
Over the past decade, genome-wide association  studies 
(GWAS) have yielded remarkable advances in the under-
standing of complex traits and have identified hundreds 
of genetic risk variants in humans (for examples, see 
REFS 1–3). GWAS analyse hundreds of thousands to 
millions of common genetic variants, usually single- 
nucleotide polymorphisms (SNPs), to test for an associ-
ation between each variant and a phenotype of interest 
(see REF. 4). GWAS have confirmed the  heritability of 
many human traits5, clarified their underlying genetic 
architecture6, and have identified novel biological mech-
anisms and drug targets7. Of recent interest to infectious 
disease researchers are microbial GWAS, which identify 
risk variants on the genomes of microorganisms, such as 
bacteria, viruses and protozoa. With increasingly cheap 
and high-throughput sequencing technologies, micro-
organism whole- genome sequences (WGS) are now 
being generated on an unprecedented scale that rivals 
human data. Microbial GWAS provide a new opportu-
nity to develop insights into the biological mechanisms 
that underlie clinical outcomes, such as drug resist-
ance and pathogenesis. As in human GWAS, insights 
from microbial GWAS may lead to the identification 
of molecular targets for drug and vaccine development. 
Furthermore, identifying genetic variants through 
microbial GWAS will enable researchers to track the 
evolution and spread of pathogenic strains through 
popu lations and to synthesize microorganisms in vitro 
that have the desired clinical phenotypes.

Human GWAS provide an optimistic outlook for 
microbial GWAS. However, there are important differ-
ences between microbial and human genomic  studies 
that could hinder the success of microbial GWAS or 
require methodological adaptations. In this Review, we 
first outline specific features of GWAS methods and 

consider their application to microorganisms. Second, 
we summarize the microbial GWAS that have been car-
ried out to date, outlining their key findings, methods 
and challenges. Although these studies have mainly 
focused on pathogenic viruses, bacteria and protozoa, 
and thus are the dominate focus of this Review, it is 
important to note that the same methods can also be 
applied to non-pathogenic microorganisms. Finally, 
we discuss the lessons that have been learned from 
human GWAS and anticipate the future of microbial 
GWAS, particularly the opportunities provided by the 
ability to collect GWAS data from both the host and 
microorganisms.

Data and methodology of GWAS
GWAS grew from the common disease common vari-
ant (CDCV) hypothesis8, which postulates that many 
high-frequency but low-effect variants contribute to 
disease risk. This hypothesis explained how diseases 
can avoid selection, manifest in complex inheritance 
patterns, and be genetically and phenotypically hetero-
geneous. GWAS aim to identify the common variants 
that underpin the heritability observed for many pheno-
types9 (BOX 1). These common variants are usually in the 
form of bi-allelic SNPs, where two nucleotides (A, C, G 
or T) exist at a locus with a frequency of more than 1% 
in the population. Each SNP is analysed, usually through 
linear or logistic regression, to determine whether one 
allele is significantly associated with the phenotype. 
Effects are reported as either beta for quantitative traits 
or odds ratio for case–control studies. Typically, only the 
main effects of individual SNPs are calculated, as methods 
for the detection of epistatic interactions between SNPs 
and SNP–environment interactions are challenging 
owing to the additional burden of multiple testing10,11. 
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Genome-wide association 
studies
(GWAS). A hypothesis-free 
method that tests hundreds of 
thousands of variants across 
the genome to identify alleles 
that are associated with a 
phenotype.

Single-nucleotide 
polymorphisms
(SNPs). A base position 
where two alleles exist 
with a frequency of >1% 
in the population.

Heritability
The proportion of phenotypic 
variance that is due to 
inherited genetic variation.
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Abstract | The reduced costs of sequencing have led to whole-genome sequences for a large 
number of microorganisms, enabling the application of microbial genome-wide association 
studies (GWAS). Given the successes of human GWAS in understanding disease aetiology and 
identifying potential drug targets, microbial GWAS are likely to further advance our understanding 
of infectious diseases. These advances include insights into pressing global health problems, such 
as antibiotic resistance and disease transmission. In this Review, we outline the methodologies of 
GWAS, the current state of the field of microbial GWAS, and how lessons from human GWAS can 
direct the future of the field.

R E V I E W S

NATURE REVIEWS | GENETICS  VOLUME 18 | JANUARY 2017 | 41

©
 
2016

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.

mailto:rpower@africacentre.ac.za
http://dx.doi.org/10.1038/nrg.2016.132


Beta
The standardized regression 
coefficient, derived from linear 
regressions in genome-wide 
association studies of 
continuous traits. It is reported 
as an estimate of the effect 
size of a single-nucleotide 
polymorphism (SNP), and 
reflects the change in 
phenotype expected from 
carrying a copy of the 
reference allele of the SNP.

Odds ratio
(OR). The typical means of 
reporting the effect size of a 
single-nucleotide polymorphism 
in a case–control (or other 
binary phenotype) 
genome-wide association study. 
It is derived from a logistic 
regression, and represents the 
odds of the phenotype when 
carrying the reference allele, 
compared with the odds of the 
phenotype in the absence of 
the reference allele.

Main effects
The effects of a variant on the 
phenotype without accounting 
for any possible interactions 
with other variants or 
environmental factors.

The power of the human GWAS approach came from 
genotyping chips that enable the rapid calling of hun-
dreds of thousands of SNPs from across an individual’s 
genome. Owing to the co-inheritance of segments of 
the genome over generations, correlations (known as 
linkage disequilibrium (LD)) exist between genetic vari-
ants that are in close proximity. LD allows genotyping 
chips to ‘tag’ local genetic variation by including a single 
proximal SNP, and to impute additional SNPs that were 
not directly genotyped based on known correlations12.

There are several differences between human GWAS 
and microbial GWAS (TABLE 1), one of the most important 
of which is the source of the genomic data. Unlike human 
GWAS, for which the data come from SNP genotyping 
chips, almost all genomic data for microorganisms come 
from sequencing. This affects several aspects of GWAS, 
particularly SNP calling, as SNPs that are detected in 
microbial sequencing data will not only be bi-allelic, but 
also tri-allelic and quad-allelic. This complicates variant 
calling, data storage and analysis. Matching loci to a refer-
ence genome is also of increased importance in microbial 
GWAS, to ensure that SNPs are called at the same loca-
tion for each sample and for comparison across studies. 
Sequencing also affects the quality control steps that must 
be taken to filter SNPs and individual samples. Owing to 
the large number of SNPs compared with the number of 
samples in a study, quality control is carried out to prefer-
entially exclude low-quality SNPs. Standard quality con-
trol in human GWAS removes the SNPs with low minor 
allele frequency (with a typical cut-off ranging from <1% 
to 5%), high missingness (>1–5%), and the SNPs that 
are out of Hardy–Weinberg equilibrium (P < E-5 or -6). 

Quality control on individual samples in a human study 
also removes samples with a high missingness (>1–5%) 
or that are outliers in genome-wide homozygosity. With 
the exception of Hardy–Weinberg equilibrium, these 
same quality control metrics will remain important for 
microbial GWAS. However, quality control thresholds 
need to be established for additional metrics that cap-
ture the quality of sequencing, such as sequencing depth 
and Phred scores.

Adapting GWAS to microbial variants
As mentioned above, human GWAS typically focus on 
the effects of individual SNPs. However, focusing 
on the effects of SNPs alone will not always be possible 
in microbial GWAS. For example, in bacteria, recom-
bination can introduce novel genes. This means that 
the causative genetic difference may be the presence 
or absence of an entire gene or set of genes. Microbial 
GWAS need to test this variation in gene presence along-
side SNPs. In this case, lessons may come from the ana-
lysis of copy number variants (CNVs) in human GWAS. 
CNVs are large duplications or deletions of sections of 
the genome. CNV analyses test for associations between 
a phenotype and both specific CNVs and — owing to 
the rarity of specific CNVs — an individual’s CNV bur-
den. An individual’s CNV burden is the proportion of 
their entire genome, or a region of it, that is covered by 
CNVs13. Similarly, analyses of human sequence data 
often test for associations with the burden of rare vari-
ants14. The contribution of variants to that burden can 
be weighted by their predicted functional impact. Using 
quantitative burdens that combine the effects of multiple 
genetic variants into a single variable might provide stat-
istical methods for analysing gene presence or absence 
and rare variants in microbial GWAS.

Another approach to handling gene presence in 
microbial GWAS is defining and analysing k-mers15. 
The benefit of k-mers is that they simultaneously cap-
ture common variation and gene presence. Analysis of 
k-mers may also be useful owing to the larger propor-
tion of coding sequence that is found in many micro-
organisms compared with humans, where only a small 
proportion of DNA is exonic. This is because k-mers 
can capture multiple allele differences that code for dif-
ferent amino acids, and thus reflect changes closer to 
the biological mechanism that underlies the  phenotype 
of interest.

It is worth noting that most human GWAS have 
focused on the additive effects of variants. This is where 
each additional copy of an allele carried by a diploid 
organism increases the likelihood of a phenotype in a 
linear manner. However, owing to within-host evolution 
and the possibility of superinfection, some microorgan-
isms will exhibit within-host genetic diversity. Within-
host diversity will lead to non-discrete SNP calling, 
where the frequency of an allele reflects its frequency 
on microbial sequences within the host, rather than the 
presence or absence of an allele. Although testing for a 
linear association between allele frequency and pheno-
type makes pragmatic sense, the possibility of non-
linear effects also exists. Further, within-host diversity 

Box 1 | Heritability

The goal of genome-wide association studies (GWAS) is to identify the variants that 
determine heritable phenotypes. Heritability is the proportion of variation in the 
phenotype that is attributable to inherited genetic similarity. Knowing the heritability 
of a phenotype provides practical advantages to microbial GWAS. It provides an upper 
limit to the extent to which the phenotype can be predicted by identified variants. For 
some phenotypes the heritability may be obvious, such as antibiotic resistance being 
the result of drug resistance mutations59. For other phenotypes, such as HIV set point 
viral load, there has been debate regarding the extent to which viral genetic variants 
have a role60. Microbial heritability can be established in two ways. First, by looking at 
the correlation in phenotype across chains of transmissions. This determines the extent 
to which the same microbial variants lead to the same phenotypes across individuals. 
Second, by estimating the extent to which phylogenetic relatedness predicts similarity 
in phenotype. This determines the extent to which genetically similar microorganisms 
are phenotypically similar.

However, heritability estimates come with several caveats. First, there is a discrepancy 
between what is ‘genetic’ and what is heritable. For example, a de novo genetic 
mutation would not be captured within heritability estimates and nor would two 
identical changes on an amino acid level that differed on a genetic level. Second, 
microbial heritability, host heritability and the environment explain the total variation 
in phenotype in a population. As a result, microbial heritability is relative to the amount 
of environmental and host variation. As the host and environment become more 
homogeneous the microbial heritability increases, and vice versa. This means the 
heritability of a phenotype can change, or remain the same, independently of whether 
the mean value of the phenotype changes over time. Finally, studies often estimate only 
additive genetic effects (known as narrow sense heritability), assuming no interaction 
between genes either at a single locus (dominance) or between loci (epistasis). 
However, uncovering epistatic interactions will be key to microbial GWAS in order to 
disentangle the effects of microbial variants from host background.
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Epistatic interactions
Interactions between variants 
at different locations in the 
genome.

Power
The probability that an analysis 
will reject the null hypothesis 
when the alternative 
hypothesis is true. It is 
influenced by numerous 
factors, such as the effect size 
and sample size.

Linkage disequilibrium
(LD). Correlations between 
variants due to co-inheritance. 
LD is usually higher between 
variants that are closer 
together, and is broken down 
by recombination.

Phred scores
A measure of the quality of 
sequencing at a given locus, 
specifically the confidence 
in the calling of alleles at 
that locus.

K-mers
A sequence of bases of length k 
that, in microbial genome-wide 
association studies, can be 
used as the genetic variant 
tested for association with the 
phenotype.

results in alleles from different lineages having unique 
LD patterns within the same host. This will be relevant 
to the analysis of epistatic interactions, as alleles within 
the same host may have different genetic backgrounds.

Finally, microbial GWAS are also likely to observe 
lineage effects. In this case, entire lineages, such as viral 
subtypes, might differ in phenotype. Thus, the lineage 
or subtype of the microorganism might be the genetic 
unit of interest, either alone or in addition to the 
effects of individual SNPs or k-mers. Disentangling 
the effects of a single variant from the effects that are 
related to lineage is potentially challenging, but has been 
shown to increase the power of microbial GWAS when 
 mplemented successfully16.

Confounding factors in microbial GWAS
The main challenge that is associated with GWAS is the 
risk of identifying seemingly causal variants that are 
in fact false positives17. This is due to two main causes: 
popu lation structure and multiple testing (see below). 
The use of samples from within a genetically diverse 
population can lead to subtle confounding from popu-
lation structure, for example, because of an excess of 
cases from one ethnic group. In such instances, GWAS 
would identify predictive SNPs that are only informative 
of ancestry, rather than the biology of the disease. To 
avoid this problem, human GWAS often restrict recruit-
ment to ethnically homogeneous groups. Even within 
relatively homogeneous populations, some population 
structure will exist. These subtler influences of popu-
lation stratification are corrected through principal 

component analysis. This generates covariates that 
capture SNP correlations across the genome, and can 
be carried out using software such as EIGENSTRAT18. 
Principal components can capture subtle ancestry dif-
ferences with high accuracy and can identify samples 
that represent population outliers19. Although princi-
pal components will be key to removing confounding 
that is due to population structure in microbial GWAS, 
two additional confounders exist that may require 
 additional methods.

The first of these is homologous recombination, 
which occurs in bacteria and viruses through the 
replacement of short sequence blocks, rather than 
through multiple crossovers along the whole chromo-
some. This means that long-range LD is broken down 
differently in microbial genomes, leaving variants in 
long-range LD with each other even when short-range 
LD within a region is reduced20. This long-range LD 
could make the identification of the causal variant 
problematic21. Methods that are designed for analysing 
historically ethnically mixed, or ‘admixed’, human popu-
lations may be helpful in this case, because they make use 
of  recombination patterns to identify associated loci22.

The second source of confounding is that microbial 
population structure can represent selection on the 
phenotype of interest, for example, antibiotic resistance. 
Given the differences in frequency of recombination and 
selection across microorganisms, the consequent popu-
lation structures are likely to range from purely clonal 
to nearly panmictic. In addition, the rapid spread of suc-
cessful lineages may temporarily reduce their recombi-
nation with the rest of the species. In microorganisms in 
which there has been strong selection, it may be appro-
priate to use repeated samples from within a single host 
over time, such as comparing pretreatment and post- 
treatment sequences. However, this approach will not 
work for longi tudinal phenotypes, such as the time taken 
to develop disease symptoms, or in microorganisms 
with low rates of evolution. In these studies, methods 
that use mixed models to account for relatedness15 or 
lin eage effects16, or to identify signals of selection across 
the genome based on phylogenetic structure23, may have 
more traction than typical GWAS regression methods.

Multiple testing and replication
Aside from confounding, the other major source of 
false positives is the multiple testing that is intrinsic 
to GWAS. The standard cut-off for an association to 
be considered statistically significant is P = 0.05, which 
represents a 5% probability of random occurrence. 
However, testing hundreds of thousands of SNPs leads 
to tens of thousands of SNPs being significant at P < 0.05 
by chance alone. To account for the number of tests, a 
SNP must pass the genome-wide significance cut-off in 
order to be considered significant (BOX 2). This is usually 
P < 5E-8 in humans24, which is approximately equal to 
the Bonferroni correction (a multiple testing correc-
tion) for the number of SNPs analysed in early GWAS. 
However, it continues to be used in more densely geno-
typed and imputed studies. Additional SNPs included 
in GWAS through deeper genotyping or imputation 

Table 1 | Conceptual and analytical steps of human GWAS and microbial GWAS

Human Microorganism

Estimation of 
heritability

• Twin studies
• Adoption studies
• GREML analyses

• Within transmission pair 
correlations

• Phylogenetic studies

Main source of 
GWAS data

SNP genotyping chips WGS

Common study 
designs

• Case–control
• Quantitative traits

• Binary and quantitative traits
• Longitudinal within individual 

sampling

Quality control 
steps

• Individual sample 
missingness

• SNP missingness
• Hardy–Weinberg equilibrium
• Minor allele frequency

• Sequencing depth
• Poor assemblage
• Minor allele frequency

Reference 
genomes for 
imputation and LD

• International HapMap 
Project

• 1000 Genomes Project

• RefSeq genomes
• LD can be determined directly 

from sample

Confounding • Ethnic ancestry
• Population stratification
• Cryptic relatedness

• Subtypes or lineages
• Selective sweeps
• Recombination and horizontal 

gene transfer
• Clonal expansion

Significance 
threshold

P = 5E-8 • Differs by species
• Currently no field-wide definition

Replication Required for publishing novel 
associations

• Not yet universally carried out
• Possibility of in vitro validation

GWAS, genome-wide association studies; LD, linkage disequilibrium; SNP, single-nucleotide 
polymorphism; WGS, whole-genome sequencing.
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Superinfection
When an individual is infected 
with multiple strains of the 
same microorganism.

False positives
Variants, or any other 
predictors, that are identified 
as significantly associated with 
a phenotype but that are not 
causal. In the case of genome- 
wide association studies, this is 
usually due to confounding 
from population structure or 
insufficient quality control.

Clonal
The case in which reproduction 
produces genetically identical 
organisms, and so does not 
introduce novel variants or 
recombination.

Panmictic
A population in which clonal 
structure has been lost due to 
frequent recombination.

are in high LD with those already known, and so the 
correlations between SNPs reduces the number of inde-
pendent tests carried out. Thus, understanding the level 
of LD between SNPs is important for calculating the 
correct threshold for genome-wide significance. Even 
with strict cut-offs for genome-wide significance, deter-
mining whether an association represents a false positive 
remains problematic.

As a result, replication in an independent cohort 
is the gold standard for reporting an association in 
GWAS25. This is both to avoid false positives and to 
accurately estimate the effect size of the SNP. Normally, 
GWAS have reduced power to detect variants of small 
effect and there is consequently a bias towards identi-
fying novel SNPs that have an over-estimated effect size 
(sometimes called the ‘winner’s curse’)26. As no bias for 
discovery exists during replication, the effect size in the 
replication cohort will more accurately reflect the true 
effect. Generally, replication does not require the associ-
ation of a SNP to reach genome-wide significance in the 
replication cohort, but to pass a P value threshold based 
on the number of SNPs brought forward for replication. 
Further, meta-analysis of the P values of a SNP in both 

the discovery and the replication cohorts should sur-
pass genome-wide significance in order for a SNP to be 
 considered a true positive.

However, microbial GWAS may be less reliant on rep-
lication than human GWAS given that suspected causal 
variants can be validated in vitro. This ability to generate 
carriers of identified variants and to test their effect in 
the laboratory reduces many of the concerns of false pos-
itives that are typically associated with human GWAS. It 
also provides model organisms that can be used to gain 
a better understanding of the function of the variant. 
One important area of research is the development of 
 methods to identify and correct for epistasis. Epistasis 
can take the form of specific interactions between 
two SNPs or the effect of a SNP being conditional on 
a broader genetic background. Disentangling epistatic 
effects will be key to generating viable in vitro models 
of microbial GWAS findings and establishing causality.

Power, polygenicity and heritability
As well as providing methodological insights, the history 
of GWAS predicts a clear trajectory for how progress 
in microbial GWAS is likely to unfold. Initial human 
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Box 2 | Visualizing GWAS results

Two types of plot are used to visualize the results of genome-wide association 
studies (GWAS). The first is the Manhattan plot, which plots the P value of each 
variant against its position (see the figure). The x-axis represents the genomic 
location. The y-axis is the –log(P value). The logarithmic scale is used so that 
the most significant single-nucleotide polymorphisms (SNPs) stand out with 
higher values than the majority of non-significant SNPs. A reference line is 
used on the y-axis to reflect genome-wide significance, occasionally with a 
second line to represent a ‘suggestive significance’ threshold. Owing to the 
expectation of linkage disequilibrium (LD), a single highly significant SNP on 
its own is often interpreted as a genotyping error. Columns of significant SNPs 
in LD with the truly causal variant are seen in human studies, although this 
expectation is dependent on the LD of the organism.

The second is the quantile-quantile (QQ) plot, which compares the 
distribution of –log(P value)s observed in the study (y-axis) with the expected 
distribution under the null hypothesis (x-axis; see the figure). Departure of 
observed SNP P values from the y = x reference line may reflect systematic 
inflation in the test statistics owing to population stratification. However, 

departure from this line is also expected for a truly polygenic trait, as many 
causal SNPs may not yet have reached genome-wide significance owing to 
a lack of power. This will lead to an excess of low P values across all SNPs. As 
a result, it is the point at which the observed –log(P value)s depart the y = x 
distribution that is important. Inflated –log(P value)s for all SNPs reflects 
population stratification, whereas polygenicity should lead to inflation for 
only those SNPs with high –log(P value)s. The QQ plot is, therefore, 
a qualitative judgement rather than a quantitative one. However, a 
calculation of the lambda value (λ; also known as the genomic inflation 
factor), which is derived by dividing the median value of the observed 
chi-squared statistic by the median expected chi-squared statistic (for P = 0.5), 
gives a measure of the inflation in the sample. This should be 1 in the case of 
the null and is generally seen as inflation if above 1.05. The lambda value can 
be weighted by sample size to avoid polygenic inflation, as larger samples 
have the power to detect inflation owing to many SNPs of small effect. In this 
case,  λ1000 is used to get an inflation estimate proportional to a GWAS that 
contained only 1,000 samples.
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Genome-wide significance
The P value cut-off for 
declaring a variant significantly 
associated with a phenotype, 
accounting for the number of 
variants tested and the 
correlations between them.

Effect size
The proportion of variance in 
a phenotype predicted by a 
variant.

Polygenic methods
Statistical approaches that 
focus on the combined effects 
of many genetic variants rather 
than on the effect of any 
individual variant.

GWAS identified only a small number of SNPs, each 
explaining only a tiny fraction of variation. The dispar-
ity between expected heritability from twin studies and 
the heritability explained by genome-wide significant 
associations became known as the ‘missing heritability’ 
(REF. 27). Missing heritability initially cast doubt on the 
GWAS approach. However, as the first waves of studies 
were pooled into meta-analyses28, and the second waves 
of GWAS were analysed, more and more associations 
were reported, increasing the amount of heritability 
explained29. It became clear that the stringent cut-off 
for statistical significance resulted in a need for larger 
sample sizes than had been expected in order to achieve 
sufficient power to identify SNPs. Once sufficient power 
was reached, the relationship between the sample size 
and number of SNPs identified became relatively linear. 
However, despite this, there was often an inverse rela-
tionship between the frequency of identi fied SNPs and 
their effect size, meaning that each SNP explained only 
a small fraction of variation29.

The problem of missing heritability persisted, leading 
to a move away from single SNP analyses and towards 
polygenic methods30 (FIG. 1). One of the first polygenic 
methods was the use of polygenic risk scores (PRSs)31. 
PRSs are based on the assumption that many SNPs with 
small effect sizes will fail the stringent cut-off that is 
used for genome-wide significance; however, together 
their cumulative effect could explain a large amount of 
the variance in risk. The construction of a PRS requires 
both a discovery and a replication cohort. In the discov-
ery cohort, a GWAS is carried out, defining the ‘risk’ 
allele and effect size of each SNP regardless of whether 
the P value is significant. In the replication cohort, the 
number of ‘risk’ alleles that an individual sample car-
ries is summed into a score (the PRS), with each allele 
weighted by its effect size. The variation in case–control 
status that is predicted by the PRS is then calculated. 
Several PRSs are often defined using different P value 
thresholds for the inclusion of SNPs from the discov-
ery GWAS, for example, four scores using SNPs with 
P < 0.001, P < 0.05, P < 0.2 and P < 0.5. As more SNPs are 
included, there is a greater likelihood that all SNPs of 
true effect will be included. However, including more 
SNPs also increases the number of SNPs with no true 
effect, and thus adds noise, which causes the amount 
of variance that is explained to plateau. PRSs ultimately 
provide a more powerful predictive tool than the results 
of single SNPs. As such, PRSs may be key to rapidly 
translating the results from microbial GWAS to predic-
tion in the clinic, even before the roles of individual risk 
variants are understood.

An alternative polygenic method is genomic- 
relatedness-matrix residual maximum likelihood ana-
lysis (GREML), which was often referred to in the early 
literature by the software name GCTA5. GREML esti-
mates the proportion of variance that is captured by all 
SNPs and calculates the heritability of the phenotype. 
This is done by calculating how genetically similar each 
possible combination of two samples is (that is, their 
genetic relatedness). Relatedness refers to how much of 
the genome is shared between two samples (that is, they 

have the same genotypes). The heritability is then calcu-
lated as the proportion of phenotypic similarity between 
samples that can be explained by their relatedness. It 
is important to note that GREML does not estimate 
the true heritability of a phenotype, it estimates only the 
herit ability that is captured by the included SNPs. Unlike 
PRS, GREML does not provide a means of predicting 
risk. However, it does act as a benchmark for the maxi-
mum amount of risk that is detectable in an infinitely 
powered GWAS. For example, in humans, GREML was 
used to estimate that common SNPs account for between 
one-third and one-half of the heritability estimated from 
twin studies30 (FIG. 1). Although PRS and GREML have 
not been widely used in microorganisms, they will be 
key to understanding whether current microbial GWAS 
are underpowered and whether novel variants will be 
identified with larger sample sizes.

A crucial aspect of polygenic methods is their ability to 
identify what drives the heritability of a phenotype. First, 
polygenic methods can be used to test whether heritability 
is disproportionately driven by specific genomic regions, 
by rare or common variants, or by variants within par-
ticular biological pathways. Second, polygenic  methods 
can measure the heritability of specific subtypes of the 
phenotype. Identifying phenotypic subtypes with higher 
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Figure 1 | Phenotype prediction as GWAS sample sizes 
increase. Variance in a phenotype (schizophrenia3) 
explained in successive waves of genome-wide association 
studies (GWAS) by the genome-wide significant (GW-Sig) single- 
nucleotide polymorphisms (SNPs) and polygenic risk scores 
(PRSs) from all SNPs with P < 0.05. As can be seen, the 
number of SNPs identified exponentially increases with 
sample size, and at every stage PRSs provide substantially 
better prediction than the use of significant SNPs alone. 
However, the challenge of ‘missing heritability’ continues 
even within fairly large GWAS, with the variance explained 
still below the heritability estimates derived from GREML 
and twin studies. The number of cases shown reflects the 
discovery sample size for the PRS analysis carried out. 
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Pleiotropic
Pleiotropic variants are those 
that have an effect on multiple 
distinct phenotypes.

heritability identifies individuals for whom the micro-
bial genome is most relevant. Furthermore, polygenic 
 methods are able to identify a genetic correlation between 
two phenotypes, even when data are available on only one 
phenotype in each sample32. Thus, they can determine 
whether two distinct phenotypes have over lapping aetiol-
ogies, or whether two subtypes of a phenotype are genet-
ically distinct. Polygenic analyses have supported the 
generalist genes hypothesis, according to which genetic 
effects are highly pleiotropic33. Overall, human GWAS pre-
dict that, for traits under moderate selection, the genetic 
architecture will consist of many small effect and pleio-
tropic variants, which are spread fairly evenly across allele 
frequencies and genomic regions.

Progress in microbial GWAS
Given the clear trajectory of human GWAS from under-
powered studies to more advanced methods that explain 
a significant proportion of risk, it makes sense to ask 
whether microbial GWAS will advance in the same man-
ner. Despite the complexities mentioned above, a growing 
number of microbial GWAS have recently been published 
(TABLE 2). With the exception of HIV and Plasmodium 
falciparum, these publications have generally focused on 
bacteria and have almost exclusively focused on patho-
gens within human hosts. Most genomic data have come 
from WGS, although genotyping chips for P. falciparum 
have existed for several years34,35. Owing to the much 
shorter genomes of microorganisms, the number of vari-
ants analysed in microbial GWAS has been in the tens of 
thousands, which is orders of magnitude smaller than in 
human GWAS. Sample sizes have also been considerably 
smaller. The smallest microbial GWAS so far was a study 
of 75 Staphylococcus aureus strains36 and the largest was 
a study of 3,701 Streptococcus pneumoniae isolates37. The 
majority of studies have had sample sizes of less than 
500 (TABLE 2). However, this promises to change as large 
multi-country consortia, such as MalariaGEN38 and 
PANGEA_HIV39, generate WGS on a much larger scale.

Despite the current small sample sizes, microbial 
GWAS have already been successful in identifying 
causal variants. This is partly due to the studies focus-
ing on phenotypes that are under strong selection, the 
majority of which were studies on drug resistance. For 
example, microbial GWAS of Mycobacterium tubercu-
losis40, S. aureus36, S. pneumoniae37, P. falciparum41 and 
HIV have all successfully identified novel drug resistance 
variants that often explained almost all of the pheno-
typic variation. Even with phenotypes under strong 
selection, there has been evidence of high polygenicity 
within microorganisms. For example, the study of drug 
resistance in 3,701 S. pneumoniae sequences identified 
301 significant SNPs, with a median odds ratio of 11 
(REF. 37). Given the large effect sizes, it is not surpris-
ing that many of the drug resistance variants that were 
identi fied through microbial GWAS were previously 
known. Although this diminishes the novelty of the 
findings, it also strengthens confidence in the ability of 
microbial GWAS to correctly identify causal variants. 
Another phenotype under strong selection is host speci-
ficity. Microbial GWAS of host specificity have yielded 
significant results for Campylobacter jejuni42 and HIV43. 
However, within the same study of HIV host specificity, 
the authors found no associations between viral variants 
and infectiousness. The most successful study of viru-
lence was of 90 S. aureus samples44. The authors identi-
fied 121 SNPs at genome-wide significance. Functional 
follow-up of a subset of SNPs showed that four of 13 
affected toxicity in vivo, suggesting that a proportion of 
the associations identified were truly causal.

Most microbial GWAS have so far focused on the 
analysis of traits that are under strong selection, but 
these studies have shown remarkable diversity in their 
analytical approaches (FIG. 2). Two analyses of HIV 
sequences have been carried out43,45, both using the 
GWAS software PLINK46. On the basis of fixed-effect 
models, these studies suggested that the virus shows low 
levels of population stratification within a single viral 

Table 2 | Examples of microbial GWAS

Organism Genome 
size

Recombination 
rate

Within-
host 
diversity

Sample 
size

Phenotype Number of 
SNPs

Number of 
significant 
SNPs

Software Ref.

Campylobacter 
jejuni

1.6 Mb High High 192 Host preference NA 7,307 k-mers in 
seven genes

Bespoke 42

Mycobacterium 
tuberculosis

4 Mb Low Low 123 Drug resistance 24,711 50 PhyC 23

123 Drug resistance 24,711 133 PLINK 47

498 Drug resistance 11,704 12 PhyC 40

Staphylococcus 
aureus

2.9 Mb Low Low 75 Drug resistance 55,977 1 ROADTRIPS 36

90 Virulence 3,060 121 PLINK 44

Streptococcus 
pneumoniae

2.2 Mb High Low 3,701 Drug resistance 392,524 301 PLINK 37

Plasmodium 
falciparum

22.9 Mb High Low 1,063 Drug resistance 18,322 9 FaST-LMM 41

HIV 9,000 bp High High 343 Drug resistance 5,100 8 PLINK 45

1,071 Viral load 3,125 0 PLINK 43

GWAS, genome-wide association studies; NA, not applicable; SNP, single-nucleotide polymorphism.
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Figure 2 | Potential models for microbial GWAS. Examples of three microbial genome-wide association study (GWAS) 
approaches to date40,41,43. a | The organism analysed in each study: HIV, a retrovirus that causes AIDS; Plasmodium 
falciparum, a parasitic protozoa that is the cause of malaria; and Mycobacterium tuberculosis, a bacterium that causes 
tuberculosis. b | The form of geographic, population or phylogenetic confounding observed in each organism, which 
hinders the ability to differentiate single-nucleotide polymorphisms (SNPs) of true effect from systematic false positives. 
For HIV, only minimal population structure was observed, whereas for P. falciparum greater population differences existed. 
M. tuberculosis showed the highest level of confounding, with the different phenotypes (represented by the red and white 
nodes of the phylogenetic tree) mostly clustering within the same lineages. c | Given the different population and 
phylogenetic structures of the three organisms, three different approaches were used to carry out the microbial GWAS. 
The lack of confounding in HIV allowed for the application of typical human GWAS fixed-effect models. The more 
substantial population structure in P. falciparum was accounted for by including phylogenetic relatedness as a random 
effect in a mixed model. Finally, the clear phylogenetic structure of M. tuberculosis was used to carry out genome-wide 
analysis of convergent selection. d | How the results of each microbial GWAS were taken forwards to better understand 
the microorganism. For HIV, the viral genomic data were combined with human GWAS data to carry out a 
genome-to-genome analysis of HIV viral load. For P. falciparum, the information on drug resistance variants was combined 
with geographic data to highlight the spread of resistance variants through Southeast Asia. Finally, for M. tuberculosis, the 
identified drug resistance variant (Δald) was functionally validated by showing that carriers had improved growth 
comparable to other resistant strains (Bacillus Calmette–Guérin (BCG)) and sensitivity was partially resotored by 
complementation (Δald-comp), to levels similar to those of the wild type (WT). BD, Bangladesh; MM, Myanmar; TH, 
Thailand; LA, Laos; VN, Vietnam. The left part of panel d is adapted from REF. 43. The middle part of panel d is from REF. 41, 
Nature Publishing Group. The right part of panel d is from REF. 40, Nature Publishing Group.
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subtype. However, analyses of M. tuberculosis high-
lighted that although PLINK could identify many drug 
resistance variants, it also led to false positives owing to 
confounding from population structure47.To address this 
limitation, the authors developed the software PhyC23, a 
tool that uses phylogenetic trees to identify SNPs under 
recent convergent evolution. This approach identified 
many of the same drug resistance variants as PLINK, but 
reduced the level of confounding from population struc-
ture. Other studies have included phylogenetic  structure 
as a random effect in mixed models, using software 
such as ROADTRIPS48 and FaST-LMM49. These mixed 
 models have successfully reduced the effect of popula-
tion structure in a number of microorganisms36,41. One 
of the limitations of this software is that these programs 
are designed for human genomic data and cannot handle 
features such as within-host microbial diversity. A recent 
study developed a bespoke approach to microbial GWAS 
in the analysis of C. jejuni 42. The authors generated 
multi- allelic k-mers, rather than SNPs, and tested these 
for an association with host preference. This is the only 
study so far to combine an analysis of SNPs with gene 
presence or absence, which is a key genomic feature 
of bacteria.

Overall, it is clear that although microbial GWAS are 
yielding important insights into infectious disease, the 
field has yet to settle on a consistent analytical approach 
and current methods are not yet ideally suited to micro-
bial genomes. More refined analytical methods will 
become particularly important as the focus of microbial 
GWAS expands beyond drug resistance and towards 
phenotypes in which variants have subtler polygenic 
effects.

Remaining lessons
As microbial GWAS become more widespread, there 
are still several lessons that can be learned from human 
GWAS. Perhaps the most crucial lesson revolves around 
the generation of sufficient sample sizes to identify 
variants of small effect. This requires a collaborative 
approach. Samples must often be pooled from across the 
world in order to create well-powered discovery and rep-
lication cohorts. Of particular note is the mega- analytic 

approach that pools raw genotype data from all sites 
into a central repository, which is used for standardized 
quality control and to increase power50. There are good 
reasons for optimism as international microbial research 
consortia already exist.

One area that has not yet been explored in microbial 
GWAS is the trade-off between sample size and hetero-
geneity. As more complex phenotypes are analysed, 
hetero geneity will reduce power to detect the causal 
vari ants. With finite resources and time, there is a choice 
between focusing on collecting detailed clinical data on 
a smaller number of more homogeneous samples, and 
recruiting large numbers of samples with minimal screen-
ing. In human GWAS, both approaches have been shown 
to be effective. First, power can be improved by restrict-
ing to ‘super controls’ (REF. 51), for example, using controls 
on the opposite extreme of the phenotype of interest, or 
focusing on a subset of samples with a pheno type that 
is believed to be more homogeneous or heritable52,53. 
Second, ‘minimal phenotyping’ can be used to maximize 
sample size, such as assuming all those with records of 
treatment are ill54. Widely collected proxy pheno types, 
such as education level as a proxy for cognitive ability, 
have been successfully used to maximize  sample sizes for 
more complex traits55. Aetiologically simi lar phenotypes 
can also be jointly analysed to maximize sample size2,56. 
Overall, a sensible first step seems to be to increase sam-
ple sizes as much as possible. This can then be followed 
by secondary analyses of more homo geneous phenotypic 
subtypes in cases for which data are available.

Finally, many advances in human GWAS were made 
possible by free and open software applications (such 
as GCTA5 and PLINK46) that could handle various data 
formats and could carry out multiple analyses (TABLE 3). 
These software applications were generally very user 
friendly, with detailed documentation. Microbial GWAS 
have so far been carried out using a range of software 
with different analytical approaches (TABLE 3). Although 
GWAS software that can handle large genomic data sets 
already exists, these programs are not ideally suited to 
the non-diploid multi-allelic nature of some microbial 
genomes, and cannot carry out longitudinal within- 
individual sequence comparisons that might be desired. 

Table 3 | Features of software applications used in microbial GWAS to date

Software Analysis Population structure adjustment Ref.

PLINK Linear and logistic regression of allele count at 
SNPs

Ancestry informative principal components 
and other covariate inclusion

46

PhyC Identifies SNPs undergoing recent convergent 
evolution

Based on phylogeny, so inherent 23

ROADTRIPS Association analysis of SNP effect, allowing random 
variables to account for sample relatedness

Corrects for provided or derived 
relatedness between samples

48

FaST-LMM Association analysis of SNP effect, allowing random 
variables to account for sample relatedness

Derives relatedness matrix and corrects as 
random effect. Principal components can 
be included as covariates

49

SEER Linear and logistic regression using k-mers, 
simultaneously testing SNPs and gene presence 
or absence

Identifies relatedness from data using 
multidimensional scaling and generates 
covariates for regression

15

GWAS, genome-wide association studies; SNP, single-nucleotide polymorphism.

R E V I E W S

48 | JANUARY 2017 | VOLUME 18 www.nature.com/nrg

©
 
2016

 
Macmillan

 
Publishers

 
Limited,

 
part

 
of

 
Springer

 
Nature.

 
All

 
rights

 
reserved.



In particular, GWAS methods will need to be adapted to 
deal with within-host microbial diversity and recombi-
nation. Further, the successful polygenic  methods for 
estimating the heritability and co-heritability of pheno-
types from GWAS data have yet to be evaluated in 
microbial GWAS. As can be seen from GCTA5, a single 
piece of software with a topical application has driven a 
large number of high-profile advances in human genom-
ics. The development of free and open software applica-
tions that can accurately and conveniently analyse a wide 
range of microbial WGS data to detect single SNP and 
polygenic effects is, therefore, a top priority of the field.

Future directions: integrating the host
Arguably, the most exciting application of microbial 
GWAS is to integrate it with human genomic data. 
Human GWAS of infectious disease have been carried 
out for more than 12 pathogens (reviewed in REF. 57). 
This Review ends by highlighting the potential for com-
bining these findings with those of microbial GWAS. 
These genome-to-genome analyses can provide impor-
tant insights into whether the effects of microbial vari-
ants are universal or whether they are dependent on a 
specific host genetic background. Such statistical host–
microbial interactions would help to identify which host 
proteins the microorganism is interacting with on a 
molecular level. Further, interactions that prevent infec-
tion or disease progression would represent  potential 
drug or vaccine targets.

The authors are aware of only one comprehensive 
genome-to-genome analysis at this time. The microbial 
GWAS of HIV set point viral load, mentioned above, gen-
erated both HIV sequences and host GWAS data43. This 
study was able to identify many associations between 
viral genetic variants and those in the human genome, 
specifically within the major histocompatibility com-
plex region. In a secondary analysis, the importance of 

host–pathogen correlations and how they might lead to 
overestimates of the combined host and pathogen herit-
abilities were highlighted58. In this case, although both 
host and viral heritability of HIV set point viral load were 
observed, the two were shown to substantially overlap.

With cheaper genome-sequencing methods, the abil-
ity of groups to generate both host and microbial data 
on the same individuals will only increase. However, 
just as microbial GWAS currently lack universal ana-
lytic software, so do genome-to-genome analyses. Such 
statistical tools will be needed in order for the field to 
flourish, particularly as the scale of data will make these 
analyses computationally intensive. A simpler method 
may be to condense multiple SNPs into a single vari-
able, as seen in PRS31, and to test for interactions on a 
genome-wide level. Regardless of the method used, the 
availability of host and microorganism GWAS data pre-
sents an opportunity to increase power to identify causal 
variants. Ideally, such data will be generated within large 
longitudinal studies, for which genomic data can also be 
combined with epidemiological and clinical variables. 
Understanding the correlations between host demo-
graphy, host heritability and microorganism heritability 
will provide greater insights into the extent to which 
 microbial genomes drive clinical outcomes.

Conclusions
As this Review has discussed, there is great promise in 
the field of microbial GWAS. However, it is clear that a 
number of analytical advances will be needed to handle 
the unique features of microbial genomics. Perhaps the 
issue of greatest importance will be the development 
of software applications that can handle the combined 
analysis of host and microorganism genomic data. 
With these tools, we will be better able to predict indi-
vidual patient outcomes, track the evolution of global 
 epidemics, and identify new drug and vaccine targets.
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