Direct chemical method for sequencing RNA. Proc. Natl Acad. Sci. USA 76, 1760–1764 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wintermeyer, W. & Zachau, H. G. Tertiary structure interactions of 7-methylguanosine in yeast tRNA Phe as studied by borohydride reduction. FEBS Lett. 58, 306–309 (1975).

    Article  CAS  PubMed  Google Scholar 

  151. Xing, F., Hiley, S. L., Hughes, T. R. & Phizicky, E. M. The specificities of four yeast dihydrouridine synthases for cytoplasmic tRNAs. J. Biol. Chem. 279, 17850–17860 (2004).

    Article  CAS  PubMed  Google Scholar 

  152. Plumbridge, J. A., Baumert, H. G., Ehrenberg, M. & Rigler, R. Characterisation of a new, fully active fluorescent derivative of E. coli tRNA Phe. Nucleic Acids Res. 8, 827–843 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Watson, B. S. et al. Macromolecular arrangement in the aminoacyl-tRNA.elongation factor Tu.GTP ternary complex. A fluorescence energy transfer study. Biochemistry 34, 7904–7912 (1995).

    Article  CAS  PubMed  Google Scholar 

  154. Igloi, G. L. & Kossel, H. Affinity electrophoresis for monitoring terminal phosphorylation and the presence of queuosine in RNA. Application of polyacrylamide containing a covalently bound boronicacid. Nucleic Acids Res. 13, 6881–6898 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Igloi, G. L. Interaction of tRNAs and of phosphorothioate-substituted nucleic acids with an organomercurial. Probing the chemical environment of thiolated residues by affinity electrophoresis. Biochemistry 27, 3842–3849 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by joint Agence Nationale de la Recherche and Deutsche Forschungsgemeinschaft (ANR-DFG) grants for High-throughput technology for detection of RNA modifications (HTRNAMod) (ANR-13-ISV8-0001/HE 3397/8-1) and by the DFG priority programme SPP1784.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark Helm or Yuri Motorin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Glossary

RNA modifications

Chemically altered (modified) nucleotides in mature RNA chain.

Nucleotides

The smallest structural units of a nucleic acid, composed of a nucleobase connected to a ribose (or deoxyribose) via a glycosidic bond, and a phosphate esterified to a hydroxyl group of the sugar moiety. The combination of only nucleobase and sugar is referred to as a nucleoside.

Reverse transcription

The synthesis of single-stranded DNA (known as complementary DNA (cDNA)) by reverse transcriptase (an RNA-dependent DNA polymerase) using single-stranded RNA as a template.

RT signature

A specific pattern composed of misincorporation in cDNA and reverse transcription arrest of primer extension, induced by modified residues in an RNA chain.

Haptens

Small, otherwise immunosilent molecules that elicit an immune response only when exposed to the immune system in the form of a covalent conjugate to a large carrier such as a protein.

Pulldown

A technique for selective isolation of RNA (or protein) species from a complex biological sample. It generally relies on affinity capture with antibodies or another high-affinity interaction.

Click chemistry

A class of biocompatible (bio-orthogonal) reactions, generally involving azide and alkyne moieties.

Barcodes

Short specific sequences (often six to eight nucleotides) that are incorporated into sequencing adaptors and ligated to samples. When barcode sequences are shared within a sample but differ between samples, they allow unambiguous retrospective assignment of samples run in the same sequencing lane. When barcodes are degenerate and highly variable within a sample, they are known as unique molecular identifiers (UMIs) and are used to identify redundant, PCR-amplified reads that originate from the same reverse transcription event. Adaptors may combinatorially contain both sample-specific barcodes and UMIs.

CircLigation

Circularization of single-stranded cDNA templates having a 5′ phosphate and a 3′ hydroxyl group with CircLigase.

Receiver operating characteristics curve

(ROC curve). A graphical plot illustrating the performance of a binary classifier system as a function of varied thresholds for true positives and false positives. Plotting the true-positive rate (TPR) against the false-positive rate (FPR) at various threshold settings leads to the ROC curve, in which the area under the curve (AUC) is a measure of the performance. The true-positive rate is also known as sensitivity, the FPR can be calculated as 1 – specificity.

Lipophilicity

'Fat-loving' character of a compound, reflected in its ability to dissolve in nonpolar solvents.

DNAzymes

Artificially generated DNA sequences that contain catalytic activity, for example, RNase activity.

Thin-layer chromatography

(TLC). A technique for separation carried out in a thin layer of adsorbent material, also known as a stationary phase. TLC can be one-dimensional (1D-TLC) if it involves one type of separation or two-dimensional (2D-TLC) if it involves separation in one dimension using one solvent, followed by separation in a second dimension using a second solvent that separates on the basis of distinct physicochemical properties.

Splinted ligation

A technique to biochemically join nucleic acid fragments by enzymatic ligation. Both fragments are brought in spatial proximity by hybridization to a so-called splint DNA, which is an oligodeoxynucleotide that is essentially a cDNA of the target RNA molecule.

Nanopore technology

Technology that funnels molecules, including nucleic acids, through nanosized pores (typically protein-based pores), thereby opening the possibility of determining their sequence (and potentially also a subset of their covalent modifications).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helm, M., Motorin, Y. Detecting RNA modifications in the epitranscriptome: predict and validate. Nat Rev Genet 18, 275–291 (2017). https://doi.org/10.1038/nrg.2016.169

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg.2016.169

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing