Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Physiology and role of irisin in glucose homeostasis

Key Points

  • Irisin is secreted primarily by muscle and in small amounts by adipose tissue

  • Irisin improves glucose homeostasis, lipid profile and metabolic parameters in animals and acts on adipose tissue by inducing 'browning', as well as on muscle and liver

  • Inconsistencies in published data regarding the circulating levels of irisin highlight the need for accurate methods for irisin measurement and for improved study design

  • Levels of irisin are increased in states of obesity and decreased in patients with type 2 diabetes mellitus (T2DM)

  • Future studies should try to identify the irisin receptor and to investigate the effects of irisin on the endocrine pancreas and appetite centres in the brain; prospective clinical studies should investigate whether irisin is a predictive marker for insulin resistance, T2DM or the metabolic syndrome

Abstract

Irisin is a myokine that leads to increased energy expenditure by stimulating the 'browning' of white adipose tissue. In the first description of this hormone, increased levels of circulating irisin, which is cleaved from its precursor fibronectin type III domain-containing protein 5, were associated with improved glucose homeostasis by reducing insulin resistance. Consequently, several studies attempted to characterize the role of irisin in glucose regulation, but contradictory results have been reported, and even the existence of this hormone has been questioned. In this Review, we present the current knowledge on the physiology of irisin and its role in glucose homeostasis. We describe the mechanisms involved in the synthesis, secretion, circulation and regulation of irisin, and the controversies regarding the measurement of irisin. We also discuss the direct effects of irisin on glucose regulatory mechanisms in different organs, the indirect effects and interactions with other hormones, and the important open questions with regard to irisin in those organs. Finally, we present the results from animal interventional studies and from human clinical studies investigating the association of irisin with obesity, insulin resistance, type 2 diabetes mellitus and the metabolic syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Candidate signalling pathways of irisin in adipocytes.
Figure 2: Candidate signalling pathways of irisin in myocytes.
Figure 3: Candidate signalling pathways of irisin in hepatocytes.
Figure 4: Effects of irisin on glucose homeostasis.

Similar content being viewed by others

References

  1. Gerich, J. E. Physiology of glucose homeostasis. Diabetes Obes. Metab. 2, 345–350 (2000).

    CAS  PubMed  Google Scholar 

  2. Gregor, M. F. & Hotamisligil, G. S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 29, 415–445 (2011).

    CAS  PubMed  Google Scholar 

  3. Shoelson, S. E., Lee, J. & Goldfine, A. B. Inflammation and insulin resistance. J. Clin. Invest. 116, 1793–1801 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bostrom, P. et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481, 463–468 (2012). This is the first study to describe the existence of irisin and its role in thermogenesis in mice.

    PubMed  PubMed Central  Google Scholar 

  5. NCBI. Fibronectin type III domain-containing protein 5 precursor [Rattus norvegicus]. NCBI https://www.ncbi.nlm.nih.gov/protein/NP_001257910.1 (2016).

  6. NCBI. Fibronectin type III domain-containing protein 5 preproprotein [Mus musculus]. NCBI https://www.ncbi.nlm.nih.gov/protein/NP_081678.1 (2016).

  7. NCBI. Fibronectin type III domain-containing protein 5 isoform 2 preproprotein [Homo sapiens]. NCBI https://www.ncbi.nlm.nih.gov/protein/NP_715637.2 (2016).

  8. Schumacher, M. A., Chinnam, N., Ohashi, T., Shah, R. S. & Erickson, H. P. The structure of irisin reveals a novel intersubunit ß-sheet fibronectin type III (FNIII) dimer: implications for receptor activation. J. Biol. Chem. 288, 33738–33744 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Huh, J. Y. et al. FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism 61, 1725–1738 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Roca-Rivada, A. et al. FNDC5/irisin is not only a myokine but also an adipokine. PLoS ONE 8, e60563 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kurdiova, T. et al. Effects of obesity, diabetes and exercise on Fndc5 gene expression and irisin release in human skeletal muscle and adipose tissue: in vivo and in vitro studies. J. Physiol. 592, 1091–1107 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Moreno-Navarrete, J. M. et al. Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J. Clin. Endocrinol. Metab. 98, E769–E778 (2013).

    CAS  PubMed  Google Scholar 

  13. Aydin, S. et al. A comprehensive immunohistochemical examination of the distribution of the fat-burning protein irisin in biological tissues. Peptides 61, 130–136 (2014).

    CAS  PubMed  Google Scholar 

  14. Lv, J. et al. Study on the distribution and elimination of the new hormone irisin in vivo: new discoveries regarding irisin. Horm. Metab. Res. 47, 591–595 (2015).

    CAS  PubMed  Google Scholar 

  15. Crujeiras, A. B., Pardo, M. & Casanueva, F. F. Irisin: 'fat' or artefact. Clin. Endocrinol. (Oxf.) 82, 467–474 (2015).

    CAS  Google Scholar 

  16. Elbelt, U., Hofmann, T. & Stengel, A. Irisin: what promise does it hold? Curr. Opin. Clin. Nutr. Metab. Care 16, 541–547 (2013).

    CAS  PubMed  Google Scholar 

  17. Hofmann, T., Elbelt, U. & Stengel, A. Irisin as a muscle-derived hormone stimulating thermogenesis — a critical update. Peptides 54, 89–100 (2014).

    CAS  PubMed  Google Scholar 

  18. Polyzos, S. A. & Mantzoros, C. S. An update on the validity of irisin assays and the link between irisin and hepatic metabolism. Metabolism 64, 937–942 (2015).

    CAS  PubMed  Google Scholar 

  19. Polyzos, S. A., Mathew, H. & Mantzoros, C. S. Irisin: A true, circulating hormone. Metabolism 64, 1611–1618 (2015).

    CAS  PubMed  Google Scholar 

  20. Sanchis-Gomar, F., Alis, R., Pareja-Galeano, H., Romagnoli, M. & Perez-Quilis, C. Inconsistency in circulating irisin levels: what is really happening? Horm. Metab. Res. 46, 591–596 (2014).

    CAS  PubMed  Google Scholar 

  21. Raschke, S. et al. Evidence against a beneficial effect of irisin in humans. PLoS ONE 8, e73680 (2013). This was the first study questioning the existence and importance of irisin in humans.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bostrom, P. A., Fernandez-Real, J. M. & Mantzoros, C. Irisin in humans: recent advances and questions for future research. Metabolism 63, 178–180 (2014).

    CAS  PubMed  Google Scholar 

  23. Huh, J. Y., Siopi, A., Mougios, V., Park, K. H. & Mantzoros, C. S. Irisin in response to exercise in humans with and without metabolic syndrome. J. Clin. Endocrinol. Metab. 100, E453–E457 (2015).

    CAS  PubMed  Google Scholar 

  24. Jedrychowski, M. P. et al. Detection and quantitation of circulating human irisin by tandem mass spectrometry. Cell Metab. 22, 734–740 (2015). This study is the latest confirmation from the investigators that discovered irisin showing that irisin exists in circulating levels in humans.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, P. et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab. 19, 302–309 (2014). This study further confirmed the existence of irisin in humans and its effects in browning.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Loffler, D. et al. Serum irisin levels are regulated by acute strenuous exercise. J. Clin. Endocrinol. Metab. 100, 1289–1299 (2015).

    PubMed  Google Scholar 

  27. Palacios-Gonzalez, B. et al. Irisin levels before and after physical activity among school-age children with different BMI: a direct relation with leptin. Obesity (Silver Spring) 23, 729–732 (2015).

    CAS  Google Scholar 

  28. Polyzos, S. A., Kountouras, J., Anastasilakis, A. D., Geladari, E. V. & Mantzoros, C. S. Irisin in patients with nonalcoholic fatty liver disease. Metabolism 63, 207–217 (2014).

    CAS  PubMed  Google Scholar 

  29. Albrecht, E. et al. Irisin — a myth rather than an exercise-inducible myokine. Sci. Rep. 5, 8889 (2015). This is the second study, after the study conducted by Raschke, S. et al . (reference 21), that questioned the existence of irisin.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kozak, M. Context effects and inefficient initiation at non-AUG codons in eucaryotic cell-free translation systems. Mol. Cell. Biol. 9, 5073–5080 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bidlingmaier, M. & Freda, P. U. Measurement of human growth hormone by immunoassays: current status, unsolved problems and clinical consequences. Growth Horm. IGF Res. 20, 19–25 (2010).

    CAS  PubMed  Google Scholar 

  32. Robinson, C. J., Gaines Das, R. & Woollacott, D. The first international standard for human leptin and the first international standard for mouse leptin: comparison of candidate preparations by in vitro bioassays and immunoassays. J. Mol. Endocrinol. 27, 69–76 (2001).

    CAS  PubMed  Google Scholar 

  33. Sturgeon, C. M. & Ellis, A. R. Standardization of FSH, LH and hCG — current position and future prospects. Mol. Cell Endocrinol. 260–262, 301–309 (2007).

    PubMed  Google Scholar 

  34. Sanchis-Gomar, F., Alis, R. & Lippi, G. Circulating irisin detection: does it really work? Trends Endocrinol. Metab. 26, 335–336 (2015).

    CAS  PubMed  Google Scholar 

  35. Pilegaard, H., Saltin, B. & Neufer, P. D. Exercise induces transient transcriptional activation of the PGC-1α gene in human skeletal muscle. J. Physiol. 546, 851–858 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Spiegelman, B. M., Puigserver, P. & Wu, Z. Regulation of adipogenesis and energy balance by PPARγ and PGC-1. Int. J. Obes. Relat. Metab. Disord. 24 (Suppl. 4), 8–10 (2000).

    Google Scholar 

  37. Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115–124 (1999).

    CAS  PubMed  Google Scholar 

  38. Kurdiova, T. et al. Exercise-mimicking treatment fails to increase Fndc5 mRNA and irisin secretion in primary human myotubes. Peptides 56, 1–7 (2014).

    CAS  PubMed  Google Scholar 

  39. Peterson, J. M., Mart, R. & Bond, C. E. Effect of obesity and exercise on the expression of the novel myokines, Myonectin and Fibronectin type III domain containing 5. PeerJ 2, e605 (2014).

    PubMed  PubMed Central  Google Scholar 

  40. Norheim, F. et al. The effects of acute and chronic exercise on PGC-1α, irisin and browning of subcutaneous adipose tissue in humans. FEBS J. 281, 739–749 (2014).

    CAS  PubMed  Google Scholar 

  41. Besse-Patin, A. et al. Effect of endurance training on skeletal muscle myokine expression in obese men: identification of apelin as a novel myokine. Int. J. Obes. (Lond.) 38, 707–713 (2014).

    CAS  Google Scholar 

  42. Pekkala, S. et al. Are skeletal muscle FNDC5 gene expression and irisin release regulated by exercise and related to health? J. Physiol. 591, 5393–5400 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Al-Daghri, N. M. et al. Habitual physical activity is associated with circulating irisin in healthy controls but not in subjects with diabetes mellitus type 2. Eur. J. Clin. Invest. 45, 775–781 (2015).

    CAS  PubMed  Google Scholar 

  44. Ellefsen, S. et al. Irisin and FNDC5: effects of 12-week strength training, and relations to muscle phenotype and body mass composition in untrained women. Eur. J. Appl. Physiol. 114, 1875–1888 (2014).

    CAS  PubMed  Google Scholar 

  45. Huh, J. Y. et al. Exercise-induced irisin secretion is independent of age or fitness level and increased irisin may directly modulate muscle metabolism through AMPK activation. J. Clin. Endocrinol. Metab. 99, E2154–E2161 (2014).

    CAS  PubMed  Google Scholar 

  46. Huh, J. Y., Mougios, V., Skraparlis, A., Kabasakalis, A. & Mantzoros, C. S. Irisin in response to acute and chronic whole-body vibration exercise in humans. Metabolism 63, 918–921 (2014).

    CAS  PubMed  Google Scholar 

  47. Ijiri, N., Kanazawa, H., Asai, K., Watanabe, T. & Hirata, K. Irisin, a newly discovered myokine, is a novel biomarker associated with physical activity in patients with chronic obstructive pulmonary disease. Respirology 20, 612–617 (2015).

    PubMed  Google Scholar 

  48. Moraes, C. et al. Resistance exercise training does not affect plasma irisin levels of hemodialysis patients. Horm. Metab. Res. 45, 900–904 (2013).

    CAS  PubMed  Google Scholar 

  49. Nygaard, H. et al. Irisin in blood increases transiently after single sessions of intense endurance exercise and heavy strength training. PLoS ONE 10, e0121367 (2015).

    PubMed  PubMed Central  Google Scholar 

  50. Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998).

    CAS  PubMed  Google Scholar 

  51. Brenmoehl, J. et al. Irisin is elevated in skeletal muscle and serum of mice immediately after acute exercise. Int. J. Biol. Sci. 10, 338–349 (2014).

    PubMed  PubMed Central  Google Scholar 

  52. Tsuchiya, Y., Ando, D., Takamatsu, K. & Goto, K. Resistance exercise induces a greater irisin response than endurance exercise. Metabolism 64, 1042–1050 (2015).

    CAS  PubMed  Google Scholar 

  53. Huh, J. Y., Dincer, F., Mesfum, E. & Mantzoros, C. S. Irisin stimulates muscle growth-related genes and regulates adipocyte differentiation and metabolism in humans. Int. J. Obes. (Lond.) 38, 1538–1544 (2014). This is the first study to describe the expression profile of FNDC5 (the precursor of irisin) and the factors predicting the circulating levels of irisin in humans.

    CAS  Google Scholar 

  54. Tiano, J. P., Springer, D. A. & Rane, S. G. SMAD3 negatively regulates serum irisin and skeletal muscle FNDC5 and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) during exercise. J. Biol. Chem. 290, 11431 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Tiano, J. P., Springer, D. A. & Rane, S. G. SMAD3 negatively regulates serum irisin and skeletal muscle FNDC5 and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) during exercise. J. Biol. Chem. 290, 7671–7684 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yadav, H. et al. Protection from obesity and diabetes by blockade of TGF-ß/Smad3 signaling. Cell Metab. 14, 67–79 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Dong, J., Dong, Y., Chen, F., Mitch, W. E. & Zhang, L. Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues. Int. J. Obes. (Lond.) 40, 434–442 (2016).

    CAS  Google Scholar 

  58. Shan, T., Liang, X., Bi, P. & Kuang, S. Myostatin knockout drives browning of white adipose tissue through activating the AMPK-PGC1α-Fndc5 pathway in muscle. FASEB J. 27, 1981–1989 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Rodriguez, A. et al. Leptin administration activates irisin-induced myogenesis via nitric oxide-dependent mechanisms, but reduces its effect on subcutaneous fat browning in mice. Int. J. Obes. (Lond.) 39, 397–407 (2015).

    CAS  Google Scholar 

  60. Li, M. et al. Elevated circulating levels of irisin and the effect of metformin treatment in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 100, 1485–1493 (2015).

    CAS  PubMed  Google Scholar 

  61. Gutierrez-Repiso, C. et al. FNDC5 could be regulated by leptin in adipose tissue. Eur. J. Clin. Invest. 44, 918–925 (2014).

    CAS  PubMed  Google Scholar 

  62. Gavrieli, A., Panagiotou, G. & Mantzoros, C. S. Leptin administration in physiological or pharmacological doses does not alter circulating irisin levels in humans. Int. J. Obes. (Lond.) 40, 1461–1463 (2016).

    CAS  Google Scholar 

  63. Huerta, A. E. et al. Circulating irisin and glucose metabolism in overweight/obese women: effects of α-lipoic acid and eicosapentaenoic acid. J. Physiol. Biochem. 71, 547–558 (2015).

    CAS  PubMed  Google Scholar 

  64. Koh, E. H. et al. Effects of α-lipoic acid on body weight in obese subjects. Am J. Med. 124, 85.e1–85.e8 (2011).

    CAS  Google Scholar 

  65. Rochette, L., Ghibu, S., Muresan, A. & Vergely, C. α-Lipoic acid: molecular mechanisms and therapeutic potential in diabetes. Can. J. Physiol. Pharmacol. 93, 1021–1027 (2015).

    CAS  PubMed  Google Scholar 

  66. Matsuo, Y. et al. Fibronectin type III domain containing 5 expression in skeletal muscle in chronic heart failure-relevance of inflammatory cytokines. J. Cachexia Sarcopenia Muscle 6, 62–72 (2015).

    PubMed  PubMed Central  Google Scholar 

  67. Rachid, T. L. et al. Fenofibrate (PPARα agonist) induces beige cell formation in subcutaneous white adipose tissue from diet-induced male obese mice. Mol. Cell. Endocrinol. 402, 86–94 (2015).

    CAS  PubMed  Google Scholar 

  68. Li, D. J. et al. Metformin promotes irisin release from murine skeletal muscle independently of AMP-activated protein kinase activation. Acta Physiol. (Oxf.) 213, 711–721 (2015).

    CAS  Google Scholar 

  69. Yang, Z., Chen, X., Chen, Y. & Zhao, Q. PGC-1 mediates the regulation of metformin in muscle irisin expression and function. Am. J. Transl Res. 7, 1850–1859 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang, Y. et al. Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes 63, 514–525 (2014). This study confirmed the initial findings of Bostrom, P. et al . (reference 4) and also provided a functional mechanism for the observed browning effects of irisin on WAT.

    CAS  PubMed  Google Scholar 

  71. Elsen, M., Raschke, S. & Eckel, J. Browning of white fat: does irisin play a role in humans? J. Endocrinol. 222, R25–R38 (2014).

    CAS  PubMed  Google Scholar 

  72. Zhang, Y. et al. Irisin exerts dual effects on browning and adipogenesis of human white adipocytes. Am. J. Physiol. Endocrinol. Metab. 311, E530–E541 (2016).

    PubMed  Google Scholar 

  73. Orava, J. et al. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab. 14, 272–279 (2011).

    CAS  PubMed  Google Scholar 

  74. Xiong, X. Q. et al. FNDC5 overexpression and irisin ameliorate glucose/lipid metabolic derangements and enhance lipolysis in obesity. Biochim. Biophys. Acta 1852, 1867–1875 (2015).

    CAS  PubMed  Google Scholar 

  75. Gao, S. et al. Effects and molecular mechanism of GST-irisin on lipolysis and autocrine function in 3T3-L1 adipocytes. PLoS ONE 11, e0147480 (2016).

    PubMed  PubMed Central  Google Scholar 

  76. Lee, H. J. et al. Irisin, a novel myokine, regulates glucose uptake in skeletal muscle cells via AMPK. Mol. Endocrinol. 29, 873–881 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Xin, C. et al. Irisin improves fatty acid oxidation and glucose utilization in type 2 diabetes by regulating the AMPK signaling pathway. Int. J. Obes. (Lond.) 40, 443–451 (2016).

    CAS  Google Scholar 

  78. Yang, Z., Chen, X., Chen, Y. & Zhao, Q. Decreased irisin secretion contributes to muscle insulin resistance in high-fat diet mice. Int. J. Clin. Exp. Pathol. 8, 6490–6497 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Vaughan, R. A. et al. Characterization of the metabolic effects of irisin on skeletal muscle in vitro. Diabetes Obes. Metab. 16, 711–718 (2014).

    CAS  PubMed  Google Scholar 

  80. Vaughan, R. A., Gannon, N. P., Mermier, C. M. & Conn, C. A. Irisin, a unique non-inflammatory myokine in stimulating skeletal muscle metabolism. J. Physiol. Biochem. 71, 679–689 (2015).

    CAS  PubMed  Google Scholar 

  81. Liu, T. Y. et al. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in type 2 diabetic mice and hepatocytes. Clin. Sci. (Lond.) 129, 839–850 (2015).

    CAS  Google Scholar 

  82. Tang, H. et al. Irisin inhibits hepatic cholesterol synthesis via AMPK-SREBP2 signaling. EBioMedicine 6, 139–148 (2016).

    PubMed  PubMed Central  Google Scholar 

  83. Mo, L. et al. Irisin is regulated by CAR in liver and is a mediator of hepatic glucose and lipid metabolism. Mol. Endocrinol. 30, 533–542 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Park, M. J., Kim, D. I., Choi, J. H., Heo, Y. R. & Park, S. H. New role of irisin in hepatocytes: the protective effect of hepatic steatosis in vitro. Cell. Signal. 27, 1831–1839 (2015).

    CAS  PubMed  Google Scholar 

  85. Batirel, S., Bozaykut, P., Mutlu Altundag, E., Kartal Ozer, N. & Mantzoros, C. S. The effect of irisin on antioxidant system in liver. Free Radic. Biol. Med. 75 (Suppl. 1), S16 (2014).

    PubMed  Google Scholar 

  86. Zhang, H. J. et al. Irisin is inversely associated with intrahepatic triglyceride contents in obese adults. J. Hepatol. 59, 557–562 (2013).

    CAS  PubMed  Google Scholar 

  87. Choi, E. S. et al. Association between serum irisin levels and non-alcoholic fatty liver disease in health screen examinees. PLoS ONE 9, e110680 (2014).

    PubMed  PubMed Central  Google Scholar 

  88. Rizk, F. H., Elshweikh, S. A. & Abd El-Naby, A. Y. Irisin levels in relation to metabolic and liver functions in Egyptian patients with metabolic syndrome. Can. J. Physiol. Pharmacol. 94, 359–362 (2016).

    CAS  PubMed  Google Scholar 

  89. Polyzos, S. A., Kountouras, J., Anastasilakis, A. D., Margouta, A. & Mantzoros, C. S. Association between circulating irisin and homocysteine in patients with nonalcoholic fatty liver disease. Endocrine 49, 560–562 (2015).

    CAS  PubMed  Google Scholar 

  90. Yang, M. et al. Circulating levels of irisin in middle-aged first-degree relatives of type 2 diabetes mellitus — correlation with pancreatic ß-cell function. Diabetol. Metab. Syndr. 6, 133 (2014).

    PubMed  PubMed Central  Google Scholar 

  91. Wang, L. et al. Circulating levels of betatrophin and irisin are not associated with pancreatic ß-cell function in previously diagnosed type 2 diabetes mellitus patients. J. Diabetes Res. 2016, 2616539 (2016).

    PubMed  Google Scholar 

  92. Wen, M. S., Wang, C. Y., Lin, S. L. & Hung, K. C. Decrease in irisin in patients with chronic kidney disease. PLoS ONE 8, e64025 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ebert, T. et al. Serum levels of the myokine irisin in relation to metabolic and renal function. Eur. J. Endocrinol. 170, 501–506 (2014).

    CAS  PubMed  Google Scholar 

  94. Liu, J. J. et al. Relationship between circulating irisin, renal function and body composition in type 2 diabetes. J. Diabetes Complicat. 28, 208–213 (2014).

    Google Scholar 

  95. Hu, W., Wang, R., Li, J., Zhang, J. & Wang, W. Association of irisin concentrations with the presence of diabetic nephropathy and retinopathy. Ann. Clin. Biochem. 53, 67–74 (2016).

    CAS  PubMed  Google Scholar 

  96. Wang, H. H., Zhang, X. W., Chen, W. K., Huang, Q. X. & Chen, Q. Q. Relationship between serum irisin levels and urinary albumin excretion in patients with type 2 diabetes. J. Diabetes Complicat. 29, 384–389 (2015).

    Google Scholar 

  97. Yang, S. et al. Association of serum irisin and body composition with chronic kidney disease in obese Chinese adults: a cross-sectional study. BMC Nephrol. 16, 16 (2015).

    PubMed  PubMed Central  Google Scholar 

  98. Dun, S. L. et al. Irisin-immunoreactivity in neural and non-neural cells of the rodent. Neuroscience 240, 155–162 (2013).

    CAS  PubMed  Google Scholar 

  99. Piya, M. K. et al. The identification of irisin in human cerebrospinal fluid: influence of adiposity, metabolic markers, and gestational diabetes. Am. J. Physiol. Endocrinol. Metab. 306, E512–E518 (2014).

    CAS  PubMed  Google Scholar 

  100. Hashemi, M. S. et al. Fndc5 knockdown significantly decreased neural differentiation rate of mouse embryonic stem cells. Neuroscience 231, 296–304 (2013).

    CAS  PubMed  Google Scholar 

  101. Ghahrizjani, F. A. et al. Enhanced expression of FNDC5 in human embryonic stem cell-derived neural cells along with relevant embryonic neural tissues. Gene 557, 123–129 (2015).

    PubMed  Google Scholar 

  102. Moon, H. S., Dincer, F. & Mantzoros, C. S. Pharmacological concentrations of irisin increase cell proliferation without influencing markers of neurite outgrowth and synaptogenesis in mouse H19-7 hippocampal cell lines. Metabolism 62, 1131–1136 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Wrann, C. D. et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab. 18, 649–659 (2013). This study links irisin and FNDC5 with neurocognitive function through a PGC1α–FNDC5–BDNF axis.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang, W. et al. Central and peripheral irisin differentially regulate blood pressure. Cardiovasc. Drugs Ther. 29, 121–127 (2015).

    PubMed  PubMed Central  Google Scholar 

  105. Zhang, W. et al. Irisin: A myokine with locomotor activity. Neurosci. Lett. 595, 7–11 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Schlogl, M. et al. Increased 24-hour ad libitum food intake is associated with lower plasma irisin concentrations the following morning in adult humans. Appetite 90, 154–159 (2015).

    PubMed  PubMed Central  Google Scholar 

  107. Han, F., Zhang, S., Hou, N., Wang, D. & Sun, X. Irisin improves endothelial function in obese mice through the AMPK-eNOS pathway. Am. J. Physiol. Heart Circ. Physiol. 309, H1501–H1508 (2015).

    CAS  PubMed  Google Scholar 

  108. Lu, J. et al. Irisin protects against endothelial injury and ameliorates atherosclerosis in apolipoprotein E-null diabetic mice. Atherosclerosis 243, 438–448 (2015).

    CAS  PubMed  Google Scholar 

  109. Zhu, G. et al. Irisin increased the number and improved the function of endothelial progenitor cells in diabetes mellitus mice. J. Cardiovasc. Pharmacol. 68, 67–73 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Song, H. et al. Irisin promotes human umbilical vein endothelial cell proliferation through the ERK signaling pathway and partly suppresses high glucose-induced apoptosis. PLoS ONE 9, e110273 (2014).

    PubMed  PubMed Central  Google Scholar 

  111. Wu, F. et al. Irisin induces angiogenesis in human umbilical vein endothelial cells in vitro and in zebrafish embryos in vivo via activation of the ERK signaling pathway. PLoS ONE 10, e0134662 (2015).

    PubMed  PubMed Central  Google Scholar 

  112. Zhu, D. et al. Irisin improves endothelial function in type 2 diabetes through reducing oxidative/nitrative stresses. J. Mol. Cell. Cardiol. 87, 138–147 (2015).

    CAS  PubMed  Google Scholar 

  113. Yi, P., Park, J. S. & Melton, D. A. Betatrophin: a hormone that controls pancreatic ß cell proliferation. Cell 153, 747–758 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Sanchis-Gomar, F. & Perez-Quilis, C. The p38–PGC-1α–irisin–betatrophin axis: exploring new pathways in insulin resistance. Adipocyte 3, 67–68 (2014).

    CAS  PubMed  Google Scholar 

  115. Jiao, Y., Le Lay, J., Yu, M., Naji, A. & Kaestner, K. H. Elevated mouse hepatic betatrophin expression does not increase human ß-cell replication in the transplant setting. Diabetes 63, 1283–1288 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Cox, A. R. et al. Angiopoietin-like protein 8 (ANGPTL8)/betatrophin overexpression does not increase ß cell proliferation in mice. Diabetologia 58, 1523–1531 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Gusarova, V. et al. ANGPTL8/betatrophin does not control pancreatic ß cell expansion. Cell 159, 691–696 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Yi, P., Park, J. -S. & Melton, D. A. Retraction notice to: betatrophin: a hormone that controls pancreatic ß cell proliferation. Cell 168, 326 (2017).

    CAS  PubMed  Google Scholar 

  119. Bluher, S. et al. Effects of a 1-year exercise and lifestyle intervention on irisin, adipokines, and inflammatory markers in obese children. Obesity (Silver Spring) 22, 1701–1708 (2014).

    Google Scholar 

  120. Moreno, M. et al. Circulating irisin levels are positively associated with metabolic risk factors in sedentary subjects. PLoS ONE 10, e0124100 (2015).

    PubMed  PubMed Central  Google Scholar 

  121. Sesti, G. et al. High circulating irisin levels are associated with insulin resistance and vascular atherosclerosis in a cohort of nondiabetic adult subjects. Acta Diabetol. 51, 705–713 (2014).

    CAS  PubMed  Google Scholar 

  122. Stengel, A. et al. Circulating levels of irisin in patients with anorexia nervosa and different stages of obesity — correlation with body mass index. Peptides 39, 125–130 (2013).

    CAS  PubMed  Google Scholar 

  123. Duan, H. et al. Anti-diabetic activity of recombinant irisin in STZ-induced insulin-deficient diabetic mice. Int. J. Biol. Macromol. 84, 457–463 (2016).

    CAS  PubMed  Google Scholar 

  124. Crujeiras, A. B. et al. Association between circulating irisin levels and the promotion of insulin resistance during the weight maintenance period after a dietary weight-lowering program in obese patients. Metabolism 63, 520–531 (2014).

    CAS  PubMed  Google Scholar 

  125. Chen, J. Q. et al. Serum irisin level is higher and related with insulin in acanthosis nigricans-related obesity. Exp. Clin. Endocrinol. Diabetes 124, 203–207 (2016).

    CAS  PubMed  Google Scholar 

  126. Crujeiras, A. B. et al. Longitudinal variation of circulating irisin after an energy restriction-induced weight loss and following weight regain in obese men and women. Am. J. Hum. Biol. 26, 198–207 (2014).

    PubMed  Google Scholar 

  127. Huth, C. et al. Irisin is more strongly predicted by muscle oxidative potential than adiposity in non-diabetic men. J. Physiol. Biochem. 71, 559–568 (2015).

    CAS  PubMed  Google Scholar 

  128. Reinehr, T., Elfers, C., Lass, N. & Roth, C. L. Irisin and its relation to insulin resistance and puberty in obese children: a longitudinal analysis. J. Clin. Endocrinol. Metab. 100, 2123–2130 (2015).

    CAS  PubMed  Google Scholar 

  129. Qiu, S. et al. Association between circulating irisin and insulin resistance in non-diabetic adults: a meta-analysis. Metabolism 65, 825–834 (2016). This is a meta-analysis of several studies that shows that irisin is weakly, but positively, associated with insulin resistance.

    CAS  PubMed  Google Scholar 

  130. Park, K. H. et al. Circulating irisin in relation to insulin resistance and the metabolic syndrome. J. Clin. Endocrinol. Metab. 98, 4899–4907 (2013).

    CAS  PubMed  Google Scholar 

  131. Anastasilakis, A. D. et al. Circulating irisin in healthy, young individuals: day-night rhythm, effects of food intake and exercise, and associations with gender, physical activity, diet, and body composition. J. Clin. Endocrinol. Metab. 99, 3247–3255 (2014).

    CAS  PubMed  Google Scholar 

  132. Choi, Y. K. et al. Serum irisin levels in new-onset type 2 diabetes. Diabetes Res. Clin. Pract. 100, 96–101 (2013).

    CAS  PubMed  Google Scholar 

  133. Liu, J. J. et al. Lower circulating irisin is associated with type 2 diabetes mellitus. J. Diabetes Complicat. 27, 365–369 (2013).

    Google Scholar 

  134. Zhang, C. et al. Lower irisin level in patients with type 2 diabetes mellitus: a case-control study and meta-analysis. J. Diabetes 8, 56–62 (2016).

    CAS  PubMed  Google Scholar 

  135. Erol, O. et al. Irisin as an early marker for predicting gestational diabetes mellitus: a prospective study. J. Matern. Fetal Neonatal Med. 29, 3590–3595 (2016).

    CAS  PubMed  Google Scholar 

  136. Zhao, L. et al. Circulating irisin is lower in gestational diabetes mellitus. Endocr. J. 62, 921–926 (2015).

    CAS  PubMed  Google Scholar 

  137. Huh, J. H., Ahn, S. V., Choi, J. H., Koh, S. B. & Chung, C. H. High serum irisin level as an independent predictor of diabetes mellitus: a longitudinal population-based study. Medicine (Baltimore) 95, e3742 (2016).

    CAS  Google Scholar 

  138. Hwang, Y. C., Jeon, W. S., Park, C. Y. & Youn, B. S. The ratio of skeletal muscle mass to visceral fat area is a main determinant linking circulating irisin to metabolic phenotype. Cardiovasc. Diabetol. 15, 9 (2016).

    PubMed  PubMed Central  Google Scholar 

  139. Yan, B. et al. Association of serum irisin with metabolic syndrome in obese Chinese adults. PLoS ONE 9, e94235 (2014).

    PubMed  PubMed Central  Google Scholar 

  140. Aronis, K. N. et al. Circulating irisin levels and coronary heart disease: association with future acute coronary syndrome and major adverse cardiovascular events. Int. J. Obes. (Lond.) 39, 156–161 (2015).

    CAS  Google Scholar 

  141. Emanuele, E. et al. Serum irisin levels, precocious myocardial infarction, and healthy exceptional longevity. Am. J. Med. 127, 888–890 (2014).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C.S.M. is supported by US National Institutes of Health (NIH DK081913). J.M.F-R. is supported by Instituto Salud Carlos III (http://www.isciii.es); Centro de Investigación Biomédica en Red-Fisiopatología de la Obesidad y Nutrición (CIBERobn) (http://www.ciberobn.es); Agència de Gestió d'Ajuts Universitaris i de Recerca (AGAUR) (www.gencat.cat/agaur/) (2015FI_B00570); and Fondo Europeo de Desarrollo Regional (FEDER).

Author information

Authors and Affiliations

Authors

Contributions

N.P. researched data for the article and wrote the manuscript. G.A.T. researched data for the article, wrote the manuscript and edited the article before submission. J.M.F-R., J.Y.H., K.H.P., J.S. and C.S.M. contributed to discussion of the content, wrote parts of the article and reviewed and/or edited the article before submission.

Corresponding authors

Correspondence to Nikolaos Perakakis or Christos S. Mantzoros.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Human studies investigating the association of irisin with obesity, insulin resistance, diabetes mellitus and metabolic syndrome (PDF 566 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perakakis, N., Triantafyllou, G., Fernández-Real, J. et al. Physiology and role of irisin in glucose homeostasis. Nat Rev Endocrinol 13, 324–337 (2017). https://doi.org/10.1038/nrendo.2016.221

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2016.221

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing