Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting thermogenesis in brown fat and muscle to treat obesity and metabolic disease

Key Points

  • Cold-induced thermogenesis is an important component of total energy expenditure and contributes to overall energy balance

  • Brown adipose tissue (BAT) has been known to be the effector organ for cold-induced thermogenesis for decades

  • The recent discovery of metabolically active BAT in human adults has made it clear that cold-induced thermogenesis is of physiologic and potentially therapeutic relevance

  • Cold-induced thermogenesis is a fundamental physiologic principle helping the body adapt to environmental challenges and is not limited to BAT

  • Recent research elucidated novel thermogenic mechanisms that contribute to cold-induced thermogenesis both in BAT and beige adipose tissue and in muscle

  • Targeting thermogenesis in adipose tissue and muscle might be a promising therapeutic tool against obesity and associated metabolic diseases

Abstract

Brown fat is emerging as an interesting and promising target for therapeutic intervention in obesity and metabolic disease. Activation of brown fat in humans is associated with marked improvement in metabolic parameters such as levels of free fatty acids and insulin sensitivity. Skeletal muscle is another important organ for thermogenesis, with the capacity to induce energy-consuming futile cycles. In this Review, we focus on how these two major thermogenic organs — brown fat and muscle — act and cooperate to maintain normal body temperature. Moreover, in the light of disease-relevant mechanisms, we explore the molecular pathways that regulate thermogenesis in brown fat and muscle. Brown adipocytes possess a unique cellular mechanism to convert chemical energy into heat: uncoupling protein 1 (UCP1), which can short-circuit the mitochondrial proton gradient. However, recent research demonstrates the existence of several other energy-expending 'futile' cycles in both adipocytes and muscle, such as creatine and calcium cycling. These mechanisms can complement or even substitute for UCP1-mediated thermogenesis. Moreover, they expand our view of cold-induced thermogenesis from a special feature of brown adipocytes to a more general physiological principle. Finally, we discuss how thermogenic mechanisms can be exploited to expend energy and hence offer new therapeutic opportunities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic model of physiologic cold response.
Figure 2: Human white adipose tissue (WAT) and brown adipose tissue (BAT).
Figure 3: Mechanisms of thermogenesis.
Figure 4: Potential therapeutic targets to expand brown adipose tissue (BAT).

Similar content being viewed by others

References

  1. Gessner, C. Medici Tigurini historiae animalium lib. I. de quadrupedibus viviparis (Christ. Froschoverum, 1551).

    Google Scholar 

  2. Smith, R. E. & Hock, R. J. Brown fat: thermogenic effector of arousal in hibernators. Science 140, 199–200 (1963).

    Article  CAS  PubMed  Google Scholar 

  3. Cypess, A. M. et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med. 360, 1509–1517 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee, P., Greenfield, J. R., Ho, K. K. & Fulham, M. J. A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 299, E601–E606 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Ouzzahra, Y., Havenith, G. & Redortier, B. Regional distribution of thermal sensitivity to cold at rest and during mild exercise in males. J. Therm. Biol. 37, 517–523 (2012).

    Article  Google Scholar 

  6. Bautista, D. M. et al. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448, 204–208 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Dhaka, A. et al. TRPM8 is required for cold sensation in mice. Neuron 54, 371–378 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Colburn, R. W. et al. Attenuated cold sensitivity in TRPM8 null mice. Neuron 54, 379–386 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Tajino, K. et al. Cooling-sensitive TRPM8 is thermostat of skin temperature against cooling. PLoS ONE 6, e17504 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nakamura, K. & Morrison, S. F. A thermosensory pathway that controls body temperature. Nat. Neurosci. 11, 62–71 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Nakamura, K. & Morrison, S. F. Central efferent pathways mediating skin cooling-evoked sympathetic thermogenesis in brown adipose tissue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R127–R136 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Nagashima, K., Nakai, S., Tanaka, M. & Kanosue, K. Neuronal circuitries involved in thermoregulation. Auton. Neurosci. 85, 18–25 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. White, K. D., Scoones, D. J. & Newman, P. K. Hypothermia in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 61, 369–375 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Morrison, S. F. & Nakamura, K. Central neural pathways for thermoregulation. Front. Biosci. (Landmark Ed.) 16, 74–104 (2011).

    Article  CAS  Google Scholar 

  15. Bini, G., Hagbarth, K., Hynninen, P. & Wallin, B. Thermoregulatory and rhythm-generating mechanisms governing the sudomotor and vasoconstrictor outflow in human cutaneous nerves. J. Physiol. 306, 537 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kellogg, D. L. Jr In vivo mechanisms of cutaneous vasodilation and vasoconstriction in humans during thermoregulatory challenges. J. Appl. Physiol. (1985) 100, 1709–1718 (2006).

    Article  CAS  Google Scholar 

  17. Morrison, S. F., Nakamura, K. & Madden, C. J. Central control of thermogenesis in mammals. Exp. Physiol. 93, 773–797 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nakamura, K. & Morrison, S. F. Central efferent pathways for cold-defensive and febrile shivering. J. Physiol. 589, 3641–3658 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eyolfson, D. A., Tikuisis, P., Xu, X., Weseen, G. & Giesbrecht, G. G. Measurement and prediction of peak shivering intensity in humans. Eur. J. Appl. Physiol. 84, 100–106 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Israel, D. J. & Pozos, R. S. Synchronized slow-amplitude modulations in the electromyograms of shivering muscles. J. Appl. Physiol. (1985) 66, 2358–2363 (1989).

    Article  CAS  Google Scholar 

  21. Foster, D. O. & Frydman, M. L. Tissue distribution of cold-induced thermogenesis in conscious warm- or cold-acclimated rats reevaluated from changes in tissue blood flow: the dominant role of brown adipose tissue in the replacement of shivering by nonshivering thermogenesis. Can. J. Physiol. Pharmacol. 57, 257–270 (1979).

    Article  CAS  PubMed  Google Scholar 

  22. Davis, T. R., Johnston, D. R., Bell, F. C. & Cremer, B. J. Regulation of shivering and non-shivering heat production during acclimation of rats. Am. J. Physiol. 198, 471–475 (1960).

    Article  CAS  PubMed  Google Scholar 

  23. Davis, T. R. Chamber cold acclimatization in man. J. Appl. Physiol. 16, 1011–1015 (1961).

    Article  CAS  PubMed  Google Scholar 

  24. Smith, R. E. & Roberts, J. C. Thermogenesis of brown adipose tissue in cold-acclimated rats. Am. J. Physiol. 206, 143–148 (1964).

    Article  CAS  PubMed  Google Scholar 

  25. Dawkins, M. J. & Scopes, J. W. Non-shivering thermogenesis and brown adipose tissue in the human new-born infant. Nature 206, 201–202 (1965).

    Article  CAS  PubMed  Google Scholar 

  26. Nicholls, D. G., Bernson, V. S. & Heaton, G. M. The identification of the component in the inner membrane of brown adipose tissue mitochondria responsible for regulating energy dissipation. Experientia Suppl. 32, 89–93 (1978).

    Article  CAS  PubMed  Google Scholar 

  27. Bouillaud, F., Raimbault, S. & Ricquier, D. The gene for rat uncoupling protein: complete sequence, structure of primary transcript and evolutionary relationship between exons. Biochem. Biophys. Res. Commun. 157, 783–792 (1988).

    Article  CAS  PubMed  Google Scholar 

  28. Kozak, L. P., Britton, J. H., Kozak, U. C. & Wells, J. M. The mitochondrial uncoupling protein gene. Correlation of exon structure to transmembrane domains. J. Biol. Chem. 263, 12274–12277 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. Murano, I., Barbatelli, G., Giordano, A. & Cinti, S. Noradrenergic parenchymal nerve fiber branching after cold acclimatisation correlates with brown adipocyte density in mouse adipose organ. J. Anat. 214, 171–178 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Frontini, A. & Cinti, S. Distribution and development of brown adipocytes in the murine and human adipose organ. Cell Metab. 11, 253–256 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Astrup, A., Lundsgaard, C., Madsen, J. & Christensen, N. J. Enhanced thermogenic responsiveness during chronic ephedrine treatment in man. Am. J. Clin. Nutr. 42, 83–94 (1985).

    Article  CAS  PubMed  Google Scholar 

  32. Cunningham, S. et al. The characterization and energetic potential of brown adipose tissue in man. Clin. Sci. (Lond.) 69, 343–348 (1985).

    Article  CAS  Google Scholar 

  33. Lean, M. E., James, W. P., Jennings, G. & Trayhurn, P. Brown adipose tissue uncoupling protein content in human infants, children and adults. Clin. Sci. (Lond.) 71, 291–297 (1986).

    Article  CAS  Google Scholar 

  34. Saito, M. et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van Marken Lichtenbelt, W. D. et al. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Virtanen, K. A. et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Cannon, B. & Nedergaard, J. Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Symonds, M. E. et al. Thermal imaging to assess age-related changes of skin temperature within the supraclavicular region co-locating with brown adipose tissue in healthy children. J. Pediatr. 161, 892–898 (2012).

    Article  PubMed  Google Scholar 

  39. Loncar, D. Convertible adipose tissue in mice. Cell Tissue Res. 266, 149–161 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Cousin, B. et al. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J. Cell Sci. 103, 931–942 (1992).

    Article  CAS  PubMed  Google Scholar 

  41. Yoneshiro, T. et al. Recruited brown adipose tissue as an antiobesity agent in humans. J. Clin. Invest. 123, 3404–3408 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hanssen, M. J. et al. Short-term cold acclimation recruits brown adipose tissue in obese humans. Diabetes 65, 1179–1189 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Hanssen, M. J. et al. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat. Med. 21, 863–865 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Wu, J. et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366–376 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shinoda, K. et al. Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat. Med. 21, 389–394 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Walden, T. B., Hansen, I. R., Timmons, J. A., Cannon, B. & Nedergaard, J. Recruited versus nonrecruited molecular signatures of brown, “brite,” and white adipose tissues. Am. J. Physiol. Endocrinol. Metab. 302, E19–E31 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Shabalina, I. G. et al. UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Rep. 5, 1196–1203 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Okamatsu-Ogura, Y. et al. Thermogenic ability of uncoupling protein 1 in beige adipocytes in mice. PLoS ONE 8, e84229 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Collins, S., Daniel, K. W., Petro, A. E. & Surwit, R. S. Strain-specific response to β 3-adrenergic receptor agonist treatment of diet-induced obesity in mice. Endocrinology 138, 405–413 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Guerra, C., Koza, R. A., Yamashita, H., Walsh, K. & Kozak, L. P. Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J. Clin. Invest. 102, 412–420 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Xue, B. et al. Genetic variability affects the development of brown adipocytes in white fat but not in interscapular brown fat. J. Lipid Res. 48, 41–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Atit, R. et al. β-Catenin activation is necessary and sufficient to specify the dorsal dermal fate in the mouse. Dev. Biol. 296, 164–176 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Seale, P. et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961–967 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sanchez-Gurmaches, J. & Guertin, D. A. Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed. Nat. Commun. 5, 4099 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Lee, Y. H., Petkova, A. P., Mottillo, E. P. & Granneman, J. G. In vivo identification of bipotential adipocyte progenitors recruited by β3-adrenoceptor activation and high-fat feeding. Cell Metab. 15, 480–491 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Min, S. Y. et al. Human 'brite/beige' adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice. Nat. Med. 22, 312–318 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gealekman, O. et al. Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation 123, 186–194 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wang, Q. A., Tao, C., Gupta, R. K. & Scherer, P. E. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat. Med. 19, 1338–1344 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Lee, Y. H., Petkova, A. P., Konkar, A. A. & Granneman, J. G. Cellular origins of cold-induced brown adipocytes in adult mice. FASEB J. 29, 286–299 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Himms-Hagen, J. et al. Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am. J. Physiol. Cell Physiol. 279, C670–C681 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Barbatelli, G. et al. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am. J. Physiol. Endocrinol. Metab. 298, E1244–E1253 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Rosenwald, M., Perdikari, A., Rulicke, T. & Wolfrum, C. Bi-directional interconversion of brite and white adipocytes. Nat. Cell Biol. 15, 659–667 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Yoneshiro, T. et al. Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans. Obesity 19, 1755–1760 (2011).

    Article  PubMed  Google Scholar 

  64. Vijgen, G. H. et al. Brown adipose tissue in morbidly obese subjects. PLoS ONE 6, e17247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Scarpace, P. J. & Matheny, M. Thermogenesis in brown adipose tissue with age: post-receptor activation by forskolin. Pflugers Arch. 431, 388–394 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Betz, M. J. et al. Isoenergetic feeding of low carbohydrate-high fat diets does not increase brown adipose tissue thermogenic capacity in rats. PLoS ONE 7, e38997 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Heaton, J. M. The distribution of brown adipose tissue in the human. J. Anat. 112, 35–39 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Becker, A. S., Nagel, H. W., Wolfrum, C. & Burger, I. A. Anatomical grading for metabolic activity of brown adipose tissue. PLoS ONE 11, e0149458 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Lidell, M. E. et al. Evidence for two types of brown adipose tissue in humans. Nat. Med. 19, 631–634 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Cypess, A. M. et al. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat. Med. 19, 635–639 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bakker, L. E. et al. Brown adipose tissue volume in healthy lean south Asian adults compared with white Caucasians: a prospective, case-controlled observational study. Lancet Diabetes Endocrinol. 2, 210–217 (2014).

    Article  PubMed  Google Scholar 

  72. Yoneshiro, T. et al. Impact of UCP1 and β3AR gene polymorphisms on age-related changes in brown adipose tissue and adiposity in humans. Int. J. Obes. (Lond.) 37, 993–998 (2013).

    Article  CAS  Google Scholar 

  73. Claussnitzer, M. et al. FTO obesity variant circuitry and adipocyte browning in humans. N. Engl. J. Med. 373, 895–907 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Berg, J. M., Tymoczko, J. L. & Stryer, L. Biochemistry (W. H. Freeman, 2007).

    Google Scholar 

  75. Fedorenko, A., Lishko, P. V. & Kirichok, Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151, 400–413 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. van der Lans, A. A. et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J. Clin. Invest. 123, 3395–3403 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Blondin, D. P. et al. Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J. Clin. Endocrinol. Metab. 99, E438–E446 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ouellet, V. et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J. Clin. Invest. 122, 545–552 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Blondin, D. P. et al. Dietary fatty acid metabolism of brown adipose tissue in cold-acclimated men. Nat. Commun. 8, 14146 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lundstrom, E. et al. Magnetic resonance imaging cooling-reheating protocol indicates decreased fat fraction via lipid consumption in suspected brown adipose tissue. PLoS ONE 10, e0126705 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Oelkrug, R., Heldmaier, G. & Meyer, C. W. Torpor patterns, arousal rates, and temporal organization of torpor entry in wildtype and UCP1-ablated mice. J. Comp. Physiol. B 181, 137–145 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Liu, X. et al. Paradoxical resistance to diet-induced obesity in UCP1-deficient mice. J. Clin. Invest. 111, 399–407 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kozak, L. P. Brown fat and the myth of diet-induced thermogenesis. Cell Metab. 11, 263–267 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Enerback, S. et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90–94 (1997).

    Article  CAS  PubMed  Google Scholar 

  85. Meyer, C. W. et al. Adaptive thermogenesis and thermal conductance in wild-type and UCP1-KO mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R1396–R1406 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ukropec, J., Anunciado, R. P., Ravussin, Y., Hulver, M. W. & Kozak, L. P. UCP1-independent thermogenesis in white adipose tissue of cold-acclimated Ucp1−/− mice. J. Biol. Chem. 281, 31894–31908 (2006).

    CAS  PubMed  Google Scholar 

  87. Gong, D. W., Bi, S., Weintraub, B. D. & Reitman, M. Rat mitochondrial glycerol-3-phosphate dehydrogenase gene: multiple promoters, high levels in brown adipose tissue, and tissue-specific regulation by thyroid hormone. DNA Cell Biol. 17, 301–309 (1998).

    Article  CAS  PubMed  Google Scholar 

  88. Koza, R. A. et al. Sequence and tissue-dependent RNA expression of mouse FAD-linked glycerol-3-phosphate dehydrogenase. Arch. Biochem. Biophys. 336, 97–104 (1996).

    Article  CAS  PubMed  Google Scholar 

  89. Brown, L. J. et al. Normal thyroid thermogenesis but reduced viability and adiposity in mice lacking the mitochondrial glycerol phosphate dehydrogenase. J. Biol. Chem. 277, 32892–32898 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Anunciado-Koza, R., Ukropec, J., Koza, R. A. & Kozak, L. P. Inactivation of UCP1 and the glycerol phosphate cycle synergistically increases energy expenditure to resist diet-induced obesity. J. Biol. Chem. 283, 27688–27697 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kazak, L. et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell 163, 643–655 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Watanabe, M. et al. Synchronized changes in transcript levels of genes activating cold exposure-induced thermogenesis in brown adipose tissue of experimental animals. Biochim. Biophys. Acta 1777, 104–112 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Svensson, P. A. et al. Gene expression in human brown adipose tissue. Int. J. Mol. Med. 27, 227–232 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Muller, S. et al. Proteomic analysis of human brown adipose tissue reveals utilization of coupled and uncoupled energy expenditure pathways. Sci. Rep. 6, 30030 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bertholet, A. M. et al. Mitochondrial patch clamp of beige adipocytes reveals UCP1-positive and UCP1-negative cells both exhibiting futile creatine cycling. Cell Metab. 25, 811–822 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Golozoubova, V. et al. Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold. FASEB J. 15, 2048–2050 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Kukat, A. et al. Loss of UCP2 attenuates mitochondrial dysfunction without altering ROS production and uncoupling activity. PLoS Genet. 10, e1004385 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Samec, S., Seydoux, J. & Dulloo, A. G. Role of UCP homologues in skeletal muscles and brown adipose tissue: mediators of thermogenesis or regulators of lipids as fuel substrate? FASEB J. 12, 715–724 (1998).

    Article  CAS  PubMed  Google Scholar 

  99. Millet, L. et al. Increased uncoupling protein-2 and -3 mRNA expression during fasting in obese and lean humans. J. Clin. Invest. 100, 2665–2670 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nedergaard, J. & Cannon, B. The 'novel' 'uncoupling' proteins UCP2 and UCP3: what do they really do? Pros and cons for suggested functions. Exp. Physiol. 88, 65–84 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Vozza, A. et al. UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proc. Natl Acad. Sci. USA 111, 960–965 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Schrauwen, P., Westerterp-Plantenga, M. S., Kornips, E., Schaart, G. & van Marken Lichtenbelt, W. D. The effect of mild cold exposure on UCP3 mRNA expression and UCP3 protein content in humans. Int. J. Obes. Relat. Metab. Disord. 26, 450–457 (2002).

    Article  CAS  PubMed  Google Scholar 

  103. Bal, N. C. et al. Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat. Med. 18, 1575–1579 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. de Meis, L. et al. The thermogenic activity of rat brown adipose tissue and rabbit white muscle Ca2+-ATPase. IUBMB Life 57, 337–345 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Asahi, M. et al. Sarcolipin regulates sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) by binding to transmembrane helices alone or in association with phospholamban. Proc. Natl Acad. Sci. USA 100, 5040–5045 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Smith, W. S., Broadbridge, R., East, J. M. & Lee, A. G. Sarcolipin uncouples hydrolysis of ATP from accumulation of Ca2+ by the Ca2+-ATPase of skeletal-muscle sarcoplasmic reticulum. Biochem. J. 361, 277–286 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Rowland, L. A., Bal, N. C., Kozak, L. P. & Periasamy, M. Uncoupling protein 1 and sarcolipin are required to maintain optimal thermogenesis, and loss of both systems compromises survival of mice under cold stress. J. Biol. Chem. 290, 12282–12289 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Maurya, S. K. et al. Sarcolipin is a key determinant of the basal metabolic rate, and its overexpression enhances energy expenditure and resistance against diet-induced obesity. J. Biol. Chem. 290, 10840–10849 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fill, M. & Copello, J. A. Ryanodine receptor calcium release channels. Physiol. Rev. 82, 893–922 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Robinson, R., Carpenter, D., Shaw, M. A., Halsall, J. & Hopkins, P. Mutations in RYR1 in malignant hyperthermia and central core disease. Hum. Mutat. 27, 977–989 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Rosenberg, H., Pollock, N., Schiemann, A., Bulger, T. & Stowell, K. Malignant hyperthermia: a review. Orphanet J. Rare Dis. 10, 93 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Mitchell, C. S. et al. Resistance to thyroid hormone is associated with raised energy expenditure, muscle mitochondrial uncoupling, and hyperphagia. J. Clin. Invest. 120, 1345–1354 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Martinez de Mena, R., Scanlan, T. S. & Obregon, M. J. The T3 receptor β1 isoform regulates UCP1 and D2 deiodinase in rat brown adipocytes. Endocrinology 151, 5074–5083 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Ribeiro, M. O. et al. Expression of uncoupling protein 1 in mouse brown adipose tissue is thyroid hormone receptor-β isoform specific and required for adaptive thermogenesis. Endocrinology 151, 432–440 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Miyabara, E. H. et al. Thyroid hormone receptor-β-selective agonist GC-24 spares skeletal muscle type I to II fiber shift. Cell Tissue Res. 321, 233–241 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Rowland, L. A., Bal, N. C. & Periasamy, M. The role of skeletal-muscle-based thermogenic mechanisms in vertebrate endothermy. Biol. Rev. Camb. Philos. Soc. 90, 1279–1297 (2015).

    Article  PubMed  Google Scholar 

  117. Sparks, L. M. et al. ANT1-mediated fatty acid-induced uncoupling as a target for improving myocellular insulin sensitivity. Diabetologia 59, 1030–1039 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Vosselman, M. J. et al. Low brown adipose tissue activity in endurance-trained compared with lean sedentary men. Int. J. Obes. (Lond.) 39, 1696–1702 (2015).

    Article  CAS  Google Scholar 

  119. Befroy, D. E. et al. Increased substrate oxidation and mitochondrial uncoupling in skeletal muscle of endurance-trained individuals. Proc. Natl Acad. Sci. USA 105, 16701–16706 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Keith, S. W. et al. Putative contributors to the secular increase in obesity: exploring the roads less traveled. Int. J. Obes. (Lond.) 30, 1585–1594 (2006).

    Article  CAS  Google Scholar 

  121. Corpeleijn, E. et al. Impaired skeletal muscle substrate oxidation in glucose-intolerant men improves after weight loss. Obesity 16, 1025–1032 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Yu, X. X., Lewin, D. A., Forrest, W. & Adams, S. H. Cold elicits the simultaneous induction of fatty acid synthesis and β-oxidation in murine brown adipose tissue: prediction from differential gene expression and confirmation in vivo. FASEB J. 16, 155–168 (2002).

    Article  PubMed  Google Scholar 

  123. Jespersen, N. Z. et al. A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metab. 17, 798–805 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Kern, P. A. et al. The effects of temperature and seasons on subcutaneous white adipose tissue in humans: evidence for thermogenic gene induction. J. Clin. Endocrinol. Metab. 99, E2772–E2779 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Betz, M. J. et al. Presence of brown adipocytes in retroperitoneal fat from patients with benign adrenal tumors: relationship with outdoor temperature. J. Clin. Endocrinol. Metab. 98, 4097–4104 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. van Ooijen, A. M., van Marken Lichtenbelt, W. D., van Steenhoven, A. A. & Westerterp, K. R. Seasonal changes in metabolic and temperature responses to cold air in humans. Physiol. Behav. 82, 545–553 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Nishimura, T. et al. Seasonal variation of non-shivering thermogenesis (NST) during mild cold exposure. J. Physiol. Anthropol. 34, 11 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Lee, P. et al. Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans. Diabetes 63, 3686–3698 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Pfannenberg, C. et al. Impact of age on the relationships of brown adipose tissue with sex and adiposity in humans. Diabetes 59, 1789–1793 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Vijgen, G. H. et al. Increase in brown adipose tissue activity after weight loss in morbidly obese subjects. J. Clin. Endocrinol. Metab. 97, E1229–E1233 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Wijers, S. L., Saris, W. H. & van Marken Lichtenbelt, W. D. Cold-induced adaptive thermogenesis in lean and obese. Obesity (Silver Spring) 18, 1092–1099 (2010).

    Article  Google Scholar 

  132. Simonsen, L., Bulow, J., Madsen, J. & Christensen, N. J. Thermogenic response to epinephrine in the forearm and abdominal subcutaneous adipose tissue. Am. J. Physiol. 263, E850–E855 (1992).

    CAS  PubMed  Google Scholar 

  133. Wijers, S. L., Schrauwen, P., Saris, W. H. & van Marken Lichtenbelt, W. D. Human skeletal muscle mitochondrial uncoupling is associated with cold induced adaptive thermogenesis. PLoS ONE 3, e1777 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Blondin, D. P. et al. Four-week cold acclimation in adult humans shifts uncoupling thermogenesis from skeletal muscles to brown adipose tissue. J. Physiol. 595, 2099–2113 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Betz, M. J. & Enerback, S. Therapeutic prospects of metabolically active brown adipose tissue in humans. Front. Endocrinol. (Lausanne) 2, 86 (2011).

    Article  CAS  Google Scholar 

  136. Gnad, T. et al. Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors. Nature 516, 395–399 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to those colleagues whose work has only been cursorily cited or not cited owing to space constrains. M.J.B. is supported by a grant from the Goldschmidt-Jacobson Foundation, Basel, Switzerland, and a career development grant from the Swiss National Science Foundation. S.E. is supported by grants from the Swedish Research Council (2014–2516), the Knut and Alice Wallenberg Foundation, the Sahlgrenska University Hospital (LUA-ALF), the Novo Nordisk Foundation, the Inga Britt and Arne Lundgren Foundation, the Torsten Söderberg Foundation and the King Gustaf V and Queen Victoria Freemason Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M.J.B. and S.E. researched data for the article, contributed to discussions of the content, wrote the article and reviewed and/or edited the article before submission.

Corresponding author

Correspondence to Sven Enerbäck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Betz, M., Enerbäck, S. Targeting thermogenesis in brown fat and muscle to treat obesity and metabolic disease. Nat Rev Endocrinol 14, 77–87 (2018). https://doi.org/10.1038/nrendo.2017.132

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2017.132

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing