Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Viral infections in type 1 diabetes mellitus — why the β cells?

Key Points

  • Viral infections — particularly by enteroviruses (for example, coxsackievirus) — have been implicated in the development of type 1 diabetes mellitus (T1DM)

  • Many candidate genes for T1DM regulate antiviral responses in pancreatic β cells

  • Pancreatic islet α cells trigger a more efficient antiviral response than β cells following infection with diabetogenic viruses, thus enabling α cells to eradicate viral infections without undergoing apoptosis

  • An inability to clear viral infections could explain why chronically infected β cells, but not α cells, are targeted by an autoimmune response and killed during development of T1DM

  • The identification of key diabetogenic viruses and the downstream mechanisms leading to insulitis might enable a preventive approach to T1DM by vaccination

Abstract

Type 1 diabetes mellitus (T1DM) is caused by progressive autoimmune-mediated loss of pancreatic β-cell mass via apoptosis. The onset of T1DM depends on environmental factors that interact with predisposing genes to induce an autoimmune assault against β cells. Epidemiological, clinical and pathology studies in humans support viral infection — particularly by enteroviruses (for example, coxsackievirus) — as an environmental trigger for the development of T1DM. Many candidate genes for T1DM, such as MDA5, PTPN2 and TYK2, regulate antiviral responses in both β cells and the immune system. Cellular permissiveness to viral infection is modulated by innate antiviral responses that vary among different tissues or cell types. Some data indicate that pancreatic islet α cells trigger a more efficient antiviral response to infection with diabetogenic viruses than do β cells, and so are able to eradicate viral infections without undergoing apoptosis. This difference could account for the varying ability of islet-cell subtypes to clear viral infections and explain why chronically infected pancreatic β cells, but not α cells, are targeted by an autoimmune response and killed during the development of T1DM. These issues and attempts to target viral infection as a preventive therapy for T1DM are discussed in the present Review.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of key antiviral responses in pancreatic β cells.
Figure 2: Crosstalk between viral infection, genetic background and early education of the immune system.
Figure 3: Differential autonomous antiviral response determines the outcome of infection in pancreatic α cells and β cells.

Similar content being viewed by others

References

  1. Atkinson, M. A., Eisenbarth, G. S. & Michels, A. W. Type 1 diabetes. Lancet 383, 69–82 (2014).

    Article  PubMed  Google Scholar 

  2. Eizirik, D. L., Colli, M. L. & Ortis, F. The role of inflammation in insulitis and β-cell loss in type 1 diabetes. Nat. Rev. Endocrinol. 5, 219–226 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Butler, A. E. et al. Modestly increased β-cell apoptosis but no increased β-cell replication in recent-onset type 1 diabetic patients who died of diabetic ketoacidosis. Diabetologia 50, 2323–2331 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Meier, J. J., Bhushan, A., Butler, A. E., Rizza, R. A. & Butler, P. C. Sustained β-cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia 48, 2221–2228 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Gepts, W. Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes 14, 619–633 (1965).

    Article  CAS  PubMed  Google Scholar 

  6. Kloppel, G., Drenck, C. R., Oberholzer, M. & Heitz, P. U. Morphometric evidence for a striking β-cell reduction at the clinical onset of type 1 diabetes. Virchows Arch. A Pathol. Anat. Histopathol. 403, 441–452 (1984).

    Article  CAS  PubMed  Google Scholar 

  7. Foulis, A. K. & Stewart, J. A. The pancreas in recent-onset type 1 (insulin-dependent) diabetes mellitus: insulin content of islets, insulitis and associated changes in the exocrine acinar tissue. Diabetologia 26, 456–461 (1984).

    Article  CAS  PubMed  Google Scholar 

  8. Krogvold, L. et al. Function of isolated pancreatic islets fom patients at onset of type 1 diabetes: insulin secretion can be restored after some days in a nondiabetogenic environment in vitro: results from the DiViD study. Diabetes 64, 2506–2512 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Strandell, E., Eizirik, D. L. & Sandler, S. Reversal of β-cell suppression in vitro in pancreatic islets isolated from nonobese diabetic mice during the phase preceding insulin-dependent diabetes mellitus. J. Clin. Invest. 85, 1944–1950 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Campbell-Thompson, M. et al. Insulitis and β-cell mass in the natural history of type 1 diabetes. Diabetes 65, 719–731 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Todd, J. A. Etiology of type 1 diabetes. Immunity 32, 457–467 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Santin, I. & Eizirik, D. L. Candidate genes for type 1 diabetes modulate pancreatic islet inflammation and β-cell apoptosis. Diabetes Obes. Metab. 15 (Suppl. 3), 71–81 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Patterson, C. C., Dahlquist, G. G., Gyurus, E., Green, A. & Soltesz, G. Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: a multicentre prospective registration study. Lancet 373, 2027–2033 (2009).

    Article  PubMed  Google Scholar 

  14. Bodansky, H. J., Staines, A., Stephenson, C., Haigh, D. & Cartwright, R. Evidence for an environmental effect in the aetiology of insulin dependent diabetes in a transmigratory population. BMJ 304, 1020–1022 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Redondo, M. J., Jeffrey, J., Fain, P. R., Eisenbarth, G. S. & Orban, T. Concordance for islet autoimmunity among monozygotic twins. N. Engl. J. Med. 359, 2849–2850 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Richardson, S. J., Morgan, N. G. & Foulis, A. K. Pancreatic pathology in type 1 diabetes mellitus. Endocr. Pathol. 25, 80–92 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Kondrashova, A. & Hyoty, H. Role of viruses and other microbes in the pathogenesis of type 1 diabetes. Int. Rev. Immunol. 33, 284–295 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Drescher, K. M., von Herrath, M. & Tracy, S. Enteroviruses, hygiene and type 1 diabetes: toward a preventive vaccine. Rev. Med. Virol. 25, 19–32 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Hober, D. & Sauter, P. Pathogenesis of type 1 diabetes mellitus: interplay between enterovirus and host. Nat. Rev. Endocrinol. 6, 279–289 (2010).

    Article  PubMed  Google Scholar 

  20. Ghazarian, L., Diana, J., Simoni, Y., Beaudoin, L. & Lehuen, A. Prevention or acceleration of type 1 diabetes by viruses. Cell. Mol. Life Sci. 70, 239–255 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Imagawa, A. & Hanafusa, T. Fulminant type 1 diabetes — an important subtype in East Asia. Diabetes Metab. Res. Rev. 27, 959–964 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Tanaka, S., Aida, K., Nishida, Y. & Kobayashi, T. Pathophysiological mechanisms involving aggressive islet cell destruction in fulminant type 1 diabetes. Endocr. J. 60, 837–845 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Gamble, D. R. & Taylor, K. W. Seasonal incidence of diabetes mellitus. Br. Med. J. 3, 631–633 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schulte, B. M. et al. Detection of enterovirus RNA in peripheral blood mononuclear cells of type 1 diabetic patients beyond the stage of acute infection. Viral Immunol. 23, 99–104 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Gamble, D. R., Kinsley, M. L., FitzGerald, M. G., Bolton, R. & Taylor, K. W. Viral antibodies in diabetes mellitus. Br. Med. J. 3, 627–630 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oikarinen, S. et al. Virus antibody survey in different European populations indicates risk association between coxsackievirus B1 and type 1 diabetes. Diabetes 63, 655–662 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Laitinen, O. H. et al. Coxsackievirus B1 is associated with induction of β-cell autoimmunity that portends type 1 diabetes. Diabetes 63, 446–455 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Yeung, W. C., Rawlinson, W. D. & Craig, M. E. Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies. BMJ 342, d35 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ylipaasto, P. et al. Enterovirus infection in human pancreatic islet cells, islet tropism in vivo and receptor involvement in cultured islet β-cells. Diabetologia 47, 225–239 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Dotta, F. et al. Coxsackie B4 virus infection of β-cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc. Natl Acad. Sci. USA 104, 5115–5120 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Richardson, S. J., Leete, P., Bone, A. J., Foulis, A. K. & Morgan, N. G. Expression of the enteroviral capsid protein VP1 in the islet cells of patients with type 1 diabetes is associated with induction of protein kinase R and downregulation of Mcl-1. Diabetologia 56, 185–193 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Richardson, S. J., Willcox, A., Bone, A. J., Foulis, A. K. & Morgan, N. G. The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes. Diabetologia 52, 1143–1151 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Krogvold, L. et al. Detection of a low-grade enteroviral infection in the islets of langerhans of living patients newly diagnosed with type 1 diabetes. Diabetes 64, 1682–1687 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. Chapman, N. M. & Kim, K. S. Persistent coxsackievirus infection: enterovirus persistence in chronic myocarditis and dilated cardiomyopathy. Curr. Top. Microbiol. Immunol. 323, 275–292 (2008).

    CAS  PubMed  Google Scholar 

  35. Tracy, S., Smithee, S., Alhazmi, A. & Chapman, N. Coxsackievirus can persist in murine pancreas by deletion of 5′ terminal genomic sequences. J. Med. Virol. 87, 240–247 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Willcox, A., Richardson, S. J., Bone, A. J., Foulis, A. K. & Morgan, N. G. Immunohistochemical analysis of the relationship between islet cell proliferation and the production of the enteroviral capsid protein, VP1, in the islets of patients with recent-onset type 1 diabetes. Diabetologia 54, 2417–2420 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Oikarinen, M. et al. Analysis of pancreas tissue in a child positive for islet cell antibodies. Diabetologia 51, 1796–1802 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Cnop, M. et al. The long lifespan and low turnover of human islet β-cells estimated by mathematical modelling of lipofuscin accumulation. Diabetologia 53, 321–330 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Bonifacio, E., Lampasona, V., Genovese, S., Ferrari, M. & Bosi, E. Identification of protein tyrosine phosphatase-like IA2 (islet cell antigen 512) as the insulin-dependent diabetes-related 37/40K autoantigen and a target of islet-cell antibodies. J. Immunol. 155, 5419–5426 (1995).

    CAS  PubMed  Google Scholar 

  40. Coppieters, K. T. et al. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J. Exp. Med. 209, 51–60 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Savinov, A. Y., Wong, F. S., Stonebraker, A. C. & Chervonsky, A. V. Presentation of antigen by endothelial cells and chemoattraction are required for homing of insulin-specific CD8+ T cells. J. Exp. Med. 197, 643–656 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chabot, S. et al. Mouse liver-specific CD8+ T-cells encounter their cognate antigen and acquire capacity to destroy target hepatocytes. J. Autoimmun. 42, 19–28 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Christen, U. et al. Cure of prediabetic mice by viral infections involves lymphocyte recruitment along an IP-10 gradient. J. Clin. Invest. 113, 74–84 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Filippi, C. M., Estes, E. A., Oldham, J. E. & von Herrath, M. G. Immunoregulatory mechanisms triggered by viral infections protect from type 1 diabetes in mice. J. Clin. Invest. 119, 1515–1523 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Drescher, K. M., Kono, K., Bopegamage, S., Carson, S. D. & Tracy, S. Coxsackievirus B3 infection and type 1 diabetes development in NOD mice: insulitis determines susceptibility of pancreatic islets to virus infection. Virology 329, 381–394 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Flodstrom, M. et al. Target cell defense prevents the development of diabetes after viral infection. Nat. Immunol. 3, 373–382 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Thorel, F. et al. Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss. Nature 464, 1149–1154 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Horwitz, M. S. et al. Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat. Med. 4, 781–785 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Sarmiento, L., Cubas-Duenas, I. & Cabrera-Rode, E. Evidence of association between type 1 diabetes and exposure to enterovirus in Cuban children and adolescents. MEDICC Rev. 15, 29–32 (2013).

    Article  PubMed  Google Scholar 

  50. Chehadeh, W. et al. Persistent infection of human pancreatic islets by coxsackievirus B is associated with α-interferon synthesis in β-cells. J. Virol. 74, 10153–10164 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Marroqui, L. et al. TYK2, a candidate gene for type 1 diabetes, modulates apoptosis and the innate immune response in human pancreatic β-cells. Diabetes 64, 3808–3811 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Slifka, M. K., Rodriguez, F. & Whitton, J. L. Rapid on/off cycling of cytokine production by virus-specific CD8+ T cells. Nature 401, 76–79 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Campbell, I. L., Kay, T. W., Oxbrow, L. & Harrison, L. C. Essential role for interferon-γ and interleukin-6 in autoimmune insulin-dependent diabetes in NOD/Wehi mice. J. Clin. Invest. 87, 739–742 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kay, T. W., Campbell, I. L., Oxbrow, L. & Harrison, L. C. Overexpression of class I major histocompatibility complex accompanies insulitis in the non-obese diabetic mouse and is prevented by anti-interferon-γ antibody. Diabetologia 34, 779–785 (1991).

    Article  CAS  PubMed  Google Scholar 

  55. von Herrath, M. G. & Oldstone, M. B. Interferon-γ is essential for destruction of β-cells and development of insulin-dependent diabetes mellitus. J. Exp. Med. 185, 531–539 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Eizirik, D. L. & Mandrup-Poulsen, T. A choice of death — the signal-transduction of immune-mediated β-cell apoptosis. Diabetologia 44, 2115–2133 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Sandberg, J. O., Eizirik, D. L. & Sandler, S. IL-1 receptor antagonist inhibits recurrence of disease after syngeneic pancreatic islet transplantation to spontaneously diabetic non-obese diabetic (NOD) mice. Clin. Exp. Immunol. 108, 314–317 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gurzov, E. N. & Eizirik, D. L. Bcl-2 proteins in diabetes: mitochondrial pathways of β-cell death and dysfunction. Trends Cell Biol. 21, 424–431 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Atkinson, M. A. et al. Cellular immunity to a determinant common to glutamate decarboxylase and coxsackie virus in insulin-dependent diabetes. J. Clin. Invest. 94, 2125–2129 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Honeyman, M. C., Stone, N. L. & Harrison, L. C. T-cell epitopes in type 1 diabetes autoantigen tyrosine phosphatase IA-2: potential for mimicry with rotavirus and other environmental agents. Mol. Med. 4, 231–239 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hiemstra, H. S. et al. Cytomegalovirus in autoimmunity: T cell crossreactivity to viral antigen and autoantigen glutamic acid decarboxylase. Proc. Natl Acad. Sci. USA 98, 3988–3991 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Richter, W. et al. Sequence homology of the diabetes-associated autoantigen glutamate decarboxylase with coxsackie B4-2C protein and heat shock protein 60 mediates no molecular mimicry of autoantibodies. J. Exp. Med. 180, 721–726 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Schloot, N. C. et al. Molecular mimicry in type 1 diabetes mellitus revisited: T-cell clones to GAD65 peptides with sequence homology to coxsackie or proinsulin peptides do not crossreact with homologous counterpart. Hum. Immunol. 62, 299–309 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Christen, U. et al. A viral epitope that mimics a self antigen can accelerate but not initiate autoimmune diabetes. J. Clin. Invest. 114, 1290–1298 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ehl, S., Hombach, J., Aichele, P., Hengartner, H. & Zinkernagel, R. M. Bystander activation of cytotoxic T cells: studies on the mechanism and evaluation of in vivo significance in a transgenic mouse model. J. Exp. Med. 185, 1241–1251 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zarozinski, C. C. & Welsh, R. M. Minimal bystander activation of CD8 T cells during the virus-induced polyclonal T cell response. J. Exp. Med. 185, 1629–1639 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pane, J. A. & Coulson, B. S. Lessons from the mouse: potential contribution of bystander lymphocyte activation by viruses to human type 1 diabetes. Diabetologia 58, 1149–1159 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Marroqui, L. et al. Differential cell autonomous responses determine the outcome of coxsackievirus infections in murine pancreatic α- and β-cells. eLIFE 4, e06990 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Serreze, D. V. et al. Diabetes acceleration or prevention by a coxsackievirus B4 infection: critical requirements for both interleukin-4 and γ interferon. J. Virol. 79, 1045–1052 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Larsson, P. G. et al. A preclinical study on the efficacy and safety of a new vaccine against Coxsackievirus B1 reveals no risk for accelerated diabetes development in mouse models. Diabetologia 58, 346–354 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Serreze, D. V., Ottendorfer, E. W., Ellis, T. M., Gauntt, C. J. & Atkinson, M. A. Acceleration of type 1 diabetes by a coxsackievirus infection requires a preexisting critical mass of autoreactive T-cells in pancreatic islets. Diabetes 49, 708–711 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Fattovich, G., Giustina, G., Favarato, S. & Ruol, A. A survey of adverse events in 11,241 patients with chronic viral hepatitis treated with α interferon. J. Hepatol. 24, 38–47 (1996).

    Article  CAS  PubMed  Google Scholar 

  73. Nakamura, K. et al. Type 1 diabetes and interferon therapy: a nationwide survey in Japan. Diabetes Care 34, 2084–2089 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zornitzki, T., Malnick, S., Lysyy, L. & Knobler, H. Interferon therapy in hepatitis C leading to chronic type 1 diabetes. World J. Gastroenterol. 21, 233–239 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Casadevall, A. & Pirofski, L. A. Microbiology: ditch the term pathogen. Nature 516, 165–166 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Pociot, F. et al. Genetics of type 1 diabetes: what's next? Diabetes 59, 1561–1571 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bonifacio, E., Krumsiek, J., Winkler, C., Theis, F. J. & Ziegler, A. G. A strategy to find gene combinations that identify children who progress rapidly to type 1 diabetes after islet autoantibody seroconversion. Acta Diabetol. 51, 403–411 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Chen, Y. G. et al. Molecular signatures differentiate immune states in type 1 diabetic families. Diabetes 63, 3960–3973 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Onengut-Gumuscu, S. et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat. Genet. 47, 381–386 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Concannon, P., Rich, S. S. & Nepom, G. T. Genetics of type 1A diabetes. N. Engl. J. Med. 360, 1646–1654 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Eizirik, D. L. et al. The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines. PLoS Genet. 8, e1002552 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bergholdt, R. et al. Identification of novel type 1 diabetes candidate genes by integrating genome-wide association data, protein-protein interactions, and human pancreatic islet gene expression. Diabetes 61, 954–962 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Farh, K. K. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Moore, F. et al. PTPN2, a candidate gene for type 1 diabetes, modulates interferon-γ-induced pancreatic β-cell apoptosis. Diabetes 58, 1283–1291 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Colli, M. L., Moore, F., Gurzov, E. N., Ortis, F. & Eizirik, D. L. MDA5 and PTPN2, two candidate genes for type 1 diabetes, modify pancreatic β-cell responses to the viral by-product double-stranded RNA. Hum. Mol. Genet. 19, 135–146 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Santin, I. et al. PTPN2, a candidate gene for type 1 diabetes, modulates pancreatic β-cell apoptosis via regulation of the BH3-only protein Bim. Diabetes 60, 3279–3288 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Nogueira, T. C. et al. GLIS3, a susceptibility gene for type 1 and type 2 diabetes, modulates pancreatic β-cell apoptosis via regulation of a splice variant of the BH3-only protein Bim. PLoS Genet. 9, e1003532 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Floyel, T. et al. CTSH regulates β-cell function and disease progression in newly diagnosed type 1 diabetes patients. Proc. Natl Acad. Sci. USA 111, 10305–10310 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  89. Marroqui, L. et al. BACH2, a candidate risk gene for type 1 diabetes, regulates apoptosis in pancreatic β-cells via JNK1 modulation and crosstalk with the candidate gene PTPN2. Diabetes 63, 2516–2527 (2014).

    Article  PubMed  Google Scholar 

  90. Coccia, E. M. & Battistini, A. Early IFN type I response: learning from microbial evasion strategies. Semin. Immunol. 27, 85–101 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Huang, X. et al. Interferon expression in the pancreases of patients with type I diabetes. Diabetes 44, 658–664 (1995).

    Article  CAS  PubMed  Google Scholar 

  92. Ferreira, R. C. et al. A type I interferon transcriptional signature precedes autoimmunity in children genetically at risk for type 1 diabetes. Diabetes 63, 2538–2550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Reynier, F. et al. Specific gene expression signature associated with development of autoimmune type-I diabetes using whole-blood microarray analysis. Genes Immun. 11, 269–278 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Li, Q. et al. Interferon-α initiates type 1 diabetes in nonobese diabetic mice. Proc. Natl Acad. Sci. USA 105, 12439–12444 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Diana, J. et al. Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes. Nat. Med. 19, 65–73 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Quah, H. S. et al. Deficiency in type I interferon signaling prevents the early interferon-induced gene signature in pancreatic islets but not type 1 diabetes in NOD mice. Diabetes 63, 1032–1040 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Nejentsev, S., Walker, N., Riches, D., Egholm, M. & Todd, J. A. Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324, 387–389 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Downes, K. et al. Reduced expression of IFIH1 is protective for type 1 diabetes. PLoS ONE 5, e12646 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Winkler, C. et al. An interferon-induced helicase (IFIH1) gene polymorphism associates with different rates of progression from autoimmunity to type 1 diabetes. Diabetes 60, 685–690 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lempainen, J. et al. Non-HLA gene effects on the disease process of type 1 diabetes: from HLA susceptibility to overt disease. J. Autoimmun. 61, 45–53 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Lincez, P. J., Shanina, I. & Horwitz, M. S. Reduced expression of the MDA5 gene IFIH1 prevents autoimmune diabetes. Diabetes 64, 2184–2193 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Wallace, C. et al. The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes. Nat. Genet. 42, 68–71 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Tao, J. H. et al. Meta-analysis of TYK2 gene polymorphisms association with susceptibility to autoimmune and inflammatory diseases. Mol. Biol. Rep. 38, 4663–4672 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Richter, M. F., Dumenil, G., Uze, G., Fellous, M. & Pellegrini, S. Specific contribution of Tyk2 JH regions to the binding and the expression of the interferon α/β receptor component IFNAR1. J. Biol. Chem. 273, 24723–24729 (1998).

    Article  CAS  PubMed  Google Scholar 

  105. Izumi, K. et al. Reduced Tyk2 gene expression in β-cells due to natural mutation determines susceptibility to virus-induced diabetes. Nat. Commun. 6, 6748 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Nagafuchi, S. et al. TYK2 promoter variant and diabetes mellitus in the Japanese. EBioMedicine 2, 744–749 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Smyth, D. J. et al. Shared and distinct genetic variants in type 1 diabetes and celiac disease. N. Engl. J. Med. 359, 2767–2777 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Espino-Paisan, L. et al. A polymorphism in PTPN2 gene is associated with an earlier onset of type 1 diabetes. Immunogenetics 63, 255–258 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Long, S. A. et al. An autoimmune-associated variant in PTPN2 reveals an impairment of IL-2R signaling in CD4+ T cells. Genes Immun. 12, 116–125 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. Zhernakova, A. et al. Meta-analysis of genome-wide association studies in celiac disease and rheumatoid arthritis identifies fourteen non-HLA shared loci. PLoS Genet. 7, e1002004 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Heinig, M. et al. A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk. Nature 467, 460–464 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Takeuchi, O. & Akira, S. MDA5/RIG-I and virus recognition. Curr. Opin. Immunol. 20, 17–22 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Santin, I. et al. USP18 is a key regulator of the interferon-driven gene network modulating pancreatic β-cell inflammation and apoptosis. Cell Death Dis. 3, e419 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Strachan, D. P. Hay fever, hygiene, and household size. BMJ 299, 1259–1260 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kamradt, T., Goggel, R. & Erb, K. J. Induction, exacerbation and inhibition of allergic and autoimmune diseases by infection. Trends Immunol. 26, 260–267 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Kondrashova, A., Seiskari, T., Ilonen, J., Knip, M. & Hyoty, H. The 'hygiene hypothesis' and the sharp gradient in the incidence of autoimmune and allergic diseases between Russian Karelia and Finland. Apmis 121, 478–493 (2013).

    Article  PubMed  Google Scholar 

  117. Cooke, A. Review series on helminths, immune modulation and the hygiene hypothesis: how might infection modulate the onset of type 1 diabetes? Immunology 126, 12–17 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bach, J. F. & Chatenoud, L. The hygiene hypothesis: an explanation for the increased frequency of insulin-dependent diabetes. Cold Spring Harb. Perspect. Med. 2, a007799 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Lehuen, A., Diana, J., Zaccone, P. & Cooke, A. Immune cell crosstalk in type 1 diabetes. Nat. Rev. Immunol. 10, 501–513 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Rook, G. A. & Brunet, L. R. Old friends for breakfast. Clin. Exp. Allergy 35, 841–842 (2005).

    Article  CAS  PubMed  Google Scholar 

  121. Gulden, E., Wong, F. S. & Wen, L. The gut microbiota and type 1 diabetes. Clin. Immunol. 159, 143–153 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ziegler, A. G. et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 309, 2473–2479 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Krischer, J. P. et al. The 6 year incidence of diabetes-associated autoantibodies in genetically at-risk children: the TEDDY study. Diabetologia 58, 980–987 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ilonen, J. et al. Patterns of β-cell autoantibody appearance and genetic associations during the first years of life. Diabetes 62, 3636–3640 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Vercelli, D. Mechanisms of the hygiene hypothesis — molecular and otherwise. Curr. Opin. Immunol. 18, 733–737 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Morgan, N. G. & Richardson, S. J. Enteroviruses as causative agents in type 1 diabetes: loose ends or lost cause? Trends Endocrinol. Metab. 25, 611–619 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Randow, F., MacMicking, J. D. & James, L. C. Cellular self-defense: how cell-autonomous immunity protects against pathogens. Science 340, 701–706 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Yan, N. & Chen, Z. J. Intrinsic antiviral immunity. Nat. Immunol. 13, 214–222 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Cnop, M. et al. RNA sequencing identifies dysregulation of the human pancreatic islet transcriptome by the saturated fatty acid palmitate. Diabetes 63, 1978–1993 (2014).

    Article  CAS  PubMed  Google Scholar 

  130. Carty, M., Reinert, L., Paludan, S. R. & Bowie, A. G. Innate antiviral signalling in the central nervous system. Trends Immunol. 35, 79–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Marroqui, L. et al. Pancreatic α cells are resistant to metabolic stress-induced apoptosis in type 2 diabetes. EBioMedicine 2, 378–385 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Anagandula, M. et al. Infection of human islets of Langerhans with two strains of coxsackie B virus serotype 1: assessment of virus replication, degree of cell death and induction of genes involved in the innate immunity pathway. J. Med. Virol. 86, 1402–1411 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Gallagher, G. R. et al. Viral infection of engrafted human islets leads to diabetes. Diabetes 64, 1358–1369 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Cho, H. et al. Differential innate immune response programs in neuronal subtypes determine susceptibility to infection in the brain by positive-stranded RNA viruses. Nat. Med. 19, 458–464 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Atkinson, M. A., von Herrath, M., Powers, A. C. & Clare-Salzler, M. Current concepts on the pathogenesis of type 1 diabetes — considerations for attempts to prevent and reverse the disease. Diabetes Care 38, 979–988 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hyoty, H. & Knip, M. Developing a vaccine for type 1 diabetes through targeting enteroviral infections. Expert Rev. Vaccines 13, 989–999 (2014).

    Article  PubMed  CAS  Google Scholar 

  137. De Palma, A. M., Vliegen, I., De Clercq, E. & Neyts, J. Selective inhibitors of picornavirus replication. Med. Res. Rev. 28, 823–884 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Moell, A., Skog, O., Ahlin, E., Korsgren, O. & Frisk, G. Antiviral effect of nicotinamide on enterovirus-infected human islets in vitro: effect on virus replication and chemokine secretion. J. Med. Virol. 81, 1082–1087 (2009).

    Article  CAS  PubMed  Google Scholar 

  139. Berg, A. K., Olsson, A., Korsgren, O. & Frisk, G. Antiviral treatment of coxsackie B virus infection in human pancreatic islets. Antiviral Res. 74, 65–71 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. See, D. M. & Tilles, J. G. WIN 54954 treatment of mice infected with a diabetogenic strain of group B coxsackievirus. Antimicrob. Agents Chemother. 37, 1593–1598 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Powers, R. D., Dotson, W. M. Jr & Hayden, F. G. Modification of encephalomyocarditis virus-induced diabetes in mice by antiviral agents. Antiviral Res. 3, 151–159 (1983).

    Article  CAS  PubMed  Google Scholar 

  142. Alidjinou, E. K., Sane, F., Bertin, A., Caloone, D. & Hober, D. Persistent infection of human pancreatic cells with coxsackievirus B4 is cured by fluoxetine. Antiviral Res. 116, 51–54 (2015).

    Article  CAS  PubMed  Google Scholar 

  143. Schneider, D. A. & von Herrath, M. G. Potential viral pathogenic mechanism in human type 1 diabetes. Diabetologia 57, 2009–2018 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sin, J., Mangale, V., Thienphrapa, W., Gottlieb, R. A. & Feuer, R. Recent progress in understanding coxsackievirus replication, dissemination, and pathogenesis. Virology 484, 288–304 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research by A.O.d.B. and D.L.E. that is discussed in this Review was supported by the Belgian Fonds National de la Recherche Scientifique (FNRS; grants T.0036.13 and FRFS-Welbio CR-2015A-06); the European Union (projects Naimit and BetaBat in the Seventh Framework Programme of the European Commission); the Juvenile Diabetes Foundation; the Helmsley Type 1 Diabetes Program; and the NIH–NIDDK–HIRN Consortium. A.O.d.B. and D.L.E. also receive support from the Network for Pancreatic Organ Donors with Diabetes (nPOD), a collaborative type 1 diabetes research project sponsored by the Juvenile Diabetes Research Foundation International (JDRF). Organ procurement organisations partnering with nPOD to provide research resources are listed at http://www.jdrfnpod.org/our-partners.php. F. Grieco (Center for Diabetes Research, Universite Libre de Bruxelles, Belgium) provided the micrographs shown in Fig. 3.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of this article.

Corresponding authors

Correspondence to Anne Op de Beeck or Decio L. Eizirik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Op de Beeck, A., Eizirik, D. Viral infections in type 1 diabetes mellitus — why the β cells?. Nat Rev Endocrinol 12, 263–273 (2016). https://doi.org/10.1038/nrendo.2016.30

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2016.30

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing