Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Central hypothyroidism — a neglected thyroid disorder

Key Points

  • Patients with signs and symptoms of hypothyroidism, recurrent headaches or visual field defects, as well as concomitant or pre-existing hypothalamic or pituitary disorders, should be investigated for central hypothyroidism

  • The presence of low levels of free T4 with an inappropriately normal to low TSH concentration is the hallmark of central hypothyroidism, along with reduced bioactivity of circulating TSH and variable TSH response to TSH-releasing hormone (TRH) tests

  • Patients who are younger than 14 years of age with central hypothyroidism accompanied by other pituitary hormone deficiencies might have a congenital form of the disease, and clinicians should screen patients for gene mutations of several pituitary transcription factors

  • The diagnosis of acquired central hypothyroidism needs the careful investigation of a patient's medical history, including drug treatment, recombinant human growth hormone replacement therapy, traumatic brain injury and concomitant autoimmune diseases

  • Levothyroxine therapy should only be initiated following the exclusion of adrenal insufficiency; levothyroxine replacement therapy should begin with low doses that are then slowly increased (every 3–6 weeks)

  • Levels of free T4 in the serum of patients should be maintained in the middle to upper part of the normal range, and blood should be drawn before levothyroxine administration. If serum levels of TSH are higher than 0.5 mU/l, then the patient is probably being undertreated

Abstract

Central hypothyroidism is a rare and heterogeneous disorder that is characterized by a defect in thyroid hormone secretion in an otherwise normal thyroid gland due to insufficient stimulation by TSH. The disease results from the abnormal function of the pituitary gland, the hypothalamus, or both. Moreover, central hypothyroidism can be isolated or combined with other pituitary hormone deficiencies, which are mostly acquired and are rarely congenital. The clinical manifestations of central hypothyroidism are usually milder than those observed in primary hypothyroidism. Obtaining a positive diagnosis for central hypothyroidism can be difficult from both a clinical and a biochemical perspective. The diagnosis of central hypothyroidism is based on low circulating levels of free T4 in the presence of low to normal TSH concentrations. The correct diagnosis of both acquired (also termed sporadic) and congenital (also termed genetic) central hypothyroidism can be hindered by methodological interference in free T4 or TSH measurements; routine utilization of total T4 or T3 measurements; concurrent systemic illness that is characterized by low levels of free T4 and normal TSH concentrations; the use of the sole TSH-reflex strategy, which is the measurement of the sole level of TSH, without free T4, if levels of TSH are in the normal range; and the diagnosis of congenital hypothyroidism based on TSH analysis without the concomitant measurement of serum levels of T4. In this Review, we discuss current knowledge of the causes of central hypothyroidism, emphasizing possible pitfalls in the diagnosis and treatment of this disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measurement of the ratio between TSH bioactivity and TSH immunoreactivity (TSH B/I) in sera from patients with central hypothyroidism of hypothalamic origin.
Figure 2: Serum levels of TSH and free T4 in a large series of patients with central hypothyroidism investigated in our institution.
Figure 3: Proposed algorithm for the diagnosis of the different forms of central hypothyroidism.
Figure 4: TRH stimulation test in controls and in patients with hypothalamic hypothyroidism.

Similar content being viewed by others

References

  1. Persani, L. & Beck-Peccoz, P. in Werner and Ingbar's the Thyroid: a Fundamental and Clinical Text 10th edn (eds Braverman, L. E. & Cooper, D) 560–568 (Lippincott Williams and Wilkins, 2012).

    Google Scholar 

  2. Yamada, M. & Mori, M. Mechanisms related to the pathophysiology and management of central hypothyroidism. Nat. Clin. Pract. Endocrinol. Metab. 4, 683–694 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Lania, A., Persani, L. & Beck-Peccoz, P. Central hypothyroidism. Pituitary 11, 181–186 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Alafif, M. M., Aljaid, S. S. & Al-Agha, A. E. Central diabetes insipidus, central hypothyroidism, renal tubular acidosis and dandy-walker syndrome: new associations. Ann. Med. Health Sci. Res. 5, 145–147 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Zwaveling-Soonawala, N., van Trotsenburg, A. S. & Verkerk, P. H. The severity of congenital hypothyroidism of central origin should not be underestimated. J. Clin. Endocrinol. Metab. 100, E297–E300 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Grunenwald, S. & Caron, P. Central hypothyroidism in adults: better understanding for better care. Pituitary 18, 169–175 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. García, M., Fernández, A. & Moreno, J. C. Central hypothyroidism in children. Endocr. Dev. 26, 79–107 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Mariotti, S. & Beck-Peccoz, P. Physiology of the hypothalamic-pituitary-thyroid axis. Endotext https://www.ncbi.nlm.nih.gov/books/NBK278958/ (2016).

  9. Gurnell, M., Halsall, D. J. & Chatterjee, V. K. What should be done when thyroid function tests do not make sense? Clin. Endocrinol. (Oxf.) 74, 673–678 (2011).

    Article  CAS  Google Scholar 

  10. Demers, L. M. & Spencer, C. A. Laboratory medicine practice guidelines: laboratory support for the diagnosis and monitoring of thyroid disease. Clin. Endocrinol. (Oxf.) 58, 138–140 (2003).

    Article  CAS  Google Scholar 

  11. Schoenmakers, N. et al. A novel albumin gene mutation (R221I) in familial dysalbuminemic hyperthyroxinemia. J. Clin. Endocrinol. Metab. 99, E1381–E1386 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Koulouri, O., Moran, C., Halsall, D., Chatterjee, K. & Gurnell, M. Pitfalls in the measurement and interpretation of thyroid function tests. Best Pract. Res. Clin. Endocrinol. Metab. 27, 745–762 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Price, A. & Weetman, A. P. Screening for central hypothyroidism is unjustified. BMJ 322, 798 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Srivastava, R. et al. Reflex and reflective testing: efficiency and effectiveness of adding on laboratory tests. Ann. Clin. Biochem. 47, 223–227 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Wardle, C. A., Fraser, W. D. & Squire, C. R. Pitfalls in the use of thyrotropin concentration as a first-line thyroid-function test. Lancet 357, 1013–1014 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Kempers, M. J. et al. Neonatal screening for congenital hypothyroidism based on thyroxine, thyrotropin, and thyroxine-binding globulin measurement: potentials and pitfalls. J. Clin. Endocrinol. Metab. 91, 3370–3376 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. LaFranchi, S. H. Newborn screening strategies for congenital hypothyroidism: an update. J. Inherit. Metab. Dis. 33 (Suppl. 2), S225–S233 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Asakura, Y., Tachibana, K., Adachi, M., Suwa, S. & Yamagami, Y. Hypothalamo-pituitary hypothyroidism detected by neonatal screening for congenital hypothyroidism using measurement of thyroid-stimulating hormone and thyroxine. Acta Paediatr. 91, 172–177 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Nebesio, T. D., McKenna, M. P., Nabhan, Z. M. & Eugster, E. A. Newborn screening results in children with central hypothyroidism. J. Pediatr. 156, 990–993 (2010).

    Article  PubMed  Google Scholar 

  20. Horimoto, M. et al. Bioactivity of thyrotropin (TSH) in patients with central hypothyroidism: comparison between in vivo 3,5,3-triiodothyronine response to TSH and in vitro bioactivity of TSH. J. Clin. Endocrinol. Metab. 80, 1124–1128 (1995).

    CAS  PubMed  Google Scholar 

  21. Beck-Peccoz, P. & Persani, L. Variable biological activity of thyroid-stimulating hormone. Eur. J. Endocrinol. 131, 331–340 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Persani, L., Ferretti, E., Borgato, S., Faglia, G. & Beck-Peccoz, P. Circulating TSH bioactivity in sporadic central hypothyroidism. J. Clin. Endocrinol. Metab. 85, 3631–3635 (2000).

    CAS  PubMed  Google Scholar 

  23. Beck-Peccoz, P., Amr, S., Menezes-Ferreira, M. M., Galia, G. & Weintraub, B. D. Decreased receptor binding of biologically inactive thyrotropin central hypothyroidism: effect of treatment with thyrotropin-releasing hormone. N. Engl. J. Med. 312, 1085–1090 (1985).

    Article  CAS  PubMed  Google Scholar 

  24. Persani, L. Hypothalamic thyrotropin-releasing hormone and thyrotropin biological activity. Thyroid 8, 941–946 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Faglia, G. et al. Thyrotropin secretion in patients with central hypothyroidism: evidence for reduced biological activity of immunoreactive thyrotropin. J. Clin. Endocrinol. Metab. 48, 989–998 (1979).

    Article  CAS  PubMed  Google Scholar 

  26. Lee, K. O., Persani, L., Tan, M., Sundram, M. S. & Beck-Peccoz, P. Thyrotropin with decreased bioactivity, a delayed consequence of cranial irradiation for nasopharyngeal carcinoma. J. Endocrinol. Invest. 18, 800–805 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Oliveira, J. H., Persani, L., Beck-Peccoz, P. & Abucham, J. Investigating the paradox of hypothyroidism and increased serum thyrotropin (TSH) levels in Sheehan's syndrome: characterization of TSH carbohydrate content and bioactivity. J. Clin. Endocrinol. Metab. 86, 1694–1699 (2001).

    CAS  PubMed  Google Scholar 

  28. Papandreou, M. J., Persani, L., Asteria, C., Ronin, C. & Beck-Peccoz, P. Variable carbohydrate structures of circulating thyrotropin as studied by lectin affinity chromatography in different clinical conditions. J. Clin. Endocrinol. Metab. 77, 393–398 (1993).

    CAS  PubMed  Google Scholar 

  29. Persani, L. et al. Changes in the degree of sialylation of carbohydrate chains modify the biological properties of circulating thyrotropin isoforms in various physiological and pathological states. J. Clin. Endocrinol. Metab. 83, 2486–2492 (1998).

    CAS  PubMed  Google Scholar 

  30. Szkudlinski, M. W., Fremont, V., Ronin, C. & Weintraub, B. D. Thyroid-stimulating hormone and thyroid-stimulating hormone receptor structure-function relationships. Physiol. Rev. 82, 473–502 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Yamada, M. et al. Tertiary hypothyroidism and hyperglycemia in mice with targeted disruption of the thyrotropin-releasing hormone gene. Proc. Natl Acad. Sci. USA 94, 10862–10867 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nikrodhanond, A. A. et al. Dominant role of thyrotropin-releasing hormone in the hypothalamic-pituitary-thyroid axis. J. Biol. Chem. 281, 5000–5007 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Collu, R. et al. A novel mechanism for isolated central hypothyroidism: inactivating mutations in the thyrotropin-releasing hormone receptor gene. J. Clin. Endocrinol. Metab. 82, 1561–1565 (1997).

    CAS  PubMed  Google Scholar 

  34. Bonomi, M. et al. A family with complete resistance to thyrotropin-releasing hormone. N. Engl. J. Med. 360, 731–734 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Koulouri, O. et al. A novel thyrotropin-releasing hormone receptor missense mutation (p81r) in central congenital hypothyroidism. J. Clin. Endocrinol. Metab. 101, 847–851 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Miyai, K. Congenital thyrotropin deficiency — from discovery to molecular biology, postgenome and preventive medicine. Endocr. J. 54, 191–203 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Dacou-Votetakis, C., Feltquate, D. M., Drakopoulos, M., Kourides, I. A. & Dracopoli, N. C. Familial hypothyroidism caused by a nonsense mutation in thyroid-stimulating hormone ß-subunit gene. Am. J. Hum. Genet. 46, 988–993 (1990).

    Google Scholar 

  38. Doeker, B. M., Pfäffle, R. W., Pohlenz, J. & Andler, V. Congenital central hypothyroidism due to a homozygous mutation in the thyrotropin ß-subunit gene follows an autosomal recessive inheritance. J. Clin. Endocrinol. Metab. 83, 1762–1765 (1998).

    CAS  PubMed  Google Scholar 

  39. Biebermann, H., Liesenkötter, K. P., Emeis, M., Oblanden, M. & Grüters, A. Severe congenital hypothyroidism due to a homozygous mutation of the betaTSH gene. Pediatr. Res. 46, 170–173 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Bonomi, M. et al. Hyperplastic pituitary gland, high serum glycoprotein hormone α-subunit, and variable circulating thyrotropin (TSH) levels as hallmark of central hypothyroidism due to mutations of the TSHβ gene. J. Clin. Endocrinol. Metab. 86, 1600–1604 (2001).

    CAS  PubMed  Google Scholar 

  41. Brumm, H. et al. Congenital central hypothyroidism due to homozygous thyrotropin ß 313ΔT mutation is caused by a founder effect. J. Clin. Endocrinol. Metab. 87, 4811–4816 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. McDermott, M. T. et al. Congenital isolated central hypothyroidism caused by a “hot spot” mutation in the thyrotropin-ß gene. Thyroid 12, 1141–1146 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Domené, H. M. et al. The C105fs114X is the prevalent thyrotropin beta-subunit gene mutation in Argentinean patients with congenital central hypothyroidism. Horm. Res. 61, 41–46 (2004).

    PubMed  Google Scholar 

  44. Partsch, C. J., Riepe, F. G., Krone, N., Sippell, W. G. & Pohlenz, J. Initially elevated TSH and congenital central hypothyroidism due to a homozygous mutation of the TSH beta subunit gene: case report and review of the literature. Exp. Clin. Endocrinol. Diabetes 114, 227–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Baquedano, M. S. et al. Two novel mutations of the TSH-ß subunit gene underlying congenital central hypothyroidism undetectable in neonatal TSH screening. J. Clin. Endocrinol. Metab. 95, E98–E103 (2010).

    Article  PubMed  Google Scholar 

  46. Pappa, T. et al. TSHβ variant with impaired immunoreactivity but intact biological activity and its clinical implications. Thyroid 25, 869–876 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Nicholas, A. K. et al. Molecular spectrum of TSHβ subunit gene defects in central hypothyroidism in the UK and Ireland. Clin. Endocrinol. (Oxf.) 86, 410–441 (2017).

    Article  CAS  Google Scholar 

  48. Borck, G. et al. Four new cases of congenital secondary hypothyroidism due to a splice site mutation in the thyrotropin-ß gene: phenotypic variability and founder effect. J. Clin. Endocrinol. Metab. 89, 4136–4141 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Sun, Y. et al. Loss-of-function mutations in IGSF1 cause an X-linked syndrome of central hypothyroidism and testicular enlargement. Nat. Genet. 44, 1375–1381 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Hughes, J. N. et al. Identification of an IGSF1-specific deletion in a five-generation pedigree with X-linked central hypothyroidism without macroorchidism. Clin. Endocrinol. (Oxf.) 85, 609–615 (2016).

    Article  CAS  Google Scholar 

  51. Van Hulle, S. et al. Delayed adrenarche may be an additional feature of immunoglobulin super family member 1 deficiency syndrome. J. Clin. Res. Pediatr. Endocrinol. 8, 86–91 (2016).

    Article  PubMed  Google Scholar 

  52. Joustra, S. D. et al. Pituitary hormone secretion profiles in IGSF1 deficiency syndrome. Neuroendocrinology 103, 408–416 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Nakamura, A. et al. Three novel IGSF1 mutations in four Japanese patients with X-linked congenital central hypothyroidism. J. Clin. Endocrinol. Metab. 98, E1682–E1691 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Joustra, S. D. et al. IGSF1 variants in boys with familial delayed puberty. Eur. J. Pediatr. 174, 687–692 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Joustra, S. D. et al. Mild deficits in attentional control in patients with the IGSF1 deficiency syndrome. Clin. Endocrinol. (Oxf.) 84, 896–903 (2016).

    Article  CAS  Google Scholar 

  56. Joustra, S. D. et al. The IGSF1 deficiency syndrome: characteristics of male and female patients. J. Clin. Endocrinol. Metab. 98, 4942–4952 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Hulle, S. V. et al. Delayed adrenarche may be an additional feature of immunoglobulin super family member 1 deficiency syndrome. J. Clin. Res. Pediatr. Endocrinol. 8, 86–91 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Heinen, C. A. et al. Mutations in TBL1X are associated with central hypothyroidism. J. Clin. Endocrinol. Metab. 101, 4564–4573 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Astrapova, I. et al. The nuclear receptor corepressor (NCoR) controls thyroid hormone sensitivity and the set point of the hypothalamic-pituitary-thyroid axis. Mol. Endocrinol. 25, 212–224 (2011).

    Article  CAS  Google Scholar 

  60. Schoenmakers, N., Alatzoglou, K. S., Chatterjee, V. K. & Dattani, M. T. Recent advances in central congenital hypothyroidism. J. Endocrinol. 227, R51–R71 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Netchine, I. et al. Mutations in LHX3 result in a new syndrome revealed by combined pituitary hormone deficiency. Nat. Genet. 25, 182–186 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Rochette, C. et al. Identifying the deleterious effect of rare LHX4 allelic variants, a challenging issue. PLoS ONE 10, e0126648 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. McCabe, M. J., Alatzoglou, K. S. & Dattani, M. T. Septo-optic dysplasia and other midline defects: the role of transcription factors: HESX1 and beyond. Best Pract. Res. Clin. Endocrinol. Metab. 25, 115–124 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Stagi, S. et al. A SOX3 (Xq26.3-27.3) duplication in a boy with growth hormone deficiency, ocular dyspraxia, and intellectual disability: a long-term follow-up and literature review. Hormones (Athens) 13, 552–560 (2014).

    Google Scholar 

  65. Shimada, A., Takagi, M., Nagashima, Y., Miyai, K. & Hasegawa, Y. A novel mutation in OTX2 causes combined pituitary hormone deficiency, bilateral microphthalmia, and agenesis of the left internal carotid artery. Horm. Res. Paediatr. 86, 62–69 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Fluck, C. et al. Phenotypic variability in familial combined pituitary hormone deficiency caused by a PROP1 gene mutation resulting in the substitution of Argà Cys at codon 120 (R120C). J. Clin. Endocrinol. Metab. 83, 3727–3734 (1998).

    CAS  PubMed  Google Scholar 

  67. Pfäffle, R. & Klammt, J. Pituitary transcription factors in the aetiology of combined pituitary hormone deficiency. Best Pract. Res. Clin. Endocrinol. Metab. 25, 43–60 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Castinetti, F. et al. An update in the genetic aetiologies of combined pituitary hormone deficiency. Eur. J. Endocrinol. 174, R239–R247 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Hannema, S. E. et al. Novel leptin receptor mutations identified in two girls with severe obesity are associated with increased bone mineral density. Horm. Res. Paediatr. 85, 412–420 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Clément, K. et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 392, 398–401 (1998).

    Article  PubMed  Google Scholar 

  71. Harris, M. et al. Transcriptional regulation of the thyrotropin releasing hormone gene by leptin and melanocortin signaling. J. Clin. Invest. 107, 111–120 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Dekkers, O. M., Pereira, A. M. & Romijn, J. A. Treatment and follow-up of clinically nonfunctioning pituitary macroadenomas. J. Clin. Endocrinol. Metab. 93, 3717–3726 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Ferrante, E. et al. Non-functioning pituitary adenoma database: a useful resource to improve the clinical management of pituitary tumors. Eur. J. Endocrinol. 155, 823–829 (2008).

    Article  CAS  Google Scholar 

  74. Losa, M., Donofrio, C. A., Barzaghi, R. & Mortini, P. Presentation and surgical results of incidentally discovered nonfunctioning pituitary adenomas: evidence for a better outcome independently of other patients' characteristics. Eur. J. Endocrinol. 169, 735–742 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Karavitaki, N. et al. Craniopharyngiomas in children and adults: systematic analysis of 121 cases with long-term follow-up. Clin. Endocrinol. (Oxf.) 62, 397–409 (2005).

    Article  CAS  Google Scholar 

  76. Karavitaki, N., Cudlip, S., Adams, C. B. & Wass, J. A. Craniopharyngiomas. Endocr. Rev. 27, 371–397 (2006).

    Article  PubMed  Google Scholar 

  77. Muller, H. L. Craniopharyngioma. Endocr. Rev. 35, 513–543 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Kanumakata, S., Warme, G. L. & Zacharin, M. R. Evolving hypopituitarism following cranial irradiation. J. Paediatr. Child Health 39, 232–235 (2003).

    Article  Google Scholar 

  79. Schmiegelow, M., Feldt-Rasmussen, U., Rasmussen, A. K., Poulsen, H. S. & Muller, J. A population-based study of thyroid function after radiotherapy and chemotherapy for a childhood brain tumor. J. Clin. Endocrinol. Metab. 88, 136–140 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Samaan, N. A. et al. in Recent Advances in the Diagnosis and Treatment of Pituitary Tumors Vol. 148 (ed. Linfoot, J. A.) 148–157 (1979).

    Google Scholar 

  81. Ratnasingam, J. et al. Hypothalamic pituitary dysfunction amongst nasopharyngeal cancer survivors. Pituitary 18, 448–455 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Constine, L. S. et al. Hypothalamic-pituitary dysfunction after radiation for brain tumors. N. Engl. J. Med. 328, 87–94 (1993).

    Article  CAS  PubMed  Google Scholar 

  83. Kyriakakis, N. et al. Pituitary dysfunction following cranial radiotherapy for adult-onset nonpituitary brain tumours. Clin. Endocrinol. (Oxf.) 84, 372–379 (2016).

    Article  CAS  Google Scholar 

  84. Xu, Z., Lee Vance, M., Schlesinger, D. & Sheehan, J. P. Hypopituitarism after stereotactic radiosurgery for pituitary adenomas. Neurosurgery 72, 630–637 (2013).

    Article  PubMed  Google Scholar 

  85. Cohen-Inbar, O. et al. Gamma knife radiosurgery in patients with persistent acromegaly or Cushing's disease: long-term risk of hypopituitarism. Clin. Endocrinol. (Oxf.) 84, 524–531 (2016).

    Article  Google Scholar 

  86. Haugen, B. R. Drugs that suppress TSH or cause central hypothyroidism. Best. Pract. Res. Clin. Endocrinol. Metab. 23, 793–800 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Russo, M. et al. Mitotane treatment in patients with adrenocortical cancer causes central hypothyroidism. Clin. Endocrinol. (Oxf.) 84, 614–619 (2016).

    Article  CAS  Google Scholar 

  88. Zantut-Wittmann, D. E., Pavan, M. H., Pavin, E. J., Goncales, F. L. Jr. Central hypothyroidism in patients with chronic hepatitis C and relation with interferon-α treatment. Endocr. Regul. 45, 157–161 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Miller, J. & Carney, P. Central hypothyroidism with oxcarbazepine therapy. Pediatr. Neurol. 34, 242–244 (2006).

    Article  PubMed  Google Scholar 

  90. Golden, W. M. et al. Single-dose rexinoid rapidly and specifically suppresses serum thyrotropin in normal subjects. J. Clin. Endocrinol. Metab. 92, 124–130 (2007).

    Article  CAS  PubMed  Google Scholar 

  91. Fernandez-Rodriguez, E., Bernabeu, I., Castro, A. I. & Casanueva, F. F. Hypopituitarism after traumatic brain injury. Endocrinol. Metabol. Clin. North. Am. 44, 151–159 (2015).

    Article  Google Scholar 

  92. Krewer, C. et al. Neuroendocrine disturbances one to five or more years after traumatic brain injury and aneurysmal subarachnoid hemorrhage: data from the German database on hypopituitarism. J. Neurotrauma 33, 1544–1553 (2016).

    Article  PubMed  Google Scholar 

  93. Klose, M. et al. Hypopituitarism is uncommon after aneurysmal subarachnoid haemorrhage. Clin. Endocrinol. (Oxf.) 73, 95–101 (2010).

    Google Scholar 

  94. Gamberini, M. R., De Sanctis, V. & Gilli, G. Hypogonadism, diabetes mellitus, hypothyroidism, hypoparathyroidism: incidenceand prevalence related to iron overload and chelation therapy in patients with thalassaemia major followed from 1980 to 2007 in the Ferrara Centre. Pediatr. Endocrinol. Rev. 6 (Suppl. 1), 158–169 (2008).

    PubMed  Google Scholar 

  95. Lewis, A. S., Courtney, C. H. & Atkinson, A. B. All patients with 'idiopathic' hypopituitarism should be screened for hemochromatosis. Pituitary 12, 273–275 (2009).

    Article  PubMed  Google Scholar 

  96. Caturegli, P. et al. Autoimmune hypophysitis. Endocr. Rev. 26, 599–614 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Fukuoka, H. Hypophysitis. Endocrinol. Metab. Clin. North Am. 44, 143–149 (2015).

    Article  PubMed  Google Scholar 

  98. Honegger, J. et al. Diagnosis of primary hypophysitis in Germany. J. Clin. Endocrinol. Metab. 100, 3841–3849 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Bando, H. et al. The prevalence of IgG4-related hypophysitis in 170 consecutive patients with hypopituitarism and/or central diabetes insipidus and review of the literature. Eur. J. Endocrinol. 170, 161–172 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Lam, T. et al. Ipilimumab-induced hypophysitis in melanoma patients: an Australian case series. Intern. Med. J. 4, 1066–1073 (2015).

    Article  CAS  Google Scholar 

  101. Faje, A. Immunotherapy and hypophysitis: clinical presentation, treatment, and biologic insights. Pituitary 19, 82–92 (2016).

    Article  CAS  PubMed  Google Scholar 

  102. Yamamoto, M. et al. Adult combined GH, prolactin, and TSH deficiency associated with circulating PIT-1 antibody in humans. J. Clin. Invest. 121, 113–119 (2011).

    Article  CAS  PubMed  Google Scholar 

  103. Neumann, S., Raaka, B. M. & Gershengorn, M. C. Constitutively active thyrotropin and thyrotropin-releasing hormone receptors and their inverse agonists. Methods Enzymol. 485, 147–160 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Barbesino, G., Sluss, P. M. & Caturegli, P. Central hypothyroidism in a patient with pituitary autoimmunity: evidence for TSH-independent thyroid hormone synthesis. J. Clin. Endocrinol. Metab. 97, 345–350 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Feldt-Rasmussen, U. & Klose, M. Central hypothyroidism and its role for cardiovascular risk factors in hypopituitary patients. Endocrine 54, 15–23 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Doin, F. C., Rosa-Borges, M., Martins, M. R., Moisés, V. A. & Abucham, J. Diagnosis of subclinical central hypothyroidism in patients with hypothalamic-pituitary disease by Doppler echocardiography. Eur. J. Endocrinol. 166, 631–640 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Ferretti, E. et al. Evaluation of the adequacy of l-T4 replacement therapy in patients with central hypothyroidism. J. Clin. Endocrinol. Metab. 84, 924–929 (1999).

    CAS  PubMed  Google Scholar 

  108. Alexopoulou, O., Beguin, C., De Nayer, P. & Maiter, D. Clinical and hormonal characteristics of central hypothyroidism at diagnosis and during follow-up in adult patients. Eur. J. Endocrinol. 150, 1–8 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Williams, F. L. R., Ogston, S. A., van Toor, H., Visser, T. J. & Hume, R. Serum thyroid hormones in preterm infants; associations with postnatal illnesses and drug usage. J. Clin. Endocrinol. Metab. 90, 5954–5963 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Hyman, S. J. et al. Late rise of thyroid stimulating hormone in ill newborns. J. Pediatr. Endocrinol. Metab. 20, 501–510 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Warner, M. H. & Beckett, G. J. Mechanisms behind the non-thyroidal illness syndrome: an update. J. Endocrinol. 205, 1–13 (2010).

    Article  CAS  PubMed  Google Scholar 

  112. Nelson, J. C. & Weiss, R. M. The effect of serum dilution on free thyroxine (T4) concentration in the low T4 syndrome of nonthyroidal illness. J. Clin. Endocrinol. Metab. 61, 239–246 (1985).

    Article  CAS  PubMed  Google Scholar 

  113. DeGroot, L. J. “Non-thyroidal illness syndrome” is functional central hypothyroidism, and if severe, hormone replacement therapy is appropriate in light of present knowledge. J. Endocrinol. Invest. 26, 1163–1170 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Peeters, R. P. Nonthyroidal illness: to treat or not to treat? Ann. Endocrinol. (Paris) 68, 224–228 (2007).

    Article  CAS  Google Scholar 

  115. Fliers, E., Guldenaar, S. E., Wiersinga, W. M. & Swaab, D. F. Decreased hypothalamic thyrotropin-releasing hormone gene expression in patients with nonthyroidal illness. J. Clin. Endocrinol. Metab. 82, 4032–4036 (1997).

    CAS  PubMed  Google Scholar 

  116. López, M., Alvarez, C. V., Nogueiras, R. & Diéguez, C. Energy balance regulation by thyroid hormones at central level. Trends Mol. Med. 19, 418–427 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Bao, S., Oiknine, R. & Fisher, S. J. Differentiating nonthyroidal illness syndrome from central hypothyroidism in the acutely ill hospitalized patient. Endocrine 42, 758–760 (2012).

    Article  CAS  PubMed  Google Scholar 

  118. Beck-Peccoz, P. Treatment of central hypothyroidism. Clin. Endocrinol. (Oxf.) 74, 671–672 (2011).

    Article  CAS  Google Scholar 

  119. Bunevicius, R., Kazanavicius, G., Zalinkevicius, R. & Prange, A. J. Jr. Effects of thyroxine as compared with thyroxine plus triiodothyronine in patients with hypothyroidism. N. Engl. J. Med. 340, 424–429 (1999).

    Article  CAS  PubMed  Google Scholar 

  120. Cassio, A. et al. Treatment for congenital hypothyroidism: thyroxine alone or thyroxine plus triiodothyronine? Pediatrics 111, 1055–1060 (2003).

    Article  PubMed  Google Scholar 

  121. Grozinsky-Glasberg, S., Fraser, A., Nahshoni, E., Weizman, A. & Leibovici, L. Thyroxine–triiodothyronine combination therapy versus thyroxine monotherapy for clinical hypothyroidism: meta-analysis of randomized controlled trials. J. Clin. Endocrinol. Metab. 91, 2592–2599 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Slawik, M. et al. Thyroid hormone replacement for central hypothyroidism: a randomized controlled trial comparing two doses of thyroxine (T4) with a combination of T4 and triiodothyronine. J. Clin. Endocrinol. Metab. 92, 4115–4122 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Wiersinga, W. M. Paradigm shifts in thyroid hormone replacement therapies for hypothyroidism. Nat. Rev. Endocrinol. 10, 164–174 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Shimon, I., Cohen, O., Lubetsky, A. & Olchovsky, D. Thyrotropin suppression by thyroid hormone replacement is correlated with thyroxine level normalization in central hypothyroidism. Thyroid 12, 823–827 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Koulouri, O. et al. Diagnosis and treatment of hypothyroidism in TSH deficiency compared to primary thyroid disease: pituitary patients are at risk of underreplacement with levothyroxine. Clin. Endocrinol. (Oxf.) 74, 744–749 (2011).

    Article  CAS  Google Scholar 

  126. Iverson, J. F. & Mariash, C. N. Optimal free thyroxine levels for thyroid hormone replacement in hypothyroidism. Endocr. Pract. 14, 550–555 (2008).

    Article  PubMed  Google Scholar 

  127. Arafah, B. M. Increased need for thyroxine in women with hypothyroidism during estrogen therapy. N. Engl. J. Med. 344, 1743–1749 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Ain, K. B., Mori, Y. & Refetoff, S. Reduced clearance rate of thyroxine-binding globulin (TBG) with increased sialylation: a mechanism for estrogen-induced elevation of serum TBG concentration. J. Clin. Endocrinol. Metab. 65, 689–696 (1987).

    Article  CAS  PubMed  Google Scholar 

  129. Portes, E. S., Oliveira, J. H., MacCagnan, P. & Abucham, J. Changes in serum thyroid hormones levels and their mechanisms during long-term growth hormone (GH) replacement therapy in GH deficient children. Clin. Endocrinol. (Oxf.) 53, 183–189 (2000).

    Article  CAS  Google Scholar 

  130. Porretti, S. et al. Recombinant human GH replacement therapy and thyroid function in a large group of adult GH-deficient patients: when does L-T4 therapy become mandatory? J. Clin. Endocrinol. Metab. 87, 2042–2045 (2002).

    Article  CAS  PubMed  Google Scholar 

  131. Agha, A. et al. Unmasking of central hypothyroidism following growth hormone replacement in adult hypopituitary patients. Clin. Endocrinol. (Oxf.) 66, 72–77 (2007).

    CAS  Google Scholar 

  132. Giavoli, C. et al. Recombinant hGH replacement therapy and the hypothalamus-pituitary-thyroid axis in children with GH deficiency: when should we be concerned about the occurrence of central hypothyroidism? Clin. Endocrinol. (Oxf.) 59, 806–810 (2003).

    Article  CAS  Google Scholar 

  133. Losa, M. et al. Long-term effects of growth hormone replacement therapy on thyroid function in adults with growth hormone deficiency. Thyroid 18, 1249–1254 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Jorgensen, J. O. et al. Growth hormone administration stimulates energy expenditure and extrathyroidal conversion of thyroxine to triiodothyronine in a dose-dependent manner and suppresses circadian thyrotrophin levels: studies in GH-deficient adults. Clin. Endocrinol. (Oxf.) 41, 609–614 (1994).

    Article  CAS  Google Scholar 

  135. Antonica, F. et al. Generation of functional thyroid from embryonic stem cells. Nature 491, 66–71 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

P.B.-P., G.R. and C.G. researched data for the article. P.B.-P., C.G. and A.L. substantially contributed to discussions of the content. P.B.-P. wrote and edited the article before submission.

Corresponding author

Correspondence to Paolo Beck-Peccoz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Thyroid axis

Refers to the hypothalamic–pituitary–thyroid axis.

Immunometric assays

Methods involving antibody–antigen binding reactions, based on the law of mass action.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beck-Peccoz, P., Rodari, G., Giavoli, C. et al. Central hypothyroidism — a neglected thyroid disorder. Nat Rev Endocrinol 13, 588–598 (2017). https://doi.org/10.1038/nrendo.2017.47

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2017.47

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing