Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lipidomics for studying metabolism

Key Points

  • Lipidomics uses the principles and techniques of analytical chemistry to study the entire lipid content of a cell, which is known as the lipidome

  • Mass spectrometry (MS)-based lipidomics techniques such as liquid-chromatography coupled MS, shotgun lipidomics, MS imaging and ion-mobility MS have key roles in lipidomics

  • Knowledge of lipid metabolic pathways and networks, and bioinformatic tools, are essential for studying lipid metabolism using lipidomics

  • The applications of lipidomics for studying lipid metabolism broadens our understanding of the molecular mechanisms that underpin metabolic disease states

Abstract

Many thousands of lipid species exist and their metabolism is interwoven via numerous pathways and networks. These networks can also change in response to cellular environment alterations, such as exercise or development of a disease. Measuring such alterations and understanding the pathways involved is crucial to fully understand cellular metabolism. Such demands have catalysed the emergence of lipidomics, which enables the large-scale study of lipids using the principles of analytical chemistry. Mass spectrometry, largely due to its analytical power and rapid development of new instruments and techniques, has been widely used in lipidomics and greatly accelerated advances in the field. This Review provides an introduction to lipidomics and describes some common, but important, cellular metabolic networks that can aid our understanding of metabolic pathways. Some representative applications of lipidomics for studying lipid metabolism and metabolic diseases are highlighted, as well as future applications for the use of lipidomics in studying metabolic pathways.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Glycerophospholipid classes and subclasses.
Figure 2: Lipidomics for studying metabolism.
Figure 3: The sphingolipid metabolic network initiated from palmitoyl-CoA and serine.
Figure 4: Glycerophospholipid biosynthesis pathways.
Figure 5: Ether-containing lipid biosynthesis pathways.
Figure 6: Long-chain and very long-chain fatty acid biosynthesis in mammals.

Similar content being viewed by others

References

  1. Kishimoto, K., Urade, R., Ogawa, T. & Moriyama, T. Nondestructive quantification of neutral lipids by thin-layer chromatography and laser-fluorescent scanning: suitable methods for 'lipidome' analysis. Biochem. Biophys. Res. Commun. 281, 657–662 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Yetukuri, L. et al. Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis. BMC Syst. Biol. 1, 12 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Han, X. & Jiang, X. A review of lipidomic technologies applicable to sphingolipidomics and their relevant applications. Eur. J. Lipid Sci. Technol. 111, 39–52 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang, K., Cheng, H., Gross, R. W. & Han, X. Automated lipid identification and quantification by multi-dimensional mass spectrometry-based shotgun lipidomics. Anal. Chem. 81, 4356–4368 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fahy, E. et al. A comprehensive classification system for lipids. J. Lipid Res. 46, 839–861 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Han, X. & Gross, R. W. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J. Lipid Res. 44, 1071–1079 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Lagarde, M., Geloen, A., Record, M., Vance, D. & Spener, F. Lipidomics is emerging. Biochim. Biophys. Acta 1634, 61 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Lee, S. H., Williams, M. V., DuBois, R. N. & Blair, I. A. Targeted lipidomics using electron capture atmospheric pressure chemical ionization mass spectrometry. Rapid Commun. Mass Spectrom. 17, 2168–2176 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Esch, S. W., Williams, T. D., Biswas, S., Chakrabarty, A. & Levine, S. M. Sphingolipid profile in the CNS of the twitcher (globoid cell leukodystrophy) mouse: a lipidomics approach. Cell. Mol. Biol. 49, 779–787 (2003).

    CAS  PubMed  Google Scholar 

  10. Cheng, H., Xu, J., McKeel, D. W. Jr & Han, X. Specificity and potential mechanism of sulfatide deficiency in Alzheimer's disease: an electrospray ionization mass spectrometric study. Cell. Mol. Biol. 49, 809–818 (2003).

    CAS  PubMed  Google Scholar 

  11. Han, X., Yang, K. & Gross, R. W. Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom. Rev. 31, 134–178 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Blanksby, S. J. & Mitchell, T. W. Advances in mass spectrometry for lipidomics. Annu. Rev. Anal. Chem. 3, 433–465 (2010).

    Article  CAS  Google Scholar 

  13. Vance, D. E. & Vance, J. E. Biochemistry of Lipids, Lipoproteins and Membranes (Elsevier Science, 2008).

    Google Scholar 

  14. Han, X. & Gross, R. W. Shotgun lipidomics: multi-dimensional mass spectrometric analysis of cellular lipidomes. Expert Rev. Proteomics 2, 253–264 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Han, X., Yang, K. & Gross, R. W. Microfluidics-based electrospray ionization enhances intrasource separation of lipid classes and extends identification of individual molecular species through multi-dimensional mass spectrometry: development of an automated high throughput platform for shotgun lipidomics. Rapid Commun. Mass Spectrom. 22, 2115–2124 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Han, X. & Gross, R. W. Structural determination of lysophospholipid regioisomers by electrospray ionization tandem mass spectrometry. J. Am. Chem. Soc. 118, 451–457 (1996).

    Article  CAS  Google Scholar 

  17. Yang, K., Zhao, Z., Gross, R. W. & Han, X. Systematic analysis of choline-containing phospholipids using multi-dimensional mass spectrometry-based shotgun lipidomics. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877, 2924–2936 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, M., Han, R. H. & Han, X. Fatty acidomics: global analysis of lipid species containing a carboxyl group with a charge-remote fragmentation-assisted approach. Anal. Chem. 85, 9312–9320 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Wang, M., Wang, C., Han, R. H. & Han, X. Novel advances in shotgun lipidomics for biology and medicine. Prog. Lipid Res. 61, 83–108 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Kofeler, H. C., Fauland, A., Rechberger, G. N. & Trotzmuller, M. Mass spectrometry based lipidomics: an overview of technological platforms. Metabolites 2, 19–38 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Cajka, T. & Fiehn, O. Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. Trends Analyt. Chem. 61, 192–206 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Quehenberger, O. et al. Lipidomics reveals a remarkable diversity of lipids in human plasma. J. Lipid Res. 51, 3299–3305 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Henning, P. A., Merrill, A. H. & Wang, M. D. Dynamic pathway modeling of sphingolipid metabolism. Conf. Proc. IEEE Eng. Med. Biol. Soc. 4, 2913–2916 (2004).

    Google Scholar 

  24. Kiebish, M. A. et al. Dynamic simulation of cardiolipin remodeling: greasing the wheels for an interpretative approach to lipidomics. J. Lipid Res. 51, 2153–2170 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zarringhalam, K. et al. Statistical analysis of the processes controlling choline and ethanolamine glycerophospholipid molecular species composition. PLoS ONE 7, e37293 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Han, R. H., Wang, M., Fang, X. & Han, X. Simulation of triacylglycerol ion profiles: bioinformatics for interpretation of triacylglycerol biosynthesis. J. Lipid Res. 54, 1023–1032 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wakelam, M. J., Pettitt, T. R. & Postle, A. D. Lipidomic analysis of signaling pathways. Methods Enzymol. 432, 233–246 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Griffiths, W. J. Tandem mass spectrometry in the study of fatty acids, bile acids, and steroids. Mass Spectrom. Rev. 22, 81–152 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Griffiths, W. J. & Wang, Y. Analysis of neurosterols by GC-MS and LC-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877, 2778–2805 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Vanier, M. T. Lysosomal diseases: biochemical pathways and investigations. Handb. Clin. Neurol. 113, 1695–1699 (2013).

    Article  PubMed  Google Scholar 

  31. Selvaraj, S., Krishnaswamy, S., Devashya, V., Sethuraman, S. & Krishnan, U. M. Influence of membrane lipid composition on flavonoid-membrane interactions: implications on their biological activity. Prog. Lipid Res. 58, 1–13 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Gault, C. R., Obeid, L. M. & Hannun, Y. A. An overview of sphingolipid metabolism: from synthesis to breakdown. Adv. Exp. Med. Biol. 688, 1–23 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Merrill, A. H. Jr et al. Sphingolipidomics: a valuable tool for understanding the roles of sphingolipids in biology and disease. J. Lipid Res. 50, S97–S102 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Wang, C., Wang, M. & Han, X. Applications of mass spectrometry for cellular lipid analysis. Mol. Biosyst. 11, 698–713 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Pruett, S. T. et al. Biodiversity of sphingoid bases ('sphingosines') and related amino alcohols. J. Lipid Res. 49, 1621–1639 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zitomer, N. C. et al. Ceramide synthase inhibition by fumonisin B1 causes accumulation of 1-deoxysphinganine: a novel category of bioactive 1-deoxysphingoid bases and 1-deoxydihydroceramides biosynthesized by mammalian cell lines and animals. J. Biol. Chem. 284, 4786–4795 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Levy, M. & Futerman, A. H. Mammalian ceramide synthases. IUBMB Life 62, 347–356 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rodriguez-Cuenca, S., Barbarroja, N. & Vidal-Puig, A. Dihydroceramide desaturase 1, the gatekeeper of ceramide induced lipotoxicity. Biochim. Biophys. Acta 1851, 40–50 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Stiban, J., Tidhar, R. & Futerman, A. H. Ceramide synthases: roles in cell physiology and signaling. Adv. Exp. Med. Biol. 688, 60–71 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Lingwood, D. & Simons, K. Lipid rafts as a membrane-organizing principle. Science 327, 46–50 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Rog, T. & Vattulainen, I. Cholesterol, sphingolipids, and glycolipids: what do we know about their role in raft-like membranes? Chem. Phys. Lipids 184, 82–104 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. D'Angelo, G., Capasso, S., Sticco, L. & Russo, D. Glycosphingolipids: synthesis and functions. FEBS J. 280, 6338–6353 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Hakomori, S. & Igarashi, Y. Functional role of glycosphingolipids in cell recognition and signaling. J. Biochem. 118, 1091–1103 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Summers, S. A. Ceramides in insulin resistance and lipotoxicity. Prog. Lipid Res. 45, 42–72 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Chaurasia, B. & Summers, S. A. Ceramides — lipotoxic inducers of metabolic disorders. Trends Endocrinol. Metab. 26, 538–550 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, C., Klett, E. L. & Coleman, R. A. Lipid signals and insulin resistance. Clin. Lipidol. 8, 659–667 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vance, J. E. Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids. J. Lipid Res. 49, 1377–1387 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Vance, J. E. & Steenbergen, R. Metabolism and functions of phosphatidylserine. Prog. Lipid Res. 44, 207–234 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Shindou, H. & Shimizu, T. Acyl-CoA:lysophospholipid acyltransferases. J. Biol. Chem. 284, 1–5 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Yang, K., Zhao, Z., Gross, R. W. & Han, X. Shotgun lipidomics identifies a paired rule for the presence of isomeric ether phospholipid molecular species. PLoS ONE 2, e1368 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Fagone, P. & Jackowski, S. Membrane phospholipid synthesis and endoplasmic reticulum function. J. Lipid Res. 50, S311–S316 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Nagan, N. & Zoeller, R. A. Plasmalogens: biosynthesis and functions. Prog. Lipid Res. 40, 199–229 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Mayr, J. A. Lipid metabolism in mitochondrial membranes. J. Inherit. Metab. Dis. 38, 137–144 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Feillet-Coudray, C., Fouret, G., Casas, F. & Coudray, C. Impact of high dietary lipid intake and related metabolic disorders on the abundance and acyl composition of the unique mitochondrial phospholipid, cardiolipin. J. Bioenerg. Biomembr. 46, 447–457 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Hishikawa, D., Hashidate, T., Shimizu, T. & Shindou, H. Diversity and function of membrane glycerophospholipids generated by the remodeling pathway in mammalian cells. J. Lipid Res. 55, 799–807 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bogdanov, M., Dowhan, W. & Vitrac, H. Lipids and topological rules governing membrane protein assembly. Biochim. Biophys. Acta 1843, 1475–1488 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Pinot, M. et al. Polyunsaturated phospholipids facilitate membrane deformation and fission by endocytic proteins. Science 345, 693–697 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Cintra, D. E. et al. Lipid profile of rats fed high-fat diets based on flaxseed, peanut, trout, or chicken skin. Nutrition 22, 197–205 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. McMahon, H. T. & Boucrot, E. Membrane curvature at a glance. J. Cell Sci. 128, 1065–1070 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Neuschwander-Tetri, B. A. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology 52, 774–788 (2010).

    Article  PubMed  CAS  Google Scholar 

  61. Unger, R. H. & Scherer, P. E. Gluttony, sloth and the metabolic syndrome: a roadmap to lipotoxicity. Trends Endocrinol. Metab. 21, 345–352 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Coleman, R. A. & Lee, D. P. Enzymes of triacylglycerol synthesis and their regulation. Prog. Lipid Res. 43, 134–176 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Dulloo, A. G., Gubler, M., Montani, J. P., Seydoux, J. & Solinas, G. Substrate cycling between de novo lipogenesis and lipid oxidation: a thermogenic mechanism against skeletal muscle lipotoxicity and glucolipotoxicity. Int. J. Obes. Relat. Metab. Disord. 28, S29–S37 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Bartz, R. et al. Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J. Lipid Res. 48, 837–847 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Yang, K., Jenkins, C. M., Dilthey, B. & Gross, R. W. Multidimensional mass spectrometry-based shotgun lipidomics analysis of vinyl ether diglycerides. Anal. Bioanal. Chem. 407, 5199–5210 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nakamura, M. T. & Nara, T. Y. Structure, function, and dietary regulation of Δ6, Δ5, and Δ9 desaturases. Annu. Rev. Nutr. 24, 345–376 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Nagle, C. A., Klett, E. L. & Coleman, R. A. Hepatic triacylglycerol accumulation and insulin resistance. J. Lipid Res. 50, S74–S79 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Christie, W. W. & Han, X. Lipid Analysis: Isolation, Separation, Identification and Lipidomic Analysis (The Oily Press, 2010).

    Book  Google Scholar 

  69. Wang, X., Cao, Y., Fu, Y., Guo, G. & Zhang, X. Liver fatty acid composition in mice with or without nonalcoholic fatty liver disease. Lipids Health Dis. 10, 234 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Holloway, P. W. & Wakil, S. J. Synthesis of fatty acids in animal tissues. II. The occurrence and biosynthesis of cis-vaccenic acid. J. Biol. Chem. 239, 2489–2495 (1964).

    Article  CAS  PubMed  Google Scholar 

  71. Taniguchi, M. & Okazaki, T. The role of sphingomyelin and sphingomyelin synthases in cell death, proliferation and migration-from cell and animal models to human disorders. Biochim. Biophys. Acta 1841, 692–703 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Shevchenko, A. & Simons, K. Lipidomics: coming to grips with lipid diversity. Nat. Rev. Mol. Cell Biol. 11, 593–598 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Kolovou, G., Kolovou, V. & Mavrogeni, S. Lipidomics in vascular health: current perspectives. Vasc. Health Risk Manag. 11, 333–342 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mancuso, D. J. et al. Genetic ablation of calcium-independent phospholipase A2γ prevents obesity and insulin resistance during high fat feeding by mitochondrial uncoupling and increased adipocyte fatty acid oxidation. J. Biol. Chem. 285, 36495–36510 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cedars, A., Jenkins, C. M., Mancuso, D. J. & Gross, R. W. Calcium-independent phospholipases in the heart: mediators of cellular signaling, bioenergetics, and ischemia-induced electrophysiologic dysfunction. J. Cardiovasc. Pharmacol. 53, 277–289 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Balgoma, D., Montero, O., Balboa, M. A. & Balsinde, J. Lipidomic approaches to the study of phospholipase A2-regulated phospholipid fatty acid incorporation and remodeling. Biochimie 92, 645–650 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Brown, H. A., Henage, L. G., Preininger, A. M., Xiang, Y. & Exton, J. H. Biochemical analysis of phospholipase D. Methods Enzymol. 434, 49–87 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Clark, J. et al. Quantification of PtdInsP3 molecular species in cells and tissues by mass spectrometry. Nat. Methods 8, 267–272 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Luo, B., Regier, D. S., Prescott, S. M. & Topham, M. K. Diacylglycerol kinases. Cell. Signal. 16, 983–989 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Carman, G. M. & Han, G. S. Phosphatidic acid phosphatase, a key enzyme in the regulation of lipid synthesis. J. Biol. Chem. 284, 2593–2597 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Osman, C., Voelker, D. R. & Langer, T. Making heads or tails of phospholipids in mitochondria. J. Cell Biol. 192, 7–16 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lai, L. et al. A role for peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1) in the regulation of cardiac mitochondrial phospholipid biosynthesis. J. Biol. Chem. 289, 2250–2259 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Infante, J. P. & Huszagh, V. A. On the molecular etiology of decreased arachidonic (20:4n-6), docosapentaenoic (22:5n-6) and docosahexaenoic (22:6n-3) acids in Zellweger syndrome and other peroxisomal disorders. Mol. Cell. Biochem. 168, 101–115 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Infante, J. P. & Huszagh, V. A. Impaired arachidonic (20:4n-6) and docosahexaenoic (22:6n-3) acid synthesis by phenylalanine metabolites as etiological factors in the neuropathology of phenylketonuria. Mol. Genet. Metab. 72, 185–198 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Sprecher, H., Luthria, D. L., Mohammed, B. S. & Baykousheva, S. P. Reevaluation of the pathways for the biosynthesis of polyunsaturated fatty acids. J. Lipid Res. 36, 2471–2477 (1995).

    Article  CAS  PubMed  Google Scholar 

  86. Lai, L. et al. Transcriptional coactivators PGC-1α and PGC-lβ control overlapping programs required for perinatal maturation of the heart. Genes Dev. 22, 1948–1961 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mejia, E. M., Nguyen, H. & Hatch, G. M. Mammalian cardiolipin biosynthesis. Chem. Phys. Lipids 179, 11–16 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Saini-Chohan, H. K. et al. Cardiolipin biosynthesis and remodeling enzymes are altered during development of heart failure. J. Lipid Res. 50, 1600–1608 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Baile, M. G., Lu, Y. W. & Claypool, S. M. The topology and regulation of cardiolipin biosynthesis and remodeling in yeast. Chem. Phys. Lipids 179, 25–31 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Barth, P. G. et al. X-linked cardioskeletal myopathy and neutropenia (Barth syndrome): an update. Am. J. Med. Genet. A 126A, 349–354 (2004).

    Article  PubMed  Google Scholar 

  91. Xu, Y., Kelley, R. I., Blanck, T. J. & Schlame, M. Remodeling of cardiolipin by phospholipid transacylation. J. Biol. Chem. 278, 51380–51385 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Xu, Y., Malhotra, A., Ren, M. & Schlame, M. The enzymatic function of tafazzin. J. Biol. Chem. 281, 39217–39224 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Schlame, M. et al. Deficiency of tetralinoleoyl-cardiolipin in Barth syndrome. Ann. Neurol. 51, 634–637 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Hauff, K. D. & Hatch, G. M. Cardiolipin metabolism and Barth Syndrome. Prog. Lipid Res. 45, 91–101 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Han, X. et al. Shotgun lipidomics identifies cardiolipin depletion in diabetic myocardium linking altered substrate utilization with mitochondrial dysfunction. Biochemistry 44, 16684–16694 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Han, X. et al. Alterations in myocardial cardiolipin content and composition occur at the very earliest stages of diabetes: a shotgun lipidomics study. Biochemistry 46, 6417–6428 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Sparagna, G. C., Johnson, C. A., McCune, S. A., Moore, R. L. & Murphy, R. C. Quantitation of cardiolipin molecular species in spontaneously hypertensive heart failure rats using electrospray ionization mass spectrometry. J. Lipid Res. 46, 1196–1204 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Kiebish, M. A., Han, X., Cheng, H., Chuang, J. H. & Seyfried, T. N. Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: lipidomic evidence supporting the Warburg theory of cancer. J. Lipid Res. 49, 2545–2556 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kiebish, M. A. et al. Dysfunctional cardiac mitochondrial bioenergetic, lipidomic, and signaling in a murine model of Barth syndrome. J. Lipid Res. 54, 1312–1325 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bayir, H. et al. Selective early cardiolipin peroxidation after traumatic brain injury: an oxidative lipidomics analysis. Ann. Neurol. 62, 154–169 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Kagan, V. E. et al. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat. Chem. Biol. 1, 223–232 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. He, Q. & Han, X. Cardiolipin remodeling in diabetic heart. Chem. Phys. Lipids 179, 75–81 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Beyer, K. & Nuscher, B. Specific cardiolipin binding interferes with labeling of sulfhydryl residues in the adenosine diphosphate/adenosine triphosphate carrier protein from beef heart mitochondria. Biochemistry 35, 15784–15790 (1996).

    Article  CAS  PubMed  Google Scholar 

  104. Ott, M., Robertson, J. D., Gogvadze, V., Zhivotovsky, B. & Orrenius, S. Cytochrome c release from mitochondria proceeds by a two-step process. Proc. Natl Acad. Sci. USA 99, 1259–1263 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lewis, R. N. & McElhaney, R. N. The physicochemical properties of cardiolipin bilayers and cardiolipin-containing lipid membranes. Biochim. Biophys. Acta 1788, 2069–2079 (2009).

    Article  CAS  PubMed  Google Scholar 

  106. Li, J. et al. Lysocardiolipin acyltransferase 1 (ALCAT1) controls mitochondrial DNA fidelity and biogenesis through modulation of MFN2 expression. Proc. Natl Acad. Sci. USA 109, 6975–6980 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Schlame, M., Ren, M., Xu, Y., Greenberg, M. L. & Haller, I. Molecular symmetry in mitochondrial cardiolipins. Chem. Phys. Lipids 138, 38–49 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Mancuso, D. J. et al. Genetic ablation of calcium-independent phospholipase A2γ leads to alterations in mitochondrial lipid metabolism and function resulting in a deficient mitochondrial bioenergetic phenotype. J. Biol. Chem. 282, 34611–34622 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Ma, B. J., Taylor, W. A., Dolinsky, V. W. & Hatch, G. M. Acylation of monolysocardiolipin in rat heart. J. Lipid Res. 40, 1837–1845 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Taylor, W. A. & Hatch, G. M. Purification and characterization of monolysocardiolipin acyltransferase from pig liver mitochondria. J. Biol. Chem. 278, 12716–12721 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Cao, J., Liu, Y., Lockwood, J., Burn, P. & Shi, Y. A novel cardiolipin-remodeling pathway revealed by a gene encoding an endoplasmic reticulum-associated acyl-CoA:lysocardiolipin acyltransferase (ALCAT1) in mouse. J. Biol. Chem. 279, 31727–31734 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Li, J. et al. Cardiolipin remodeling by ALCAT1 links oxidative stress and mitochondrial dysfunction to obesity. Cell Metab. 12, 154–165 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Farooqui, A. A. & Horrocks, L. A. Plasmalogens: workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7, 232–245 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Engelmann, B. Plasmalogens: targets for oxidants and major lipophilic antioxidants. Biochem. Soc. Trans. 32, 147–150 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Han, X. Multi-dimensional mass spectrometry-based shotgun lipidomics and the altered lipids at the mild cognitive impairment stage of Alzheimer's disease. Biochim. Biophys. Acta 1801, 774–783 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ford, D. A. & Gross, R. W. Identification of endogenous 1-O-alk-1′-enyl-2-acyl-sn-glycerol in myocardium and its effective utilization by choline phosphotransferase. J. Biol. Chem. 263, 2644–2650 (1988).

    Article  CAS  PubMed  Google Scholar 

  117. Ejsing, C. S. et al. Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning. Anal. Chem. 78, 6202–6214 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Siggia, S. & Edsberg, R. L. Iodometric determination of vinyl alkyl ethers. Anal. Chem. 20, 762–763 (1948).

    Article  CAS  Google Scholar 

  119. Fhaner, C. J., Liu, S., Zhou, X. & Reid, G. E. Functional group selective derivatization and gas-phase fragmentation reactions of plasmalogen glycerophospholipids. Mass Spectrom. (Tokyo) 2, S0015 (2013).

    Google Scholar 

  120. Ford, D. A., Hazen, S. L., Saffitz, J. E. & Gross, R. W. The rapid and reversible activation of a calcium-independent plasmalogen-selective phospholipase A2 during myocardial ischemia. J. Clin. Invest. 88, 331–335 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gross, R. W. High plasmalogen and arachidonic acid content of canine myocardial sarcolemma: a fast atom bombardment mass spectroscopic and gas chromatography-mass spectroscopic characterization. Biochemistry 23, 158–165 (1984).

    Article  CAS  PubMed  Google Scholar 

  122. Wang, M., Fang, H. & Han, X. Shotgun lipidomics analysis of 4-hydroxyalkenal species directly from lipid extracts after one-step in situ derivatization. Anal. Chem. 84, 4580–4586 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wacker, B. K., Albert, C. J., Ford, B. A. & Ford, D. A. Strategies for the analysis of chlorinated lipids in biological systems. Free Radic. Biol. Med. 59, 92–99 (2013).

    Article  CAS  PubMed  Google Scholar 

  124. Murphy, R. C. et al. Electrospray ionization and tandem mass spectrometry of eicosanoids. Anal. Biochem. 346, 1–42 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. van den Bosch, H. et al. Ether lipid synthesis and its deficiency in peroxisomal disorders. Biochimie 75, 183–189 (1993).

    Article  CAS  PubMed  Google Scholar 

  126. Bechmann, L. P. et al. The interaction of hepatic lipid and glucose metabolism in liver diseases. J. Hepatol. 56, 952–964 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Gross, R. W. & Han, X. Lipidomics in diabetes and the metabolic syndrome. Methods Enzymol. 433, 73–90 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Graessler, J. et al. Top-down lipidomics reveals ether lipid deficiency in blood plasma of hypertensive patients. PLoS ONE 4, e6261 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Meikle, P. J. & Christopher, M. J. Lipidomics is providing new insight into the metabolic syndrome and its sequelae. Curr. Opin. Lipidol. 22, 210–215 (2011).

    Article  CAS  PubMed  Google Scholar 

  130. Martel, C., Esposti, D. D., Bouchet, A., Brenner, C. & Lemoine, A. Non-alcoholic steatohepatitis: new insights from OMICS studies. Curr. Pharm. Biotechnol. 13, 726–735 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Pietilainen, K. H. et al. Association of lipidome remodeling in the adipocyte membrane with acquired obesity in humans. PLoS Biol. 9, e1000623 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Murphy, R. C. Free-radical-induced oxidation of arachidonoyl plasmalogen phospholipids: antioxidant mechanism and precursor pathway for bioactive eicosanoids. Chem. Res. Toxicol. 14, 463–472 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Schmitz, G. & Ecker, J. The opposing effects of n-3 and n-6 fatty acids. Prog. Lipid Res. 47, 147–155 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Lopategi, A. et al. Role of bioactive lipid mediators in obese adipose tissue inflammation and endocrine dysfunction. Mol. Cell. Endocrinol. 419, 44–59 (2016).

    Article  CAS  PubMed  Google Scholar 

  135. Debnath, M., Agrawal, S., Agrawal, A. & Dubey, G. P. Metaflammatory responses during obesity: Pathomechanism and treatment. Obes. Res. Clin. Pract. 10, 103–113 (2016).

    Article  PubMed  Google Scholar 

  136. Hashidate-Yoshida, T. et al. Fatty acid remodeling by LPCAT3 enriches arachidonate in phospholipid membranes and regulates triglyceride transport. eLife 4, e06328 (2015).

    Article  PubMed Central  Google Scholar 

  137. Lamaziere, A., Wolf, C., Barbe, U., Bausero, P. & Visioli, F. Lipidomics of hepatic lipogenesis inhibition by omega 3 fatty acids. Prostaglandins Leukot. Essent. Fatty Acids 88, 149–154 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. Eslamparast, T., Eghtesad, S., Poustchi, H. & Hekmatdoost, A. Recent advances in dietary supplementation, in treating non-alcoholic fatty liver disease. World J. Hepatol. 7, 204–212 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  139. dos Santos, G. A. et al. Identification of compounds from high-fat and extra virgin olive oil-supplemented diets in whole mouse liver extracts and isolated mitochondria using mass spectrometry. J. Mass Spectrom. 50, 951–958 (2015).

    Article  PubMed  CAS  Google Scholar 

  140. Forrester, J. S., Milne, S. B., Ivanova, P. T. & Brown, H. A. Computational lipidomics: a multiplexed analysis of dynamic changes in membrane lipid composition during signal transduction. Mol. Pharmacol. 65, 813–821 (2004).

    Article  CAS  PubMed  Google Scholar 

  141. Momin, A. A. et al. A method for visualization of 'omic' datasets for sphingolipid metabolism to predict potentially interesting differences. J. Lipid Res. 52, 1073–1083 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hornemann, T. et al. The SPTLC3 subunit of serine palmitoyltransferase generates short chain sphingoid bases. J. Biol. Chem. 284, 26322–26330 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Han, G. et al. Identification of small subunits of mammalian serine palmitoyltransferase that confer distinct acyl-CoA substrate specificities. Proc. Natl Acad. Sci. USA 106, 8186–8191 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Shaner, R. L. et al. Quantitative analysis of sphingolipids for lipidomics using triple quadrupole and quadrupole linear ion trap mass spectrometers. J. Lipid Res. 50, 1692–1707 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gaspar, M. L. et al. The emergence of yeast lipidomics. Biochim. Biophys. Acta 1771, 241–254 (2007).

    Article  CAS  PubMed  Google Scholar 

  146. Dickson, R. C. Thematic review series: sphingolipids. New insights into sphingolipid metabolism and function in budding yeast. J. Lipid Res. 49, 909–921 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ejsing, C. S. et al. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc. Natl Acad. Sci. USA 106, 2136–2141 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Metzker, M. L. Sequencing technologies — the next generation. Nat. Rev. Genet. 11, 31–46 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Kim, S. et al. Targeted lipidomic pathway-guided genetic association with Alzheimer's disease-relevant endophenotypes. Alzheimers Dement. 9, P680–P681 (2013).

    Google Scholar 

  150. Hunt, A. N. Dynamic lipidomics of the nucleus. J. Cell. Biochem. 97, 244–251 (2006).

    Article  CAS  PubMed  Google Scholar 

  151. Postle, A. D. & Hunt, A. N. Dynamic lipidomics with stable isotope labelling. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 877, 2716–2721 (2009).

    Article  CAS  PubMed  Google Scholar 

  152. Bleijerveld, O. B., Houweling, M., Thomas, M. J. & Cui, Z. Metabolipidomics: profiling metabolism of glycerophospholipid species by stable isotopic precursors and tandem mass spectrometry. Anal. Biochem. 352, 1–14 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Lydic, T. A. et al. Rapid and comprehensive 'shotgun' lipidome profiling of colorectal cancer cell derived exosomes. Methods 87, 83–95 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

X.H. would like to acknowledge the support of a National Institute of General Medical Sciences Grant R01 GM105724 and intramural institutional research funds from Sanford Burnham Prebys Medical Discovery Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianlin Han.

Ethics declarations

Competing interests

X.H. holds five patents relating to the diagnostic use of lipidomics.

Related links

DATABASES

LipidMAPS

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X. Lipidomics for studying metabolism. Nat Rev Endocrinol 12, 668–679 (2016). https://doi.org/10.1038/nrendo.2016.98

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2016.98

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing