Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

BMP signalling in skeletal development, disease and repair

Key Points

  • Phylogenetic analysis indicates that the bone morphogenetic protein (BMP) pathway is ancient and highly conserved across the animal kingdom

  • Gene duplication and divergence has created a diverse matrix of BMP ligand–receptor pairs that achieve sophisticated control of signalling through variable activity profiles and functional redundancy

  • Members of the BMP superfamily affect almost all aspects of bone, cartilage and joint biology

  • Altered BMP signalling is a major underlying cause of human skeletal disorders

  • Modulation of BMP signalling is emerging as a promising therapeutic strategy for improving bone mass and bone quality, ameliorating diseases of skeletal overgrowth and repairing damage to bones and joints

Abstract

Since the identification in 1988 of bone morphogenetic protein 2 (BMP2) as a potent inducer of bone and cartilage formation, BMP superfamily signalling has become one of the most heavily investigated topics in vertebrate skeletal biology. Whereas a large part of this research has focused on the roles of BMP2, BMP4 and BMP7 in the formation and repair of endochondral bone, a large number of BMP superfamily molecules have now been implicated in almost all aspects of bone, cartilage and joint biology. As modulating BMP signalling is currently a major therapeutic target, our rapidly expanding knowledge of how BMP superfamily signalling affects most tissue types of the skeletal system creates enormous potential to translate basic research findings into successful clinical therapies that improve bone mass or quality, ameliorate diseases of skeletal overgrowth, and repair damage to bone and joints. This Review examines the genetic evidence implicating BMP superfamily signalling in vertebrate bone and joint development, discusses a selection of human skeletal disorders associated with altered BMP signalling and summarizes the status of modulating the BMP pathway as a therapeutic target for skeletal trauma and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phylogenetic analysis of BMP superfamily molecules.
Figure 2: Fundamental mechanisms of canonical BMP superfamily signalling.
Figure 3: Developmental skeletogenesis.
Figure 4: Cre-mediated gene recombination in subpopulations of bone cell lineages.
Figure 5: Reported contributions by BMP pathway to skeletal biology.
Figure 6: Joint morphogenesis.
Figure 7: Bone morphogenetic protein signalling domains in knees versus elbows.

Similar content being viewed by others

References

  1. Urist, M. R. & Strates, B. S. Bone morphogenetic protein. J. Dent. Res. 50, 1392–1406 (1971).

    Article  CAS  PubMed  Google Scholar 

  2. Nogami, H. & Urist, M. R. A morphogenetic matrix for differentiation of cartilage in tissue culture. Proc. Soc. Exp. Biol. Med. 134, 530–535 (1970).

    Article  CAS  PubMed  Google Scholar 

  3. Urist, M. R. Bone: formation by autoinduction. 1965. Clin. Orthop. Relat. Res. 395, 4–10 (2002). Reference 3 shows that post-fetal osteogenesis can be induced in live animals by acelluar decalcified bone fragments and demonstrates the presence of osteoinductive factors in the bone extracellular matrix.

    Article  Google Scholar 

  4. Wozney, J. M. et al. Novel regulators of bone formation: molecular clones and activities. Science 242, 1528–1534 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Lo, K. W., Ulery, B. D., Ashe, K. M. & Laurencin, C. T. Studies of bone morphogenetic protein-based surgical repair. Adv. Drug Deliv. Rev. 64, 1277–1291 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Shore, E. M. et al. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat. Genet. 38, 525–527 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Mizuguchi, T. et al. Heterozygous TGFBR2 mutations in Marfan syndrome. Nat. Genet. 36, 855–860 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Loeys, B. L. et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat. Genet. 37, 275–281 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. van der Kraan, P. M., Blaney Davidson, E. N. & van den Berg, W. B. Bone morphogenetic proteins and articular cartilage: to serve and protect or a wolf in sheep clothing's? Osteoarthritis Cartilage 18, 735–741 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. van der Kraan, P. M., Blaney Davidson, E. N. & van den Berg, W. B. A role for age-related changes in TGFβ signaling in aberrant chondrocyte differentiation and osteoarthritis. Arthritis Res. Ther. 12, 201 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Johnson, A. B. Operative Therapeusis Vol. 2 Ch. 7 (D. Appleton & Company, 1915).

    Google Scholar 

  12. Huggins, C., Wiseman, S. & Reddi, A. H. Transformation of fibroblasts by allogeneic and xenogeneic transplants of demineralized tooth and bone. J. Exp. Med. 132, 1250–1258 (1970).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sampath, T. K. & Reddi, A. H. Dissociative extraction and reconstitution of extracellular matrix components involved in local bone differentiation. Proc. Natl Acad. Sci. USA 78, 7599–7603 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sampath, T. K., Muthukumaran, N. & Reddi, A. H. Isolation of osteogenin, an extracellular matrix-associated, bone-inductive protein, by heparin affinity chromatography. Proc. Natl Acad. Sci. USA 84, 7109–7113 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rosen, V. BMP2 signaling in bone development and repair. Cytokine Growth Factor Rev. 20, 475–480 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Huminiecki, L. et al. Emergence, development and diversification of the TGF-β signalling pathway within the animal kingdom. BMC Evol. Biol. 9, 28 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Tuazon, F. B. & Mullins, M. C. Temporally coordinated signals progressively pattern the anteroposterior and dorsoventral body axes. Semin. Cell Dev. Biol. 42, 118–133 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kahlem, P. & Newfeld, S. J. Informatics approaches to understanding TGFβ pathway regulation. Development 136, 3729–3740 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Dereeper, A. et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36, W465–W469 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Schmierer, B. & Hill, C. S. TGFβ–SMAD signal transduction: molecular specificity and functional flexibility. Nat. Rev. Mol. Cell. Biol. 8, 970–982 (2007). Reference 21 provides an in-depth review of fundamental signalling mechanisms of the BMP superfamily.

    Article  CAS  PubMed  Google Scholar 

  22. Hinck, A. P. Structural studies of the TGF-βs and their receptors — insights into evolution of the TGF-β superfamily. FEBS Lett. 586, 1860–1870 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Sampath, T. K., Rashka, K. E., Doctor, J. S., Tucker, R. F. & Hoffmann, F. M. Drosophila transforming growth factor β superfamily proteins induce endochondral bone formation in mammals. Proc. Natl Acad. Sci. USA 90, 6004–6008 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mu, Y., Gudey, S. K. & Landstrom, M. Non-Smad signaling pathways. Cell Tissue Res. 347, 11–20 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Ross, S. et al. Smads orchestrate specific histone modifications and chromatin remodeling to activate transcription. EMBO J. 25, 4490–4502 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Xi, Q. et al. A poised chromatin platform for TGF-β access to master regulators. Cell 147, 1511–1524 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Mullen, A. C. et al. Master transcription factors determine cell-type-specific responses to TGF-β signaling. Cell 147, 565–576 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Trompouki, E. et al. Lineage regulators direct BMP and Wnt pathways to cell-specific programs during differentiation and regeneration. Cell 147, 577–589 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ling, N. et al. Pituitary FSH is released by a heterodimer of the β-subunits from the two forms of inhibin. Nature 321, 779–782 (1986).

    Article  CAS  PubMed  Google Scholar 

  30. Sporn, M. B. & Todaro, G. J. Autocrine secretion and malignant transformation of cells. N. Engl. J. Med. 303, 878–880 (1980).

    Article  CAS  PubMed  Google Scholar 

  31. Sun, P. D. & Davies, D. R. The cystine-knot growth-factor superfamily. Annu. Rev. Biophys. Biomol. Struct. 24, 269–291 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Gray, A. M. & Mason, A. J. Requirement for activin A and transforming growth factor-β1 pro-regions in homodimer assembly. Science 247, 1328–1330 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Ben-Haim, N. et al. The nodal precursor acting via activin receptors induces mesoderm by maintaining a source of its convertases and BMP4. Dev. Cell 11, 313–323 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Shimmi, O., Umulis, D., Othmer, H. & O'Connor, M. B. Facilitated transport of a Dpp/Scw heterodimer by Sog/Tsg leads to robust patterning of the Drosophila blastoderm embryo. Cell 120, 873–886 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Egerman, M. A. et al. GDF11 increases with age and inhibits skeletal muscle regeneration. Cell Metab. 22, 164–174 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Loffredo, F. S. et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 153, 828–839 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Smith, S. C. et al. GDF11 does not rescue aging-related pathological hypertrophy. Circ. Res. 117, 926–932 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. David, L. et al. Bone morphogenetic protein-9 is a circulating vascular quiescence factor. Circ. Res. 102, 914–922 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Sinha, M. et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science 344, 649–652 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Greenwald, J. et al. The BMP7/ActRII extracellular domain complex provides new insights into the cooperative nature of receptor assembly. Mol. Cell 11, 605–617 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Groppe, J. et al. Cooperative assembly of TGF-β superfamily signaling complexes is mediated by two disparate mechanisms and distinct modes of receptor binding. Mol. Cell 29, 157–168 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Lowery, J. W. et al. Loss of BMPR2 leads to high bone mass due to increased osteoblast activity. J. Cell Sci. 128, 1308–1315 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Huse, M. et al. The TGF β receptor activation process: an inhibitor- to substrate-binding switch. Mol. Cell 8, 671–682 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Newfeld, S. J., Chartoff, E. H., Graff, J. M., Melton, D. A. & Gelbart, W. M. Mothers against dpp encodes a conserved cytoplasmic protein required in DPP/TGF-β responsive cells. Development 122, 2099–2108 (1996).

    CAS  PubMed  Google Scholar 

  45. Zawel, L. et al. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol. Cell 1, 611–617 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Shi, Y. et al. Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-β signaling. Cell 94, 585–594 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Xiao, Z., Liu, X., Henis, Y. I. & Lodish, H. F. A distinct nuclear localization signal in the N terminus of Smad 3 determines its ligand-induced nuclear translocation. Proc. Natl Acad. Sci. USA 97, 7853–7858 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim, J., Johnson, K., Chen, H. J., Carroll, S. & Laughon, A. Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic. Nature 388, 304–308 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Lo, R. S., Chen, Y. G., Shi, Y., Pavletich, N. P. & Massague, J. The L3 loop: a structural motif determining specific interactions between SMAD proteins and TGF-β receptors. EMBO J. 17, 996–1005 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Kretzschmar, M., Doody, J. & Massague, J. Opposing BMP and EGF signalling pathways converge on the TGF-β family mediator Smad1. Nature 389, 618–622 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Fuentealba, L. C. et al. Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal. Cell 131, 980–993 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Sapkota, G., Alarcon, C., Spagnoli, F. M., Brivanlou, A. H. & Massague, J. Balancing BMP signaling through integrated inputs into the Smad1 linker. Mol. Cell 25, 441–454 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Lagna, G., Hata, A., Hemmati-Brivanlou, A. & Massague, J. Partnership between DPC4 and SMAD proteins in TGF-β signalling pathways. Nature 383, 832–836 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Moustakas, A. & Heldin, C. H. The regulation of TGFβ signal transduction. Development 136, 3699–3714 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Hatsell, S. J. et al. ACVR1R206H receptor mutation causes fibrodysplasia ossificans progressiva by imparting responsiveness to activin A. Sci. Transl Med. 7, 303ra137 (2015). Reference 55 shows that mutations that alter BMP ligand–receptor pairing or agonist activity profiles can have profound consequences on tissue development and homeostasis, and can thereby be the underlying cause of human disease.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Brazil, D. P., Church, R. H., Surae, S., Godson, C. & Martin, F. BMP signalling: agony and antagony in the family. Trends Cell Biol. 25, 249–264 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Itoh, S. & ten Dijke, P. Negative regulation of TGF-β receptor/Smad signal transduction. Curr. Opin. Cell Biol. 19, 176–184 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Brunet, L. J., McMahon, J. A., McMahon, A. P. & Harland, R. M. Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 280, 1455–1457 (1998). Reference 58 shows that although many BMP superfamily molecules are expressed at developing joints, mice lacking the BMP/GDF antagonist noggin provide the only experimental model known to date with body-wide joint morphogenesis defects, which strongly suggests that BMP signalling must be controlled for joint morphogenesis to occur properly during development.

    Article  CAS  PubMed  Google Scholar 

  59. Stafford, D. A., Brunet, L. J., Khokha, M. K., Economides, A. N. & Harland, R. M. Cooperative activity of noggin and gremlin 1 in axial skeleton development. Development 138, 1005–1014 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Inoue, S. et al. Localization of follistatin, an activin-binding protein, in bone tissues. Calcif. Tissue Int. 55, 395–397 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. Balemans, W. & Van Hul, W. Extracellular regulation of BMP signaling in vertebrates: a cocktail of modulators. Dev. Biol. 250, 231–250 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Thompson, T. B., Lerch, T. F., Cook, R. W., Woodruff, T. K. & Jardetzky, T. S. The structure of the follistatin:activin complex reveals antagonism of both type I and type II receptor binding. Dev. Cell 9, 535–543 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Ge, G., Hopkins, D. R., Ho, W. B. & Greenspan, D. S. GDF11 forms a bone morphogenetic protein 1-activated latent complex that can modulate nerve growth factor-induced differentiation of PC12 cells. Mol. Cell. Biol. 25, 5846–5858 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Kokabu, S. et al. BMP3 suppresses osteoblast differentiation of bone marrow stromal cells via interaction with Acvr2b. Mol. Endocrinol. 26, 87–94 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Sakuma, R. et al. Inhibition of Nodal signalling by Lefty mediated through interaction with common receptors and efficient diffusion. Genes Cells 7, 401–412 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Hayashi, H. et al. The MAD-related protein Smad7 associates with the TGFβ receptor and functions as an antagonist of TGFβ signaling. Cell 89, 1165–1173 (1997).

    Article  CAS  PubMed  Google Scholar 

  67. Imamura, T. et al. Smad6 inhibits signalling by the TGF-β superfamily. Nature 389, 622–626 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Nakao, A. et al. Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signalling. Nature 389, 631–635 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Murakami, G., Watabe, T., Takaoka, K., Miyazono, K. & Imamura, T. Cooperative inhibition of bone morphogenetic protein signaling by Smurf1 and inhibitory Smads. Mol. Biol. Cell 14, 2809–2817 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Inoue, Y. & Imamura, T. Regulation of TGF-β family signaling by E3 ubiquitin ligases. Cancer Sci. 99, 2107–2112 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Tsukamoto, S. et al. Smad9 is a new type of transcriptional regulator in bone morphogenetic protein signaling. Sci. Rep. 4, 7596 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Massague, J. TGFβ signalling in context. Nat. Rev. Mol. Cell. Biol. 13, 616–630 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Long, F. & Ornitz, D. M. Development of the endochondral skeleton. Cold Spring Harb. Perspect. Biol. 5, a008334 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Zeller, R., Lopez-Rios, J. & Zuniga, A. Vertebrate limb bud development: moving towards integrative analysis of organogenesis. Nat. Rev. Genet. 10, 845–858 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Logan, M. et al. Expression of Cre Recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis 33, 77–80 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Zhang, H. & Bradley, A. Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122, 2977–2986 (1996).

    CAS  PubMed  Google Scholar 

  77. Ovchinnikov, D. A. et al. BMP receptor type IA in limb bud mesenchyme regulates distal outgrowth and patterning. Dev. Biol. 295, 103–115 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Lim, J. et al. BMP–Smad4 signaling is required for precartilaginous mesenchymal condensation independent of Sox9 in the mouse. Dev. Biol. 400, 132–138 (2015). Reference 78 shows that canonical BMP signalling is required in the limb mesenchyme for limb bud outgrowth that is mediated by redundant functions of multiple type I BMP receptors and SMAD-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Benazet, J. D. et al. Smad4 is required to induce digit ray primordia and to initiate the aggregation and differentiation of chondrogenic progenitors in mouse limb buds. Development 139, 4250–4260 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Bandyopadhyay, A. et al. Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet. 2, e216 (2006). Reference 80 shows that BMP2 and BMP4 are essential for bone formation during development.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Tsuji, K. et al. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat. Genet. 38, 1424–1429 (2006). Reference 81 shows that fracture healing, a repair function of the periosteum, requires progenitor-derived BMP2.

    Article  CAS  PubMed  Google Scholar 

  82. Tsuji, K. et al. BMP4 is dispensable for skeletogenesis and fracture-healing in the limb. J. Bone Joint Surg. Am. 90 (Suppl. 1), 14–18 (2008).

    Article  PubMed  Google Scholar 

  83. Tsuji, K. et al. Conditional deletion of BMP7 from the limb skeleton does not affect bone formation or fracture repair. J. Orthop. Res. 28, 384–389 (2010).

    PubMed  PubMed Central  Google Scholar 

  84. Settle, S. H. Jr et al. Multiple joint and skeletal patterning defects caused by single and double mutations in the mouse Gdf6 and Gdf5 genes. Dev. Biol. 254, 116–130 (2003).

    Article  PubMed  CAS  Google Scholar 

  85. Storm, E. E. & Kingsley, D. M. Joint patterning defects caused by single and double mutations in members of the bone morphogenetic protein (BMP) family. Development 122, 3969–3979 (1996).

    CAS  PubMed  Google Scholar 

  86. Pignatti, E., Zeller, R. & Zuniga, A. To BMP or not to BMP during vertebrate limb bud development. Semin. Cell Dev. Biol. 32, 119–127 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Sun, X. et al. Conditional inactivation of Fgf4 reveals complexity of signalling during limb bud development. Nat. Genet. 25, 83–86 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Choi, K. S., Lee, C., Maatouk, D. M. & Harfe, B. D. Bmp2, Bmp4 and Bmp7 are co-required in the mouse AER for normal digit patterning but not limb outgrowth. PLoS ONE 7, e37826 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Norrie, J. L. et al. Dynamics of BMP signaling in limb bud mesenchyme and polydactyly. Dev. Biol. 393, 270–281 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Reddi, A. H. Cell biology and biochemistry of endochondral bone development. Coll. Relat. Res. 1, 209–226 (1981).

    Article  CAS  PubMed  Google Scholar 

  91. Cancedda, R., Descalzi Cancedda, F. & Castagnola, P. Chondrocyte differentiation. Int. Rev. Cytol. 159, 265–358 (1995).

    Article  CAS  PubMed  Google Scholar 

  92. Lanske, B. et al. PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 273, 663–666 (1996).

    Article  CAS  PubMed  Google Scholar 

  93. Vortkamp, A. et al. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273, 613–622 (1996).

    Article  CAS  PubMed  Google Scholar 

  94. Minina, E., Kreschel, C., Naski, M. C., Ornitz, D. M. & Vortkamp, A. Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev. Cell 3, 439–449 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Cooper, K. L. et al. Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions. Nature 495, 375–378 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Galotto, M. et al. Hypertrophic chondrocytes undergo further differentiation to osteoblast-like cells and participate in the initial bone formation in developing chick embryo. J. Bone Miner. Res. 9, 1239–1249 (1994).

    Article  CAS  PubMed  Google Scholar 

  97. Yang, G. et al. Osteogenic fate of hypertrophic chondrocytes. Cell Res. 24, 1266–1269 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Yang, L., Tsang, K. Y., Tang, H. C., Chan, D. & Cheah, K. S. Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proc. Natl Acad. Sci. USA 111, 12097–12102 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhou, X. et al. Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice. PLoS Genet. 10, e1004820 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ono, N., Ono, W., Nagasawa, T. & Kronenberg, H. M. A subset of chondrogenic cells provides early mesenchymal progenitors in growing bones. Nat. Cell Biol. 16, 1157–1167 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Barna, M. & Niswander, L. Visualization of cartilage formation: insight into cellular properties of skeletal progenitors and chondrodysplasia syndromes. Dev. Cell 12, 931–941 (2007). Reference 101 shows that BMP signalling is necessary for mesenchymal condensation, the first critical step of developmental skeletogenesis.

    Article  CAS  PubMed  Google Scholar 

  102. Rigueur, D. et al. The type I BMP receptor ACVR1/ALK2 is required for chondrogenesis during development. J. Bone Miner. Res. 30, 733–741 (2015). Reference 102 shows that ALK2, ALK3 and ALK6 mediate BMP signals essential for developmental chondrogenesis.

    Article  PubMed  CAS  Google Scholar 

  103. Yoon, B. S. et al. Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc. Natl Acad. Sci. USA 102, 5062–5067 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang, J. et al. Smad4 is required for the normal organization of the cartilage growth plate. Dev. Biol. 284, 311–322 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Retting, K. N., Song, B., Yoon, B. S. & Lyons, K. M. BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation. Development 136, 1093–1104 (2009). Reference 105 shows that canonical BMP signalling through SMAD1 and SMAD5 drives chondrogenesis and longitudinal bone growth during development.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Shu, B. et al. BMP2, but not BMP4, is crucial for chondrocyte proliferation and maturation during endochondral bone development. J. Cell Sci. 124, 3428–3440 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Merino, R. et al. Expression and function of Gdf-5 during digit skeletogenesis in the embryonic chick leg bud. Dev. Biol. 206, 33–45 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Chang, S. C. et al. Cartilage-derived morphogenetic proteins. New members of the transforming growth factor-β superfamily predominantly expressed in long bones during human embryonic development. J. Biol. Chem. 269, 28227–28234 (1994).

    CAS  PubMed  Google Scholar 

  109. Baur, S. T., Mai, J. J. & Dymecki, S. M. Combinatorial signaling through BMP receptor IB and GDF5: shaping of the distal mouse limb and the genetics of distal limb diversity. Development 127, 605–619 (2000).

    CAS  PubMed  Google Scholar 

  110. Storm, E. E. et al. Limb alterations in brachypodism mice due to mutations in a new member of the TGF β-superfamily. Nature 368, 639–643 (1994). Reference 110 shows that GDF5 is a key ligand required for longitudinal bone growth in the appendicular skeleton.

    Article  PubMed  CAS  Google Scholar 

  111. Seo, H. S. & Serra, R. Deletion of Tgfbr2 in Prx1-cre expressing mesenchyme results in defects in development of the long bones and joints. Dev. Biol. 310, 304–316 (2007). Reference 111 shows that TGF-β signalling restricts chondrogenesis at developing joint and attenuates chondrocyte maturation in the metaphyseal growth plate.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Longobardi, L. et al. TGF-β type II receptor/MCP-5 axis: at the crossroad between joint and growth plate development. Dev. Cell 23, 71–81 (2012). Reference 112 shows that joint progenitor cells in the nascent interzone express TGFBR2, PDGF and JAG-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Yang, W. et al. Bmp2 in osteoblasts of periosteum and trabecular bone links bone formation to vascularization and mesenchymal stem cells. J. Cell Sci. 126, 4085–4098 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Henry, S. P. et al. Generation of aggrecan-CreERT2 knockin mice for inducible Cre activity in adult cartilage. Genesis 47, 805–814 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  115. Jing, J. et al. BMP receptor 1A determines the cell fate of the postnatal growth plate. Int. J. Biol. Sci. 9, 895–906 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Rodda, S. J. & McMahon, A. P. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 133, 3231–3244 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Dacquin, R., Starbuck, M., Schinke, T. & Karsenty, G. Mouse α1(I)-collagen promoter is the best known promoter to drive efficient Cre recombinase expression in osteoblast. Dev. Dyn. 224, 245–251 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Liu, F. et al. Expression and activity of osteoblast-targeted Cre recombinase transgenes in murine skeletal tissues. Int. J. Dev. Biol. 48, 645–653 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Maes, C., Kobayashi, T. & Kronenberg, H. M. A novel transgenic mouse model to study the osteoblast lineage in vivo. Ann. NY Acad. Sci. 1116, 149–164 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Salazar, V. S. et al. Embryonic ablation of osteoblast Smad4 interrupts matrix synthesis in response to canonical Wnt signaling and causes an osteogenesis-imperfecta-like phenotype. J. Cell Sci. 126, 4974–4984 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Tan, X. et al. Smad4 is required for maintaining normal murine postnatal bone homeostasis. J. Cell Sci. 120, 2162–2170 (2007).

    Article  PubMed  CAS  Google Scholar 

  122. McBride, S. H. et al. Long bone structure and strength depend on BMP2 from osteoblasts and osteocytes, but not vascular endothelial cells. PLoS ONE 9, e96862 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Feng, J. et al. Abnormalities in the enamel in Bmp2-deficient mice. Cells Tissues Organs 194, 216–221 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Guo, F. et al. Bmp2 deletion causes an amelogenesis imperfecta phenotype via regulating enamel gene expression. J. Cell. Physiol. 230, 1871–1882 (2014).

    Article  CAS  Google Scholar 

  125. McBride-Gagyi, S. H., McKenzie, J. A., Buettmann, E. G., Gardner, M. J. & Silva, M. J. Bmp2 conditional knockout in osteoblasts and endothelial cells does not impair bone formation after injury or mechanical loading in adult mice. Bone 81, 533–543 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Chappuis, V. et al. Periosteal BMP2 activity drives bone graft healing. Bone 51, 800–809 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Mi, M. et al. Chondrocyte BMP2 signaling plays an essential role in bone fracture healing. Gene 512, 211–218 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Sanchez-Duffhues, G., Hiepen, C., Knaus, P. & Ten Dijke, P. Bone morphogenetic protein signaling in bone homeostasis. Bone 80, 43–59 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Mishina, Y. et al. Bone morphogenetic protein type IA receptor signaling regulates postnatal osteoblast function and bone remodeling. J. Biol. Chem. 279, 27560–27566 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Ray, A., Singh, P. N., Sohaskey, M. L., Harland, R. M. & Bandyopadhyay, A. Precise spatial restriction of BMP signaling is essential for articular cartilage differentiation. Development 142, 1169–1179 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Mitrovic, D. R. Development of the metatarsophalangeal joint of the chick embryo: morphological, ultrastructural and histochemical studies. Am. J. Anat. 150, 333–347 (1977).

    Article  CAS  PubMed  Google Scholar 

  132. Wolfman, N. M. et al. Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-β gene family. J. Clin. Invest. 100, 321–330 (1997). Reference 132 shows that GDF ligands induce secondary joint structures including tendon and ligament.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Li, T. et al. Joint TGF-β type II receptor-expressing cells: ontogeny and characterization as joint progenitors. Stem Cells Dev. 22, 1342–1359 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Spagnoli, A. et al. TGF-β signaling is essential for joint morphogenesis. J. Cell Biol. 177, 1105–1117 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Dyment, N. A. et al. Gdf5 progenitors give rise to fibrocartilage cells that mineralize via hedgehog signaling to form the zonal enthesis. Dev. Biol. 405, 96–107 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Koyama, E. et al. A distinct cohort of progenitor cells participates in synovial joint and articular cartilage formation during mouse limb skeletogenesis. Dev. Biol. 316, 62–73 (2008). Reference 136 shows that cells expressing Gdf5 during development populate most structures in the synovial joint.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Rountree, R. B. et al. BMP receptor signaling is required for postnatal maintenance of articular cartilage. PLoS Biol. 2, e355 (2004). Reference 137 shows that BMPR1A is dispensable in the Gdf5+ interzone for synovial joint morphogenesis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Zimmerman, L. B., De Jesus-Escobar, J. M. & Harland, R. M. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86, 599–606 (1996).

    Article  CAS  PubMed  Google Scholar 

  139. Nishitoh, H. et al. Identification of type I and type II serine/threonine kinase receptors for growth/differentiation factor-5. J. Biol. Chem. 271, 21345–21352 (1996).

    Article  CAS  PubMed  Google Scholar 

  140. Nickel, J., Kotzsch, A., Sebald, W. & Mueller, T. D. A single residue of GDF-5 defines binding specificity to BMP receptor IB. J. Mol. Biol. 349, 933–947 (2005). Reference 140 shows that GDF5 signalling is highly dependent on BMPR1B (ALK6), consistent with the observation that mice lacking GDF5, BMPR1B, or both GDF5 and BMPR1B have strikingly similar skeletal phenotypes.

    Article  CAS  PubMed  Google Scholar 

  141. Kotzsch, A., Nickel, J., Sebald, W. & Mueller, T. D. Purification, crystallization and preliminary data analysis of ligand-receptor complexes of growth and differentiation factor 5 (GDF5) and BMP receptor IB (BRIB). Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 65, 779–783 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Gong, Y. et al. Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis. Nat. Genet. 21, 302–304 (1999).

    Article  CAS  PubMed  Google Scholar 

  143. Seemann, P. et al. Mutations in GDF5 reveal a key residue mediating BMP inhibition by NOGGIN. PLoS Genet. 5, e1000747 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Yi, S. E., Daluiski, A., Pederson, R., Rosen, V. & Lyons, K. M. The type I BMP receptor BMPRIB is required for chondrogenesis in the mouse limb. Development 127, 621–630 (2000).

    CAS  PubMed  Google Scholar 

  145. Wu, L. et al. Human developmental chondrogenesis as a basis for engineering chondrocytes from pluripotent stem cells. Stem Cell Rep. 1, 575–589 (2013).

    Article  CAS  Google Scholar 

  146. Rosen, V. et al. Responsiveness of clonal limb bud cell lines to bone morphogenetic protein 2 reveals a sequential relationship between cartilage and bone cell phenotypes. J. Bone Miner. Res. 9, 1759–1768 (1994).

    Article  CAS  PubMed  Google Scholar 

  147. Larsson, J. et al. Abnormal angiogenesis but intact hematopoietic potential in TGF-β type I receptor-deficient mice. EMBO J. 20, 1663–1673 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Oshima, M., Oshima, H. & Taketo, M. M. TGF-β receptor type II deficiency results in defects of yolk sac hematopoiesis and vasculogenesis. Dev. Biol. 179, 297–302 (1996).

    Article  CAS  PubMed  Google Scholar 

  149. Baffi, M. O. et al. Conditional deletion of the TGF-β type II receptor in Col2a expressing cells results in defects in the axial skeleton without alterations in chondrocyte differentiation or embryonic development of long bones. Dev. Biol. 276, 124–142 (2004).

    Article  CAS  PubMed  Google Scholar 

  150. Eyal, S. et al. On the development of the patella. Development 142, 1831–1839 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Rasmussen, S. A. et al. Epidemiology of osteochondrodysplasias: changing trends due to advances in prenatal diagnosis. Am. J. Med. Genet. 61, 49–58 (1996).

    Article  CAS  PubMed  Google Scholar 

  152. Weldner, B. M., Persson, P. H. & Ivarsson, S. A. Prenatal diagnosis of dwarfism by ultrasound screening. Arch. Dis. Child. 60, 1070–1072 (1985).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Bonafe, L. et al. Nosology and classification of genetic skeletal disorders: 2015 revision. Am. J. Med. Genet. A 167A, 2869–2892 (2015).

    Article  CAS  PubMed  Google Scholar 

  154. MacCarrick, G. et al. Loeys–Dietz syndrome: a primer for diagnosis and management. Genet. Med. 16, 576–587 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Regalado, E. S. et al. Exome sequencing identifies SMAD3 mutations as a cause of familial thoracic aortic aneurysm and dissection with intracranial and other arterial aneurysms. Circ. Res. 109, 680–686 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Kinoshita, A. et al. Domain-specific mutations in TGFB1 result in Camurati–Engelmann disease. Nat. Genet. 26, 19–20 (2000).

    Article  CAS  PubMed  Google Scholar 

  157. Ghadami, M. et al. Genetic mapping of the Camurati–Engelmann disease locus to chromosome 19q13.1–q13.3. Am. J. Hum. Genet. 66, 143–147 (2000).

    Article  CAS  PubMed  Google Scholar 

  158. Campos-Xavier, B. et al. Phenotypic variability at the TGF-β1 locus in Camurati–Engelmann disease. Hum. Genet. 109, 653–658 (2001).

    Article  CAS  PubMed  Google Scholar 

  159. Waning, D. L. et al. Excess TGF-β mediates muscle weakness associated with bone metastases in mice. Nat. Med. 21, 1262–1271 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Smaldone, S. et al. Fibrillin-1 regulates skeletal stem cell differentiation by modulating TGFβ activity within the marrow niche. J. Bone Miner. Res. 31, 86–97 (2015).

    Article  PubMed  CAS  Google Scholar 

  161. Grafe, I. et al. Excessive transforming growth factor-β signaling is a common mechanism in osteogenesis imperfecta. Nat. Med. 20, 670–675 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Hellmann, T. V., Nickel, J. & Mueller, T. D. in Mutations in Human Genetic Disease (eds Cooper, D. N. & Chen, J. M.) 11–54 (Intech Publishing, 2012). Reference 162 provides a summary of GDF5 mutations associated with human skeletal disorders.

    Google Scholar 

  163. Douzgou, S., Lehmann, K., Mingarelli, R., Mundlos, S. & Dallapiccola, B. Compound heterozygosity for GDF5 in Du Pan type chondrodysplasia. Am. J. Med. Genet. A 146A, 2116–2121 (2008).

    Article  CAS  PubMed  Google Scholar 

  164. Faiyaz-Ul-Haque, M. et al. Mutation in the cartilage-derived morphogenetic protein-1 (CDMP1) gene in a kindred affected with fibular hypoplasia and complex brachydactyly (DuPan syndrome). Clin. Genet. 61, 454–458 (2002).

    Article  CAS  PubMed  Google Scholar 

  165. Du Pan, C. M. Absence congenitale du perone sans deformation du tibia: curieuses deformations congenitales des mains. Revue d'Orthopedie 11, 227–234 (in French) (1924).

    Google Scholar 

  166. Grebe, H. Chondrodysplasia; Monographie (Edizioni dell'Istituto Gregorio Mendel, 1955).

    Google Scholar 

  167. Hunter, A. G. & Thompson, M. W. Acromesomelic dwarfism: description of a patient and comparison with previously reported cases. Hum. Genet. 34, 107–113 (1976).

    Article  CAS  PubMed  Google Scholar 

  168. Thomas, J. T. et al. A human chondrodysplasia due to a mutation in a TGF-β superfamily member. Nat. Genet. 12, 315–317 (1996).

    Article  CAS  PubMed  Google Scholar 

  169. Thomas, J. T. et al. Disruption of human limb morphogenesis by a dominant negative mutation in CDMP1. Nat. Genet. 17, 58–64 (1997).

    Article  CAS  PubMed  Google Scholar 

  170. Graul-Neumann, L. M. et al. Homozygous missense and nonsense mutations in BMPR1B cause acromesomelic chondrodysplasia-type Grebe. Eur. J. Hum. Genet. 22, 726–733 (2014).

    Article  CAS  PubMed  Google Scholar 

  171. Costa, T. et al. Grebe syndrome: clinical and radiographic findings in affected individuals and heterozygous carriers. Am. J. Med. Genet. 75, 523–529 (1998).

    Article  CAS  PubMed  Google Scholar 

  172. Demirhan, O. et al. A homozygous BMPR1B mutation causes a new subtype of acromesomelic chondrodysplasia with genital anomalies. J. Med. Genet. 42, 314–317 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Seemann, P. et al. Activating and deactivating mutations in the receptor interaction site of GDF5 cause symphalangism or brachydactyly type A2. J. Clin. Invest. 115, 2373–2381 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Lehmann, K. et al. Mutations in bone morphogenetic protein receptor 1B cause brachydactyly type A2. Proc. Natl Acad. Sci. USA 100, 12277–12282 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kjaer, K. W. et al. A mutation in the receptor binding site of GDF5 causes Mohr-Wriedt brachydactyly type A2. J. Med. Genet. 43, 225–231 (2006).

    Article  CAS  PubMed  Google Scholar 

  176. Robin, N. H., Gunay-Aygun, M., Polinkovsky, A., Warman, M. L. & Morrison, S. Clinical and locus heterogeneity in brachydactyly type C. Am. J. Med. Genet. 68, 369–377 (1997).

    Article  CAS  PubMed  Google Scholar 

  177. Polinkovsky, A. et al. Mutations in CDMP1 cause autosomal dominant brachydactyly type C. Nat. Genet. 17, 18–19 (1997).

    Article  CAS  PubMed  Google Scholar 

  178. Polymeropoulos, M. H., Ide, S. E., Magyari, T. & Francomano, C. A. Brachydactyly type C gene maps to human chromsome 12q24. Genomics 38, 45–50 (1996).

    Article  CAS  PubMed  Google Scholar 

  179. Savarirayan, R. et al. Broad phenotypic spectrum caused by an identical heterozygous CDMP-1 mutation in three unrelated families. Am. J. Med. Genet. A 117A, 136–142 (2003).

    Article  PubMed  Google Scholar 

  180. Le Goff, C., Michot, C. & Cormier-Daire, V. Myhre syndrome. Clin. Genet. 85, 503–513 (2014).

    Article  CAS  PubMed  Google Scholar 

  181. Starr, L. J. et al. Myhre syndrome: clinical features and restrictive cardiopulmonary complications. Am. J. Med. Genet. A 167A, 2893–2901 (2015).

    Article  PubMed  Google Scholar 

  182. Le Goff, C. et al. Mutations at a single codon in Mad homology 2 domain of SMAD4 cause Myhre syndrome. Nat. Genet. 44, 85–88 (2012).

    Article  CAS  Google Scholar 

  183. Minina, E. et al. BMP and Ihh/PTHrP signaling interact to coordinate chondrocyte proliferation and differentiation. Development 128, 4523–4534 (2001). Reference 183 shows that longitudinal bone growth in the appendicular skeleton is coordinated by BMP signals as well as other critical forms of molecular crosstalk between distinct cell types in the developing growth plate.

    CAS  PubMed  Google Scholar 

  184. Freire-Maia, N., Maia, N. A. & Pacheco, C. N. Mohr-Wriedt (A2) brachydactyly: analysis of a large Brazilian kindred. Hum. Hered. 30, 225–231 (1980).

    Article  CAS  PubMed  Google Scholar 

  185. Dathe, K. et al. Duplications involving a conserved regulatory element downstream of BMP2 are associated with brachydactyly type A2. Am. J. Hum. Genet. 84, 483–492 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Lehmann, K. et al. A new subtype of brachydactyly type B caused by point mutations in the bone morphogenetic protein antagonist NOGGIN. Am. J. Hum. Genet. 81, 388–396 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Pang, X. et al. A novel missense mutation of NOG interferes with the dimerization of NOG and causes proximal symphalangism syndrome in a Chinese family. Ann. Otol. Rhinol. Laryngol. 124, 745–751 (2015).

    Article  PubMed  Google Scholar 

  188. Masuda, S. et al. A mutation in the heparin-binding site of noggin as a novel mechanism of proximal symphalangism and conductive hearing loss. Biochem. Biophys. Res. Commun. 447, 496–502 (2014).

    Article  CAS  PubMed  Google Scholar 

  189. Takahashi, T. et al. Mutations of the NOG gene in individuals with proximal symphalangism and multiple synostosis syndrome. Clin. Genet. 60, 447–451 (2001).

    Article  CAS  PubMed  Google Scholar 

  190. Brown, D. J. et al. Autosomal dominant stapes ankylosis with broad thumbs and toes, hyperopia, and skeletal anomalies is caused by heterozygous nonsense and frameshift mutations in NOG, the gene encoding noggin. Am. J. Hum. Genet. 71, 618–624 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Dawson, K. et al. GDF5 is a second locus for multiple-synostosis syndrome. Am. J. Hum. Genet. 78, 708–712 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Ye, M. et al. Mutation of the bone morphogenetic protein GDF3 causes ocular and skeletal anomalies. Hum. Mol. Genet. 19, 287–298 (2010).

    Article  CAS  PubMed  Google Scholar 

  193. Levine, A. J., Levine, Z. J. & Brivanlou, A. H. GDF3 is a BMP inhibitor that can activate Nodal signaling only at very high doses. Dev. Biol. 325, 43–48 (2009).

    Article  CAS  PubMed  Google Scholar 

  194. Huning, I. & Gillessen-Kaesbach, G. Fibrodysplasia ossificans progressiva: clinical course, genetic mutations and genotype–phenotype correlation. Mol. Syndromol. 5, 201–211 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Kaplan, F. S. et al. Early mortality and cardiorespiratory failure in patients with fibrodysplasia ossificans progressiva. J. Bone Joint Surg. Am. 92, 686–691 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Zhou, X. et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 142, 531–543 (2010).

    Article  CAS  PubMed  Google Scholar 

  197. Rajkovic, Z. & Krklec, V. The oldest treated bone fracture in Croatia — 130,000 years ago [Croatian]. Acta Med. Croat. 62, 89–92 (2008).

    Google Scholar 

  198. Erfan Zaki, M. Success of long bone fracture healing in ancient Egypt: a paleoepidemiological study of the Giza Necropolis skeletons. Acta Med. Hist. Adriat. 11, 275–284 (2013).

    PubMed  Google Scholar 

  199. Hippocrates. On Fractures (ReadHowYouWant.com, 2007).

  200. Redfern, R. A regional examination of surgery and fracture treatment in Iron Age and Roman Britain. Int. J. Osteoarchaeol. 20, 443–471 (2010).

    Google Scholar 

  201. Anne, J. et al. Synchrotron imaging reveals bone healing and remodelling strategies in extinct and extant vertebrates. J. R. Soc. Interface 11, 20140277 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Gautschi, O. P., Frey, S. P. & Zellweger, R. Bone morphogenetic proteins in clinical applications. ANZ J. Surg. 77, 626–631 (2007).

    Article  PubMed  Google Scholar 

  203. Ali, I. H. & Brazil, D. P. Bone morphogenetic proteins and their antagonists: current and emerging clinical uses. Br. J. Pharmacol. 171, 3620–3632 (2014). Reference 203 provides a recent summary of successes and challenges using BMPs in the clinic.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Wheeler, D. L. & Enneking, W. F. Allograft bone decreases in strength in vivo over time. Clin. Orthop. Relat. Res. 435, 36–42 (2005).

    Article  Google Scholar 

  205. Colnot, C. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J. Bone Miner. Res. 24, 274–282 (2009).

    Article  PubMed  Google Scholar 

  206. Tiyapatanaputi, P. et al. A novel murine segmental femoral graft model. J. Orthop. Res. 22, 1254–1260 (2004).

    Article  PubMed  Google Scholar 

  207. Zhang, X., Awad, H. A., O'Keefe, R. J., Guldberg, R. E. & Schwarz, E. M. A perspective: engineering periosteum for structural bone graft healing. Clin. Orthop. Relat. Res. 466, 1777–1787 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Wang, Q., Huang, C., Xue, M. & Zhang, X. Expression of endogenous BMP-2 in periosteal progenitor cells is essential for bone healing. Bone 48, 524–532 (2011).

    Article  CAS  PubMed  Google Scholar 

  209. Burkus, J. K., Sandhu, H. S., Gornet, M. F. & Longley, M. C. Use of rhBMP-2 in combination with structural cortical allografts: clinical and radiographic outcomes in anterior lumbar spinal surgery. J. Bone Joint Surg. Am. 87, 1205–1212 (2005).

    PubMed  Google Scholar 

  210. Glassman, S. D. et al. Initial fusion rates with recombinant human bone morphogenetic protein-2/compression resistant matrix and a hydroxyapatite and tricalcium phosphate/collagen carrier in posterolateral spinal fusion. Spine (Phila Pa 1976) 30, 1694–1698 (2005).

    Article  Google Scholar 

  211. Burkus, J. K., Heim, S. E., Gornet, M. F. & Zdeblick, T. A. The effectiveness of rhBMP-2 in replacing autograft: an integrated analysis of three human spine studies. Orthopedics 27, 723–728 (2004).

    PubMed  Google Scholar 

  212. Cahill, K. S., McCormick, P. C. & Levi, A. D. A comprehensive assessment of the risk of bone morphogenetic protein use in spinal fusion surgery and postoperative cancer diagnosis. J. Neurosurg. Spine 23, 86–93 (2015).

    Article  PubMed  Google Scholar 

  213. Sayama, C. et al. Routine use of recombinant human bone morphogenetic protein-2 in posterior fusions of the pediatric spine and incidence of cancer. J. Neurosurg. Pediatr. 16, 4–13 (2015).

    Article  PubMed  Google Scholar 

  214. Murphy, L. et al. Lifetime risk of symptomatic knee osteoarthritis. Arthritis Rheum. 59, 1207–1213 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Yelin, E. et al. Medical care expenditures and earnings losses among persons with arthritis and other rheumatic conditions in 2003, and comparisons with 1997. Arthritis Rheum. 56, 1397–1407 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Pazin, D. E., Gamer, L. W., Cox, K. A. & Rosen, V. Molecular profiling of synovial joints: use of microarray analysis to identify factors that direct the development of the knee and elbow. Dev. Dyn. 241, 1816–1826 (2012).

    Article  CAS  PubMed  Google Scholar 

  217. Craft, A. M. et al. Generation of articular chondrocytes from human pluripotent stem cells. Nat. Biotechnol. 33, 638–645 (2015).

    Article  CAS  PubMed  Google Scholar 

  218. Craft, A. M. et al. Specification of chondrocytes and cartilage tissues from embryonic stem cells. Development 140, 2597–2610 (2013).

    Article  CAS  PubMed  Google Scholar 

  219. Monteiro, R. M., de Sousa Lopes, S. M., Korchynskyi, O., ten Dijke, P. & Mummery, C. L. Spatio-temporal activation of Smad1 and Smad5 in vivo: monitoring transcriptional activity of Smad proteins. J. Cell Sci. 117, 4653–4663 (2004).

    Article  CAS  PubMed  Google Scholar 

  220. Abula, K. et al. Elimination of BMP7 from the developing limb mesenchyme leads to articular cartilage degeneration and synovial inflammation with increased age. FEBS Lett. 589, 1240–1248 (2015).

    Article  CAS  PubMed  Google Scholar 

  221. Sanna, S. et al. Common variants in the GDF5UQCC region are associated with variation in human height. Nat. Genet. 40, 198–203 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Reynard, L. N. & Loughlin, J. Genetics and epigenetics of osteoarthritis. Maturitas 71, 200–204 (2012).

    Article  CAS  PubMed  Google Scholar 

  223. Reynard, L. N., Bui, C., Canty-Laird, E. G., Young, D. A. & Loughlin, J. Expression of the osteoarthritis-associated gene GDF5 is modulated epigenetically by DNA methylation. Hum. Mol. Genet. 20, 3450–3460 (2011).

    Article  CAS  PubMed  Google Scholar 

  224. Sartori, R. et al. BMP signaling controls muscle mass. Nat. Genet. 45, 1309–1318 (2013).

    Article  CAS  PubMed  Google Scholar 

  225. McPherron, A. C., Lawler, A. M. & Lee, S. J. Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Nature 387, 83–90 (1997).

    Article  CAS  PubMed  Google Scholar 

  226. Chen, J. L. et al. Elevated expression of activins promotes muscle wasting and cachexia. FASEB J. 28, 1711–1723 (2014).

    Article  CAS  PubMed  Google Scholar 

  227. Klammert, U. et al. GDF-5 can act as a context-dependent BMP-2 antagonist. BMC Biol. 13, 77 (2015). Reference 227 shows that GDFs and BMPs have distinct agonist activity profiles depending on the profile of type I and type II receptors expressed by the target cell type.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank S. Pregizer and all members of the Rosen Lab for ideas, constructive comments and support during the assembly of this Review. The authors have made every attempt to be comprehensive in citing studies relevant to the objectives of this manuscript and apologize for any possible oversights or omissions made for the sake of space constraints.

Author information

Authors and Affiliations

Authors

Contributions

V.S.S., L.W.G and V.R. researched data for the article, made substantial contributions to discussions of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Vicki Rosen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Experimental genetics of BMP pathway ligands in murine skeletal development. (PDF 172 kb)

Supplementary information S2 (table)

Experimental genetics of BMP pathway type I receptors in murine skeletal development. (PDF 141 kb)

Supplementary information S3 (table)

Experimental genetics of BMP pathway type II receptors in murine skeletal development. (PDF 117 kb)

Supplementary information S4 (table)

Experimental genetics of BMP pathway SMADs in murine skeletal development. (PDF 118 kb)

Supplementary information S5 (table)

Experimental genetics of BMP pathway secreted antagonists in murine skeletal development. (PDF 99 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salazar, V., Gamer, L. & Rosen, V. BMP signalling in skeletal development, disease and repair. Nat Rev Endocrinol 12, 203–221 (2016). https://doi.org/10.1038/nrendo.2016.12

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2016.12

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research