Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging nonmetabolic functions of skin fat

Key Points

  • Dermal white adipose tissue (dWAT) is a specialized adipose depot of the skin with activities that are closely linked with those of hair follicles.

  • The development and remodelling of dWAT relies largely on paracrine signals generated by growing hair follicles.

  • Dermal adipocytes cyclically grow and shrink their lipid droplets in response to hair-derived signals and systemic factors, such as cold stress, can override this cycle.

  • Dermal adipocytes and their progenitors actively signal to neighbouring skin cell types, including hair follicle cells, and become important modulators of their growth activities.

  • Dermal adipogenesis is activated in response to bacterial skin infection, activates antimicrobial peptide secretion and serves an innate immune defence function.

Abstract

Although the major white adipose depots evolved primarily to store energy, secrete hormones and thermo-insulate the body, multiple secondary depots developed additional specialized and unconventional functions. Unlike any other fat tissue, dermal white adipose tissue (dWAT) evolved a large repertoire of novel features that are central to skin physiology, which we discuss in this Review. dWAT exists in close proximity to hair follicles, the principal appendages of the skin that periodically grow new hairs. Responding to multiple hair-derived signals, dWAT becomes closely connected to cycling hair follicles and periodically cycles itself. At the onset of new hair growth, hair follicles secrete activators of adipogenesis, while at the end of hair growth, a reduction in the secretion of activators or potentially, an increase in the secretion of inhibitors of adipogenesis, results in fat lipolysis. Hair-driven cycles of dWAT remodelling are uncoupled from size changes in other adipose depots that are controlled instead by systemic metabolic demands. Rich in growth factors, dWAT reciprocally signals to hair follicles, altering the activation state of their stem cells and modulating the pace of hair regrowth. dWAT cells also facilitate skin repair following injury and infection. In response to wounding, adipose progenitors secrete repair-inducing activators, while bacteria-sensing adipocytes produce antimicrobial peptides, thus aiding innate immune responses in the skin.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Distribution of dermal white adipose tissue in the skin.
Figure 2: Development and cyclic remodelling of dermal white adipose tissue.
Figure 3: Signalling crosstalk between dermal white adipose tissue and hair follicles in mice.
Figure 4: Role of dermal white adipose tissue in skin defence and regeneration in mice.

Similar content being viewed by others

References

  1. Stern, J. H., Rutkowski, J. M. & Scherer, P. E. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab. 23, 770–784 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Rosen, E. D. & Spiegelman, B. M. What we talk about when we talk about fat. Cell 156, 20–44 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Martinez-Santibanez, G. et al. Obesity-induced remodeling of the adipose tissue elastin network is independent of the metalloelastase MMP-12. Adipocyte 4, 264–272 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Chavey, C. et al. Matrix metalloproteinases are differentially expressed in adipose tissue during obesity and modulate adipocyte differentiation. J. Biol. Chem. 278, 11888–11896 (2003).

    CAS  PubMed  Google Scholar 

  5. Lijnen, H. R. et al. Matrix metalloproteinase inhibition impairs adipose tissue development in mice. Arterioscler Thromb. Vasc. Biol. 22, 374–379 (2002).

    CAS  PubMed  Google Scholar 

  6. Mariman, E. C. & Wang, P. Adipocyte extracellular matrix composition, dynamics and role in obesity. Cell. Mol. Life Sci. 67, 1277–1292 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Khan, T. et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol. Cell. Biol. 29, 1575–1591 (2009).

    CAS  PubMed  Google Scholar 

  8. Iyengar, P. et al. Adipocyte-derived collagen VI affects early mammary tumor progression in vivo, demonstrating a critical interaction in the tumor/stroma microenvironment. J. Clin. Invest. 115, 1163–1176 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Minchin, J. E. et al. Plexin D1 determines body fat distribution by regulating the type V collagen microenvironment in visceral adipose tissue. Proc. Natl Acad. Sci. USA 112, 4363–4368 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Aikio, M. et al. Specific collagen XVIII isoforms promote adipose tissue accrual via mechanisms determining adipocyte number and affect fat deposition. Proc. Natl Acad. Sci. USA 111, E3043–3052 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiang, Y., Berry, D. C., Tang, W. & Graff, J. M. Independent stem cell lineages regulate adipose organogenesis and adipose homeostasis. Cell Rep. 9, 1007–1022 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Berry, R. & Rodeheffer, M. S. Characterization of the adipocyte cellular lineage in vivo. Nat. Cell Biol. 15, 302–308 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rodeheffer, M. S., Birsoy, K. & Friedman, J. M. Identification of white adipocyte progenitor cells in vivo. Cell 135, 240–249 (2008).

    CAS  PubMed  Google Scholar 

  14. Tang, W. et al. White fat progenitor cells reside in the adipose vasculature. Science 322, 583–586 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gupta, R. K. et al. Transcriptional control of preadipocyte determination by Zfp423. Nature 464, 619–623 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hammarstedt, A. et al. WISP2 regulates preadipocyte commitment and PPARγ activation by BMP4. Proc. Natl Acad. Sci. USA 110, 2563–2568 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Jonker, J. W. et al. A PPARγ-FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nature 485, 391–394 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sakaue, H. et al. Requirement of fibroblast growth factor 10 in development of white adipose tissue. Genes Dev. 16, 908–912 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Suh, J. M. et al. Hedgehog signaling plays a conserved role in inhibiting fat formation. Cell Metab. 3, 25–34 (2006).

    CAS  PubMed  Google Scholar 

  20. Pospisilik, J. A. et al. Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate. Cell 140, 148–160 (2010).

    CAS  PubMed  Google Scholar 

  21. Loh, N. Y. et al. LRP5 regulates human body fat distribution by modulating adipose progenitor biology in a dose- and depot-specific fashion. Cell Metab. 21, 262–272 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Villanueva, C. J. et al. TLE3 is a dual-function transcriptional coregulator of adipogenesis. Cell Metab. 13, 413–427 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, L., Jin, Q., Lee, J. E., Su, I. H. & Ge, K. Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis. Proc. Natl Acad. Sci. USA 107, 7317–7322 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ross, S. E. et al. Inhibition of adipogenesis by Wnt signaling. Science 289, 950–953 (2000).

    CAS  PubMed  Google Scholar 

  25. Driskell, R. R., Jahoda, C. A., Chuong, C. M., Watt, F. M. & Horsley, V. Defining dermal adipose tissue. Exp. Dermatol. 23, 629–631 (2014).

    PubMed  PubMed Central  Google Scholar 

  26. Sumikawa, Y., Inui, S., Nakajima, T. & Itami, S. Hair cycle control by leptin as a new anagen inducer. Exp. Dermatol. 23, 27–32 (2014).

    CAS  PubMed  Google Scholar 

  27. Plikus, M. V. et al. Regeneration of fat cells from myofibroblasts during wound healing. Science 355, 748–752 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, B. et al. Hair follicles' transit-amplifying cells govern concurrent dermal adipocyte production through Sonic Hedgehog. Genes Dev. 30, 2325–2338 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rivera-Gonzalez, G. C. et al. Skin adipocyte stem cell self-renewal is regulated by a PDGFA/AKT-signaling axis. Cell Stem Cell 19, 738–751 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kasza, I. et al. Syndecan-1 is required to maintain intradermal fat and prevent cold stress. PLoS Genet. 10, e1004514 (2014).

    PubMed  PubMed Central  Google Scholar 

  31. Harper, R. A. & Grove, G. Human skin fibroblasts derived from papillary and reticular dermis: differences in growth potential in vitro. Science 204, 526–527 (1979).

    CAS  PubMed  Google Scholar 

  32. Woodley, D. T. Distinct fibroblasts in the papillary and reticular dermis: implications for wound healing. Dermatol. Clin. 35, 95–100 (2017).

    CAS  PubMed  Google Scholar 

  33. Wojciechowicz, K., Gledhill, K., Ambler, C. A., Manning, C. B. & Jahoda, C. A. Development of the mouse dermal adipose layer occurs independently of subcutaneous adipose tissue and is marked by restricted early expression of FABP4. PLOS One 8, e59811 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Schmidt, B. & Horsley, V. Unravelling hair follicle-adipocyte communication. Exp. Dermatol. 21, 827–830 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Festa, E. et al. Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell 146, 761–771 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Daly, T. J. & Buffenstein, R. Skin morphology and its role in thermoregulation in mole-rats, Heterocephalus glaber and Cryptomys hottentotus. J. Anat. 193, 495–502 (1998).

    PubMed  PubMed Central  Google Scholar 

  37. Plikus, M. V. et al. Self-organizing and stochastic behaviors during the regeneration of hair stem cells. Science 332, 586–589 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Walker, G. E. et al. Subcutaneous abdominal adipose tissue subcompartments: potential role in rosiglitazone effects. Obes. (Silver Spring) 16, 1983–1991 (2008).

    CAS  Google Scholar 

  39. Wang, Q. et al. A multi-scale model for hair follicles reveals heterogeneous domains driving rapid spatiotemporal hair growth patterning. eLife 6, e22772 (2017).

    PubMed  PubMed Central  Google Scholar 

  40. Madej, J. P. et al. Skin structure and hair morphology of different body parts in the Common Pipistrelle (Pipistrellus pipistrellus). Acta Zool. 94, 478–489 (2013).

    Google Scholar 

  41. Oh, J. W. et al. A Guide to studying human hair follicle cycling in vivo. J. Invest. Dermatol. 136, 34–44 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Muller-Rover, S. et al. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J. Invest. Dermatol. 117, 3–15 (2001).

    CAS  PubMed  Google Scholar 

  43. Morgan, B. A. The dermal papilla: an instructive niche for epithelial stem and progenitor cells in development and regeneration of the hair follicle. Cold Spring Harb. Perspect. Med. 4, a015180 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. Brownell, I., Guevara, E., Bai, C. B., Loomis, C. A. & Joyner, A. L. Nerve-derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. Cell Stem Cell 8, 552–565 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Jensen, K. B. et al. Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell 4, 427–439 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Morris, R. J. et al. Capturing and profiling adult hair follicle stem cells. Nat. Biotechnol. 22, 411–417 (2004).

    CAS  PubMed  Google Scholar 

  47. Snippert, H. J. et al. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327, 1385–1389 (2010).

    CAS  PubMed  Google Scholar 

  48. Cotsarelis, G., Sun, T. T. & Lavker, R. M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329–1337 (1990).

    CAS  PubMed  Google Scholar 

  49. Mesa, K. R. et al. Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool. Nature 522, 94–97 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Foitzik, K. et al. Control of murine hair follicle regression (catagen) by TGF-β1 in vivo. FASEB J. 14, 752–760 (2000).

    CAS  PubMed  Google Scholar 

  51. Lindner, G. et al. Analysis of apoptosis during hair follicle regression (catagen). Am. J. Pathol. 151, 1601–1617 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hsu, Y. C., Pasolli, H. A. & Fuchs, E. Dynamics between stem cells, niche, and progeny in the hair follicle. Cell 144, 92–105 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Panteleyev, A. A., Jahoda, C. A. & Christiano, A. M. Hair follicle predetermination. J. Cell Sci. 114, 3419–3431 (2001).

    CAS  PubMed  Google Scholar 

  54. Plikus, M. V. & Chuong, C. M. Macroenvironmental regulation of hair cycling and collective regenerative behavior. Cold Spring Harb. Perspect. Med. 4, a015198 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Plikus, M. V., Widelitz, R. B., Maxson, R. & Chuong, C. M. Analyses of regenerative wave patterns in adult hair follicle populations reveal macro-environmental regulation of stem cell activity. Int. J. Dev. Biol. 53, 857–868 (2009).

    PubMed  PubMed Central  Google Scholar 

  56. Plikus, M. V. et al. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature 451, 340–344 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Plikus, M. V. & Chuong, C. M. Complex hair cycle domain patterns and regenerative hair waves in living rodents. J. Invest. Dermatol. 128, 1071–1080 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lu, C. P. et al. Identification of stem cell populations in sweat glands and ducts reveals roles in homeostasis and wound repair. Cell 150, 136–150 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lobitz, W. C. Jr & Dobson, R. L. Dermatology: the eccrine sweat glands. Annu. Rev. Med. 12, 289–298 (1961).

    PubMed  Google Scholar 

  60. Kimani, J. K. Some histological aspects of the palmar digital pads in the vervet monkey. Folia Primatol. 41, 147–155 (1983).

    CAS  Google Scholar 

  61. Lu, C. P., Polak, L., Keyes, B. E. & Fuchs, E. Spatiotemporal antagonism in mesenchymal-epithelial signaling in sweat versus hair fate decision. Science 354, aah6102 (2016).

    PubMed  PubMed Central  Google Scholar 

  62. Montagna, W. Some particularities of human skin and the skin of nonhuman primates. G. Ital. Dermatol. Venereol. 119, 1–4 (1984).

    CAS  PubMed  Google Scholar 

  63. Butcher, E. O. The hair cycles in the albino rat. Anat. Rec. 61, 5–19 (1934).

    Google Scholar 

  64. Hansen, L. S., Coggle, J. E., Wells, J. & Charles, M. W. The influence of the hair cycle on the thickness of mouse skin. Anat. Rec. 210, 569–573 (1984).

    CAS  PubMed  Google Scholar 

  65. Chase, H. B., Montagna, W. & Malone, J. D. Changes in the skin in relation to the hair growth cycle. Anat. Rec. 116, 75–81 (1953).

    CAS  PubMed  Google Scholar 

  66. Moffat, G. H. The growth of hair follicles and its relation to the adjacent dermal structures. J. Anat. 102, 527–540 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Borodach, G. N. & Montagna, W. Fat in skin of the mouse during cycles of hair growth. J. Invest. Dermatol. 26, 229–232 (1956).

    CAS  PubMed  Google Scholar 

  68. Gibbs, H. F. A study of the post-natal development of the skin and hair of the mouse. The Anatom. Record 80, 61–81 (1941).

    Google Scholar 

  69. Donati, G. et al. Epidermal Wnt/beta-catenin signaling regulates adipocyte differentiation via secretion of adipogenic factors. Proc. Natl Acad. Sci. USA 111, E1501–E1509 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Driskell, R. R. et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature 504, 277–281 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Schmidt-Ullrich, R. & Paus, R. Molecular principles of hair follicle induction and morphogenesis. Bioessays 27, 247–261 (2005).

    CAS  PubMed  Google Scholar 

  72. Wojciechowicz, K., Markiewicz, E. & Jahoda, C. A. C/EBPα identifies differentiating preadipocytes around hair follicles in foetal and neonatal rat and mouse skin. Exp. Dermatol. 17, 675–680 (2008).

    PubMed  Google Scholar 

  73. Chen, C. C. et al. Regenerative hair waves in aging mice and extra-follicular modulators follistatin, dkk1, and sfrp4. J. Invest. Dermatol. 134, 2086–2096 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang, F., Mullican, S. E., DiSpirito, J. R., Peed, L. C. & Lazar, M. A. Lipoatrophy and severe metabolic disturbance in mice with fat-specific deletion of PPARγ. Proc. Natl Acad. Sci. USA 110, 18656–18661 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kandyba, E. & Kobielak, K. Wnt7b is an important intrinsic regulator of hair follicle stem cell homeostasis and hair follicle cycling. Stem Cells 32, 886–901 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Myung, P. S., Takeo, M., Ito, M. & Atit, R. P. Epithelial Wnt ligand secretion is required for adult hair follicle growth and regeneration. J. Invest. Dermatol. 133, 31–41 (2013).

    CAS  PubMed  Google Scholar 

  77. Reddy, S. et al. Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mech. Dev. 107, 69–82 (2001).

    CAS  PubMed  Google Scholar 

  78. Kulessa, H., Turk, G. & Hogan, B. L. Inhibition of Bmp signaling affects growth and differentiation in the anagen hair follicle. EMBO J. 19, 6664–6674 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Rendl, M., Lewis, L. & Fuchs, E. Molecular dissection of mesenchymal-epithelial interactions in the hair follicle. PLoS Biol. 3, e331 (2005).

    PubMed  PubMed Central  Google Scholar 

  80. Botchkarev, V. A. & Sharov, A. A. BMP signaling in the control of skin development and hair follicle growth. Differentiation 72, 512–526 (2004).

    CAS  PubMed  Google Scholar 

  81. Kobielak, K., Pasolli, H. A., Alonso, L., Polak, L. & Fuchs, E. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA. J. Cell Biol. 163, 609–623 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Paus, R., Foitzik, K., Welker, P., Bulfone-Paus, S. & Eichmuller, S. Transforming growth factor-β receptor type I and type II expression during murine hair follicle development and cycling. J. Invest. Dermatol. 109, 518–526 (1997).

    CAS  PubMed  Google Scholar 

  83. Welker, P., Foitzik, K., Bulfone-Paus, S., Henz, B. M. & Paus, R. Hair cycle-dependent changes in the gene expression and protein content of transforming factor β1 and β3 in murine skin. Arch. Dermatol. Res. 289, 554–557 (1997).

    CAS  PubMed  Google Scholar 

  84. Wollina, U., Lange, D., Funa, K. & Paus, R. Expression of transforming growth factor β isoforms and their receptors during hair growth phases in mice. Histol Histopathol. 11, 431–436 (1996).

    CAS  PubMed  Google Scholar 

  85. Kawano, M. et al. Comprehensive analysis of FGF and FGFR expression in skin: FGF18 is highly expressed in hair follicles and capable of inducing anagen from telogen stage hair follicles. J. Invest. Dermatol. 124, 877–885 (2005).

    CAS  PubMed  Google Scholar 

  86. Rosenquist, T. A. & Martin, G. R. Fibroblast growth factor signalling in the hair growth cycle: expression of the fibroblast growth factor receptor and ligand genes in the murine hair follicle. Dev. Dyn. 205, 379–386 (1996).

    CAS  PubMed  Google Scholar 

  87. Weger, N. & Schlake, T. Igf-I signalling controls the hair growth cycle and the differentiation of hair shafts. J. Invest. Dermatol. 125, 873–882 (2005).

    CAS  PubMed  Google Scholar 

  88. Rudman, S. M., Philpott, M. P., Thomas, G. A. & Kealey, T. The role of IGF-I in human skin and its appendages: morphogen as well as mitogen? J. Invest. Dermatol. 109, 770–777 (1997).

    CAS  PubMed  Google Scholar 

  89. Rezza, A. et al. Signaling networks among stem cell precursors, transit-amplifying progenitors, and their niche in developing hair follicles. Cell Rep. 14, 3001–3018 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Tomita, Y., Akiyama, M. & Shimizu, H. PDGF isoforms induce and maintain anagen phase of murine hair follicles. J. Dermatol. Sci. 43, 105–115 (2006).

    CAS  PubMed  Google Scholar 

  91. Oro, A. E. & Higgins, K. Hair cycle regulation of Hedgehog signal reception. Dev. Biol. 255, 238–248 (2003).

    CAS  PubMed  Google Scholar 

  92. Sato, N., Leopold, P. L. & Crystal, R. G. Induction of the hair growth phase in postnatal mice by localized transient expression of Sonic hedgehog. J. Clin. Invest. 104, 855–864 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Fleury, A. et al. Hedgehog associated to microparticles inhibits adipocyte differentiation via a non-canonical pathway. Sci. Rep. 6, 23479 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Spinella-Jaegle, S. et al. Sonic hedgehog increases the commitment of pluripotent mesenchymal cells into the osteoblastic lineage and abolishes adipocytic differentiation. J. Cell Sci. 114, 2085–2094 (2001).

    CAS  PubMed  Google Scholar 

  95. Kopinke, D., Roberson, E. C. & Reiter, J. F. Ciliary Hedgehog signaling restricts injury-induced adipogenesis. Cell 170, 340–351.e12 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Shao, M. et al. Fetal development of subcutaneous white adipose tissue is dependent on Zfp423. Mol. Metab. 6, 111–124 (2017).

    CAS  PubMed  Google Scholar 

  97. Shao, M. et al. Zfp423 maintains white adipocyte identity through suppression of the beige cell thermogenic gene program. Cell Metab. 23, 1167–1184 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Choi, Y. S. et al. Distinct functions for Wnt/beta-catenin in hair follicle stem cell proliferation and survival and interfollicular epidermal homeostasis. Cell Stem Cell 13, 720–733 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Mastrogiannaki, M. et al. β-Catenin stabilization in skin fibroblasts causes fibrotic lesions by preventing adipocyte differentiation of the reticular dermis. J. Invest. Dermatol. 136, 1130–1142 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Sick, S., Reinker, S., Timmer, J. & Schlake, T. WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science 314, 1447–1450 (2006).

    CAS  PubMed  Google Scholar 

  101. Lichtenberger, B. M., Mastrogiannaki, M. & Watt, F. M. Epidermal β-catenin activation remodels the dermis via paracrine signalling to distinct fibroblast lineages. Nat. Commun. 7, 10537 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Hesslein, D. G. et al. Ebf1-dependent control of the osteoblast and adipocyte lineages. Bone 44, 537–546 (2009).

    CAS  PubMed  Google Scholar 

  103. Karlsson, L., Bondjers, C. & Betsholtz, C. Roles for PDGF-A and sonic hedgehog in development of mesenchymal components of the hair follicle. Development 126, 2611–2621 (1999).

    CAS  PubMed  Google Scholar 

  104. Ambrosi, T. H. et al. Adipocyte accumulation in the bone marrow during obesity and aging impairs stem cell-based hematopoietic and bone regeneration. Cell Stem Cell 20, 771–784.e6 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Naveiras, O. et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460, 259–263 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Scheller, E. L., Cawthorn, W. P., Burr, A. A., Horowitz, M. C. & MacDougald, O. A. Marrow adipose tissue: trimming the fat. Trends Endocrinol. Metab. 27, 392–403 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Schmidt, B. A. & Horsley, V. Intradermal adipocytes mediate fibroblast recruitment during skin wound healing. Development 140, 1517–1527 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Jeffery, E., Church, C. D., Holtrup, B., Colman, L. & Rodeheffer, M. S. Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity. Nat. Cell Biol. 17, 376–385 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang, X. et al. Principles and mechanisms of regeneration in the mouse model for wound-induced hair follicle neogenesis. Regeneration 2, 169–181 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Ito, M. et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447, 316–320 (2007).

    CAS  PubMed  Google Scholar 

  111. Zhang, L. J. et al. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection. Science 347, 67–71 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Marangoni, R. G. et al. Myofibroblasts in murine cutaneous fibrosis originate from adiponectin-positive intradermal progenitors. Arthritis Rheumatol 67, 1062–1073 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Kruglikov, I. L. & Scherer, P. E. Skin aging: are adipocytes the next target? Aging 8, 1457–1469 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Kruglikov, I. L. & Scherer, P. E. Adipocyte-myofibroblast transition as a possible pathophysiological step in androgenetic alopecia. Exp. Dermatol. 26, 522–523 (2017).

    CAS  PubMed  Google Scholar 

  115. Kruglikov, I. L. & Scherer, P. E. Dermal adipocytes: from irrelevance to metabolic targets? Trends Endocrinol. Metab. 27, 1–10 (2016).

    CAS  PubMed  Google Scholar 

  116. Alexander, C. M. et al. Dermal white adipose tissue: a new component of the thermogenic response. J. Lipid Res. 56, 2061–2069 R062893 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Shook, B. et al. The role of adipocytes in tissue regeneration and stem cell niches. Annu. Rev. Cell Dev. Biol. 32, 609–631 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kruglikov, I. L. & Scherer, P. E. Dermal adipocytes and hair cycling: is spatial heterogeneity a characteristic feature of the dermal adipose tissue depot? Exp. Dermatol. 25, 258–262 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Park, J. & Scherer, P. E. Adipocyte-derived endotrophin promotes malignant tumor progression. J. Clin. Invest. 122, 4243–4256 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Nieman, K. M. et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 17, 1498–1503 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Horsley, V. & Watt, F. Repeal and Replace: Adipocyte Regeneration in Wound Repair. Cell Stem Cell 20, 424–426 (2017).

    CAS  PubMed  Google Scholar 

  122. Keyes, B. E. et al. Nfatc1 orchestrates aging in hair follicle stem cells. Proc. Natl Acad. Sci. USA 110, E4950–E4959 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Matsumura, H. et al. Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. Science 351, aad4395 (2016).

    PubMed  Google Scholar 

  124. Zasloff, M. Observations on the remarkable (and mysterious) wound-healing process of the bottlenose dolphin. J. Invest. Dermatol. 131, 2503–2505 (2011).

    CAS  PubMed  Google Scholar 

  125. Sardella, C. et al. Delayed hair follicle morphogenesis and hair follicle dystrophy in a lipoatrophy mouse model of Pparg total deletion. J. Invest. Dermatol. https://doi.org/10.1016/j.jid.2017.09.024 (2017).

    CAS  Google Scholar 

Download references

Acknowledgements

M.V.P. is supported by the NIH National Institute of Arthritis and Musculoskeletal and Skin (NIAMS) grants R01-AR067273 and R01-AR069653 and by a Pew Charitable Trust grant. C.F.G.-J. is supported by the US National Science Foundation Graduate Research Fellowship Program (NSF-GRFP) (DGE-1321846) and an Initiative for Maximizing Student Development (MBRS-IMSD) training grant (GM055246) and a Howard A. Schneiderman Graduate Fellowship Award.

Author information

Authors and Affiliations

Authors

Contributions

C.F.G.-J. and M.V.P. researched data for the article, made substantial contributions to discussions of the content, wrote the article and reviewed and/or edited the article before submission.

Corresponding author

Correspondence to Maksim V. Plikus.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Panniculus carnosus

A layer of striated muscle below dermal adipose tissue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerrero-Juarez, C., Plikus, M. Emerging nonmetabolic functions of skin fat. Nat Rev Endocrinol 14, 163–173 (2018). https://doi.org/10.1038/nrendo.2017.162

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2017.162

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing