Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diabetes mellitus—advances and challenges in human β-cell proliferation

Key Points

  • As pancreatic β-cell mass is reduced in both type 1 and type 2 diabetes mellitus, β-cell regeneration and replacement represent attractive approaches for treating diabetes

  • Developing approaches for expanding adult human β cells has proven challenging as human β cells normally undergo replication only in the first few years of life

  • Gene therapy approaches that are based on cell-cycle control mechanisms can be used to induce human β cells to replicate, but these methods are not attractive therapeutically

  • Our understanding of the cell surface receptors and intracellular signalling pathways that couple extracellular events to downstream cell-cycle activation in adult human pancreatic β cells remains in its infancy

  • Epigenetic control of human pancreatic β-cell replication is an exciting and rapidly emerging field

  • Although the concept that adult human β cells can replicate and expand is new, major advances have accrued over the past 10 years and the field continues to accelerate

Abstract

The treatment of diabetes mellitus represents one of the greatest medical challenges of our era. Diabetes results from a deficiency or functional impairment of insulin-producing β cells, alone or in combination with insulin resistance. It logically follows that the replacement or regeneration of β cells should reverse the progression of diabetes and, indeed, this seems to be the case in humans and rodents. This concept has prompted attempts in many laboratories to create new human β cells using stem-cell strategies to transdifferentiate or reprogramme non-β cells into β cells or to discover small molecules or other compounds that can induce proliferation of human β cells. This latter approach has shown promise, but has also proven particularly challenging to implement. In this Review, we discuss the physiology of normal human β-cell replication, the molecular mechanisms that regulate the cell cycle in human β cells, the upstream intracellular signalling pathways that connect them to cell surface receptors on β cells, the epigenetic mechanisms that control human β-cell proliferation and unbiased approaches for discovering novel molecules that can drive human β-cell proliferation. Finally, we discuss the potential and challenges of implementing strategies that replace or regenerate β cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human β-cell proliferation as a function of age.
Figure 2: Discordant transcription factor expression in mouse and human pancreatic β cells.
Figure 3: Abundance and distribution of endocrine cells in mouse and human pancreatic islets.
Figure 4: Cell cycle progression at the G1/S checkpoint in human β cells.
Figure 5: Connecting cell-surface receptors to cell-cycle machinery in rodent β cells.
Figure 6: Potential impediments to adult human β-cell proliferation.

Similar content being viewed by others

References

  1. Atkinson, M. A., Eisenbarth, G. S. & Michels, A. W. Type 1 diabetes. Lancet 383, 69–82 (2014).

    Article  PubMed  Google Scholar 

  2. Mallone, R. & Roep, B. O. Biomarkers for immune intervention trials in type 1 diabetes. Clin. Immunol. 149, 286–296 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. US Department of Health and Human Services. The facts about diabetes: a leading cause of death in the U.S. [online], (2014).

  4. Centers for Disease Control and Prevention. National diabetes statistics report, 2014 [online], (2014).

  5. WHO. Diabetes factsheet N. 312 [online], (2014).

  6. von Herrath, M., Peakman, M. & Roep, B. Progress in immune-based strategies for type 1 diabetes. Clin. Exp. Immunol. 172, 186–202 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Campbell-Thompson, M. L. et al. The diagnosis of insulitis in human type 1 diabetes. Diabetologia 56, 2541–2543 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Franks, P. W., Pearson, E. & Florez, J. C. Gene–environment and gene–treatment interactions in type 2 diabetes. Diabetes Care 36, 1413–1421 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. McCarthy, M. I. Genomics, type 2 diabetes and obesity. N. Engl. J. Med. 363, 2339–2350 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Butler, A. E. et al. β-cell deficit and increased β-cell apoptosis in humans with diabetes. Diabetes 52, 102–110 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Rahier, J., Guiot, Y., Goebbels, R. M., Sempoux, C. & Henquin, J. C. Pancreatic β-cell mass in European subjects with type 2 diabetes. Diabetes Obes. Metab. 10 (Suppl. 4), 32–42 (2008).

    Article  PubMed  Google Scholar 

  12. Ritzlel, R. A., Butler, A. E., Rizza, R. A., Velduis, J. D. & Butler, P. C. Relationship between β-cell mass and fasting blood glucose concentration in humans. Diabetes Care 29, 717–718 (2006).

    Article  Google Scholar 

  13. Shapiro, A. M. et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343, 230–238 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Pepper, A. R., Gala-Lopez, B., Ziff, O. & Shapiro, A. M. Current status of islet transplantation. World J. Transplant. 3, 48–53 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Schultz, T. C. et al. A scalable system for production of functional pancreatic progenitors from human embryonic stem cells. PLoS ONE 7, e37004 (2012).

    Article  CAS  Google Scholar 

  16. Hua, H. et al. iPS-derived β cells model diabetes due to glucokinase deficiency. J. Clin. Invest. 123, 3146–3153 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rezania, A. et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 32, 1121–1133 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Pagliuca, F. W. et al. Generation of functional human pancreatic β cells in vitro. Cell 159, 428–439 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bouchi, R. et al. Foxo1 inhibition yields functional insulin-producing cells in human gut organoid cultures. Nat. Commun. 5, 4242 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Talchai, C., Xuan, S., Lin, H. V. & Accili, D. Pancreatic β-cell dedifferentiation as a mechanism of diabetic β-cell failure. Cell 150, 1223–1234 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thorel, F. et al. Conversion of adult pancreatic α cells to β cells after extreme β-cell loss. Nature 464, 1149–1154 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Courtney, M. et al. The inactivation of Arx in pancreatic α cells triggers their neogenesis and conversion to functional β-like cells. PLoS Genet. 9, e1003934 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chera, S. et al. Diabetes recovery by age-dependent conversion of pancreatic δ-cells into insulin producers. Nature 514, 503–507 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Saisho, Y. et al. β-cell mass and turnover in humans: effects of obesity and aging. Diabetes Care 36, 111–117 (2013).

    Article  PubMed  Google Scholar 

  25. Kassem, S. A., Ariel, I., Thornton, P. S., Scheimberg, I. & Glaser, B. β-cell proliferation and apoptosis in the developing normal human pancreas and in hyperinsulinism of infancy. Diabetes 49, 1325–1333 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Meier, J. J. et al. β-cell replication is the primary mechanism subserving the postnatal expansion of β-cell mass in humans. Diabetes 57, 1584–1594 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Kohler, C. U. et al. Cell cycle control of β-cell replication in the prenatal and postnatal human pancreas. Am. J. Physiol. Endocrinol. Metab. 300, E221–E230 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Gregg, B. E. et al. Formation of a human β-cell population within pancreatic islets is set early in life. J. Clin. Endocrinol. Metab. 97, 3197–3206 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mezza, T. et al. Insulin resistance alters islet morphology in nondiabetic humans. Diabetes 63, 994–1007 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stanger, B. Z. & Hebrok, M. Control of cell identity in pancreas development and regeneration. Gastroenterology 144, 1170–1179 (2013).

    Article  PubMed  Google Scholar 

  31. Rieck, S., Bankaitis, E. D. & Wright, C. V. Lineage determinants in early endocrine development. Semin. Cell Dev. Biol. 236, 673–684 (2012).

    Article  CAS  Google Scholar 

  32. Conrad, E., Stein, R. & Hunter, C. S. Revealing transcription factors during human pancreatic β-cell development. Trends Endocrinol. Metab. 25, 407–414 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. De Vos, A. et al. Human and rat β cells differ in glucose transporter but not glucokinase gene expression. J. Clin. Invest. 96, 2489–2495 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ferrer, J., Benito, C. & Gomis, R. Pancreatic islet GLUT glucose transporter mRNA and protein expression in humans with and without NIDDM. Diabetes 44, 1369–1374 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Dai, C. et al. Islet-enriched gene expression and glucose-induced insulin secretion in human and mouse islets. Diabetologia 55, 707–718 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Gradwohl, G., Dierich, A., LeMeur, M. & Guillemot, F. Neurogenin-3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl Acad. Sci. USA 97, 1607–1611 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, J. et al. Mutant neurogenin-3 in congenital malabsorptive diarrhea. N. Engl. J. Med. 355, 270–280 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Rubio-Cabezas, O. et al. Permanent neonatal diabetes and enteric anendocrinosis associated with biallelic mutations in NEUROG3. Diabetes 60, 1349–1353 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rubio-Cabezas, O. et al. Neurogenin-3 is important but not essential for pancreatic islet development in humans. Diabetologia 57, 2421–2424 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cabrera, O. et al. The unique cytoarchitecture of the human pancreatic islet has implications for islet cell function. Proc. Natl Acad. Sci. USA 103, 2334–2339 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brissova, M. et al. Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J. Histochem. Cytochem. 53, 1087–1097 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Hoang, D.-T. et al. A conserved rule for pancreatic islet organization. PLoS ONE 9, e110384 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Teta, M., Long, S. Y., Wartschow, L. M., Rankin, M. M. & Kushner, J. A. Very slow turnover of β-cells in aged adult mice. Diabetes 54, 2557–2567 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Finegood, D. T., Scaglia, L. & Bonner-Weir, S. Dynamics of β-cell mass in the growing rat pancreas. Estimation with a simple mathematical model. Diabetes 44, 249–256 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Kushner, J. et al. Cyclins D2 and D1 are essential for postnatal pancreatic β-cell growth. Mol. Cell. Biol. 25, 3752–3762 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Menge, B. A. et al. Partial pancreatectomy in adult humans does not provoke β-cell regeneration. Diabetes 57, 142–149 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Kumar, A. F., Greussner, R. W. & Seaquist, E. R. Risk of glucose intolerance and diabetes in hemipancreatectomized donors selected for normal preoperative glucose metabolism. Diabetes Care 31, 1639–1643 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gargani, S. et al. Adaptive changes of human islets to an obesogenic environment in the mouse. Diabetologia 56, 350–358 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Butler, A. E. et al. Adaptive changes in pancreatic β-cell fractional area and β-cell turnover in human pregnancy. Diabetologia 53, 2167–2176 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Campbell, J. E. & Drucker, D. J. Pharmacology, physiology and mechanisms of incretin hormone action. Cell Metab. 17, 819–837 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Kondegowda, N. G. et al. Parathyroid hormone-related protein enhances human β-cell proliferation and function with simultaneous induction of cyclin-dependent kinase 2 and cyclin E expression. Diabetes 59, 3131–3138 (2010).

    Article  CAS  Google Scholar 

  52. Otonkoski, T. et al. A role for hepatocyte growth factor/scatter factor in fetal mesenchyme-induced pancreatic β-cell growth. Endocrinology 137, 3131–3139 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Jiao, Y., Le Lay, J., Yu, M. & Kaestner, K. H. Elevated mouse hepatic betatrophin expression does not increase human β-cell replication in the transplant setting. Diabetes 63, 1283–1288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Parnaud, G. et al. Proliferation of sorted human and rat β cells. Diabetologia 51, 91–100 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Andersson, O. et al. Adenosine signaling promotes regeneration of pancreatic β cells in vivo. Cell Metab. 15, 885–894 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Annes, J. P. et al. Adenosine kinase inhibition selectively promotes rodent and porcine islet β-cell proliferation. Proc. Natl Acad. Sci. USA 109, 3915–3920 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Shen, W. et al. Small molecule inducer of β-cell proliferation identified by high-throughput screening. J. Am. Chem. Soc. 135, 1669–1672 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Wang, W. et al. Identification of small molecule inducers of pancreatic β-cell proliferation. Proc. Natl Acad. Sci. USA 106, 1427–1432 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Griffin, K. J., Thompson, P. A., Gottschalk, M., Kylllo, J. H. & Rabinovitch, A. Combination therapy with sitagliptin and lansoprazole in patients with recent onset type 1 diabetes (REPAIR–T1D): 12 month results of a multicentre, randomised placebo-controlled phase 2 trial. Lancet Diabetes Endocrinol. 2, 710–718 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Chamberlain, C. E. et al. Menin determines K-RAS proliferative outputs in endocrine cells. J. Clin. Invest. 124, 4093–4101 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Garcia-Ocana, A. & Stewart, A. F. “RAS”ling β cells to proliferate for diabetes: why do we need MEN? J. Clin. Invest. 124, 3698–3700 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rieck, S. et al. Overexpression of hepatocyte nuclear factor 4α initiates cell cycle entry, but it not sufficient to promote β-cell expansion in human islets. Mol. Endocrinol. 26, 1590–1602 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tomovsky-Babeay, S. Type 2 diabetes and congenital hyperinsulinism cause DNA double strand breaks and p53 activity in β cells. Cell Metab. 19, 109–121 (2014).

    Article  CAS  Google Scholar 

  64. Rane, S. et al. Loss of expression of Cdk4 causes insulin-deficient diabetes and Cdk4 activation results in β-islet cell hyperplasia. Nat. Genet. 22, 44–52 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Cozar-Castellano, I. et al. Molecular control of cell cycle progression in the pancreatic β cell. Endocr. Rev. 27, 356–370 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Cozar-Castellano, I. et al. Evaluation of β-cell replication in mice transgenic for hepatocyte growth factor, placental lactogen or both: comprehensive characterization of the G1/S. regulatory proteins reveals unique involvement of p21cip. Diabetes 55, 70–77 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Cozar-Castellano, I. et al. Lessons from the first comprehensive molecular characterization of cell cycle control in rodent insulinoma cell lines. Diabetes 57, 3056–3068 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Heit, J. J. et al. Calcineurin/NFAT signaling regulates pancreatic β-cell growth and function. Nature 443, 345–349 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Song, W. J. et al. Exendin-4 stimulation of cyclin A2 in β-cell proliferation. Diabetes 57, 2371–2381 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kushner, J. et al. Cyclins D2 and D1 are essential for postnatal pancreatic β-cell growth. Mol. Cell. Biol. 25, 3752–3762 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhong, L. et al. Essential role of skp-2-mediated p27 degradation in growth and adaptive expansion of pancreatic β cells. J. Clin. Invest. 117, 2869–2876 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Uchida, T. et al. Deletion of Cdkn1b ameliorates hyperglycemia by maintaining compensatory hyperinsulinemia in diabetic mice. Nat. Med. 11, 175–182 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Chen, H. et al. Polycomb protein Ezh2 regulates pancreatic β-cell Ink4a/Arf expression and regeneration in diabetes mellitus. Genes Dev. 23, 975–985 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dhawan, S., Tschen, S. I. & Bhushan, A. Bmi-1 regulates the Ink4a/arf locus to control pancreatic β-cell proliferation. Genes Dev. 23, 901–911 (2009).

    Article  CAS  Google Scholar 

  75. Krishnamurthy, J. et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443, 453–457 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Cozar-Castellano, I., Takane, K. K., Bottino, R., Balamurugan, A. N. & Stewart, A. F. Induction of β-cell proliferation and retinoblastoma protein phosphorylation in rat and human islets using adenoviral delivery of cyclin-dependent kinase-4 and cyclin D1 . Diabetes 53, 149–159 (2004).

    Article  CAS  PubMed  Google Scholar 

  77. Fiaschi-Taesch, N. M. et al. Survey of the human pancreatic β-cell G1/S. proteome reveals a potential therapeutic role for Cdk-6 and Cyclin D1 in enhancing human β-cell replication and function in vivo. Diabetes 58, 882–893 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fiaschi-Taesch, N. M. et al. Induction of human β-cell proliferation and engraftment using a single G1/S regulatory molecule, CDK6. Diabetes 59, 1926–1936 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Fiaschi-Taesch, N. et al. Human pancreatic β-cell G1/S. molecule cell cycle atlas. Diabetes 62, 2450–2459 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fiaschi-Taesch, N. M. et al. Cytoplasmic-nuclear trafficking of G1/S. cell cycle molecules and adult human β-cell replication: a revised model of human β-cell G1/S control. Diabetes 62, 2460–2470 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lavine, J. A. et al. Overexpression of pre-pro-cholecystokinin stimulates β-cell proliferation in mouse and human islets with retention of islet function. Mol. Endocrinol. 22, 2716–2728 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Davis, D. B. et al. FoxM1 is up-regulated in obesity and stimulates β-cell proliferation. Mol. Endocrinol. 24, 1822–1834 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Saltpeter, S. J. et al. Glucose regulates cyclin D2 expression in quiescent and replicating pancreatic β-cells through glycolysis and calcium channels. Endocrinology 152, 2589–2598 (2011).

    Article  CAS  Google Scholar 

  84. Avrahami, D. et al. Targeting the cell cycle inhibitor p57Kip2 promotes adult human β-cell proliferation. J. Clin. Invest. 124, 670–674 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Agarwal, S. K., Mateo, C. M. & Marx, S. J. Rare germline mutations in cyclin-dependent kinase inhibitor genes in multiple endocrine neoplasia type 1 and related states. J. Clin. Endocrinol. Metab. 94, 1826–1834 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pellengata, N. S. et al. Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc. Natl Acad. Sci. USA 103, 15558–15563 (2006).

    Article  CAS  Google Scholar 

  87. Thakker, R. in Endocrinology 6th edn (eds Jameson, J. L. & DeGroot, L. J.) 2719–2741 (Saunders, 2009).

    Google Scholar 

  88. Alonso, L. C. et al. Glucose infusion in mice: a new model to induce β-cell replication. Diabetes 56, 1792–1801 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Gill, R. M. & Hamel, P. A. Subcellular compartmentalization of Ef2 family members is required for maintenance of the postmitotic state in terminally differentiated muscle. J. Cell Biol. 148, 1187–1201 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Veiga-Fernanandes, H. & Rocha, B. High expression of active cdk6 in the cytoplasm of CD8 memory cells favors rapid division. Nat. Immunol. 5, 31–37 (2004).

    Article  CAS  Google Scholar 

  91. Ivanova, I. A., Vespa, A. & Dagnino, L. A novel mechanism of E2F1 regulation via nucleocytoplasmic shuttling. Cell Cycle 6, 2186–2195 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Claudio, P. P. et al. Expression of cell cycle proteins pRb2/p130, p107, p27kip1 p53, mdm-2 and Ki-67 (MIB-1) in prostate gland adenocarcinoma. Clin. Cancer Res. 8, 1808–1815 (2002).

    CAS  PubMed  Google Scholar 

  93. Jackman, M., Kubota, Y., den Elzen, N., Hagting, A. & Pines, J. Cyclin A– and cyclin E–Cdk complexes shuttle between nucleus and cytoplasm. Mol. Biol. Cell 13, 1030–1045 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lee, Y. et al. Cyclin D1–Cdk4 controls glucose metabolism independently of cell cycle progression. Nature 510, 547–551 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Anicotte, J. S. et al. The CDK4–pRB–E2F1 pathway controls insulin secretion. Nat. Cell Biol. 11, 1017–1023 (2009).

    Article  CAS  Google Scholar 

  96. Sherr, C. J. & Roberts, J. M. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13, 1501–1512 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Cheng, M. et al. The p21Cip1 and p27Kip1 CDK 'inhibitors' are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J. 18, 1571–1583 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Cerqueira, A. et al. Genetic characterization of the role of the Cip/Kip family of proteins as cyclin-dependent kinase inhibitors and assembly factors. Mol. Cell. Biol. 34, 1452–1459 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhang, H. et al. Gestational diabetes mellitus resulting from impaired β-cell compensation in the absence of FoxM1, a novel downstream effector of placental lactogen. Diabetes 59, 143–152 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Ackermann Misfeldt, A., Costa, R. H. & Gannon, M. β-cell proliferation, but not neogenesis, following 60% partial pancreatectomy is impaired in the absence of FoxM1. Diabetes 57, 3069–3077 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Davis, D. B. et al. FoxM1 is up-regulated in obesity and stimulates β-cell proliferation. Mol. Endocrinol. 24, 1822–1834 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Karslioglu, E. et al. cMyc is the principal upstream driver of β-cell proliferation in rat insulinoma cell lines and is an effective mediator of human β-cell replication. Mol. Endocrinol. 25, 1760–1772 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cano, D. A. et al. Regulated β-cell regeneration in the adult mouse pancreas. Diabetes 57, 958–966 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Pelengaris, S., Kahn, M. & Evan, G. I. Suppression of Myc-induced apoptosis in β cells exposes multiple oncogenic properties of Myc and triggers carcinogenic progression. Cell 3, 321–334 (2002).

    Article  Google Scholar 

  105. Soucek, L. & Evan, G. I. The ups and downs of Myc biology. Curr. Opin. Genet. Dev. 20, 91–95 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hohmeier, H. & Newgard, C. B. Cell lines derived from pancreatic islets. Mol. Cell. Endocrinol. 228, 121–128 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Hugl, S. R., White, M. F. & Rhodes, C. J. Insulin-like growth factor-1 (IGF-1)-stimulated pancreatic β-cell growth is glucose-dependent. Synergistic activation of insulin receptor substrate-mediated signal transduction pathways by glucose and IGF-1 in INS-1 cells. J. Biol. Chem. 273, 17771–17779 (1998).

    Article  CAS  PubMed  Google Scholar 

  108. Cousin, S. P. et al. Stimulation of pancreatic β-cell proliferation by growth hormone is glucose-dependent: signal transduction via janus kinase 2 (JAK2)/signal transducer and activator of transcription 5 (STAT5) with no crosstalk to insulin receptor substrate-mediated mitogenic signalling. Biochem. J. 344, 649–658 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Halvorsen, T. L., Beattie, G. M., Lopez, A. D. & Hayek, A. Accelerated telomere shortening and senescence in human pancreatic islet cells stimulated to divide in vitro. J. Endocrinol. 166, 103–109 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. McClusky, J. T. et al. Development and functional characterization of insulin-releasing human pancreatic β-cell lines produced by electrofusion. J. Biol. Chem. 286, 21982–21992 (2011).

    Article  CAS  Google Scholar 

  111. Ravassard, P. et al. A genetically engineered human pancreatic β-cell line exhibiting glucose-induced secretion. J. Clin. Invest. 121, 3589–3597 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Scharfmann, R. et al. Development of a conditionally immortalized human pancreatic β-cell line. J. Clin. Invest. 124, 2087–2098 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kulkarni, R. N., Bernal-Mizrachi, E., Garcia-Ocaña, A. & Stewart, A. F. Human β-cell proliferation and intracellular signaling: driving in the dark without a roadmap. Diabetes 61, 2205–2213 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bernal-Mizrachi, E., Kulkarni, R. N., Stewart, A. F. & Garcia-Ocaña, A. Human β-cell proliferation and intracellular signaling part 2: still driving in the dark without a roadmap. Diabetes 63, 819–831 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rao, P. et al. Gene transfer of constitutively active Akt markedly improves human islet transplant outcomes in diabetic SCID mice. Diabetes 54, 1664–1675 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Vasavada, R. C. et al. Protein kinase C-ζ activation markedly enhances β-cell proliferation: an essential role in growth factor-mediated β-cell mitogenesis. Diabetes 56, 2732–2743 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Soltani, N. et al. GABA exerts protective and regenerative effects on islet β cells and reverses diabetes. Proc. Natl Acad. Sci. USA 108, 11692–11697 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Demozay, D., Tsunekawa, S., Briaud, I., Shah, R. & Rhodes, C. J. Specific glucose-induced control of insulin receptor-supstrate-2 expression is mediated by Ca2+-dependent calcineurin–NFAT signaling in primary pancreatic islet β-cells. Diabetes 60, 2892–2902 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Liu, H. et al. Glycogen synthetase kinase-3 and mammalian target of rapamycin pathways contribute to DNA synthesis, cell cycle progression, and proliferation in human islets. Diabetes 58, 663–672 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Barlow, A. D., Nicholson, M. L. & Herbert, T. P. Evidence for rapamycin toxicity in pancreatic β cells and a review of the underlying molecular mechanisms. Diabetes 62, 2674–2682 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Soleimanpour, S. A. et al. Calcineurin signaling regulates human islet β-cell survival. J. Biol. Chem. 285, 40050–40059 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rhodes, C. J., White, M. F., Leahy, J. L. & Kahn, S. E. Direct autocrine action of insulin on β cells: does it make physiological sense? Diabetes 62, 2157–2163 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Chen, H. et al. PDGF signaling controls age-dependent proliferation in pancreatic β cells. Nature 478, 349–355 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pateras, I. S., Apostolopoulou, K., Niforou, K., Kotsinas, A. & Gorgoulis, V. G. p57KIP2: “kip”ing the cell under control. Mol. Cancer Res. 7, 1902–1919 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Keniry, A. et al. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat. Cell Biol. 14, 659–665 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Onyango, P. & Feinberg, A. A nucleolar protein, H19 opposite tumor suppressor (HOTS), is a tumor growth inhibitor encoded by a human imprinted H19 antisense transcript. Proc. Natl Acad. Sci. USA 108, 16759–16764 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Caspary, T. et al. Oppositely imprinted genes p57KIP2 and Igf2 interact in a mouse model for Beckwith-Weideman syndrome. Genes Dev. 13, 3115–3124 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kassem, S. A. et al. p57KIP2 expression in normal islet cells and in hyperinsulinism of infancy. Diabetes 50, 2763–2769 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Fournet, J. C. et al. Unbalanced expression of 11p15 imprinted genes in focal forms of congenital hyperinsulinism: association with a reduction to homozygosity of a mutation in ABCC8 or KCNJ11. Am. J. Pathol. 158, 2177–2184 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhou, J. X. et al. Combined modulation of the polycomb and trithorax genes rejuvenates β-cell replication. J. Clin. Invest. 123, 4849–4858 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gil, J. & O'Loghlen, A. PRC1 complex diversity: where is it taking us? Trends Cell Biol. 24, 632–641 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Schwartz, Y. B. & Pirrotta, V. A new world of polycombs: unexpected partnerships and emerging functions. Nat. Rev. Genet. 14, 853–864 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Tie, F. et al. Trithorax monomethylates histone H3K4 and interacts directly with CBP to promote H3K27 acetylation and antagonize polycomb silencing. Development 141, 1129–1139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Matkar, S., Thiel, A. & Hua, X. Menin: a scaffold protein that control gene expression and cell signaling. Trends Biochem. Sci. 38, 394–402 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Karnick, S. K. et al. Menin regulates pancreatic islet growth by promoting histone methylation and expression of genes encoding p27Kip1 and p18INK4c. Proc. Natl Acad. Sci. USA 102, 14659–14664 (2005).

    Article  CAS  Google Scholar 

  136. Karnik, S. K. et al. Menin controls growth of pancreatic β cells in pregnant mice and promotes gestational diabetes. Science 318, 806–809 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Crabtree, J. S. et al. A mouse model of multiple endocrine neoplasia, type 1, develops multiple endocrine tumors. Proc. Natl Acad. Sci. USA 98, 1118–1123 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Crabtree, J. S. et al. Of mice and menin: insulinomas in a conditional knockout. Mol. Cell. Biol. 23, 6075–6085 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Poy, M. N. et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432, 226–230 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Jacovetti, C. et al. MicroRNAs contribute to compensatory β-cell expansion during pregnancy and obesity. J. Clin. Invest. 122, 3541–3551 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. van de Bunt, M. et al. The miRNA profile of human pancreatic islets and β cells and relationship to type 2 diabetes pathogenesis. PLoS ONE 8, e55272 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Klein, D. et al. MicroRNA expression in α and β cells of human pancreatic islets. PLoS ONE 8, e55064 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kameswaran, V. et al. Epigeneitc regulation of the DLK1–MEG3 microRNA cluster in human type 2 diabetic islets. Cell Metab. 19, 135–145 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Wang, Y., Liu, J., Liu, C., Naji, A. & Stoffers, D. A. MicroRNA-7 regulates the mTOR pathway and proliferation in adult pancreatic β cells. Diabetes 62, 887–895 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Tattikota, S. G. et al. Argonaute-2 mediates compensatory expansion of the pancreatic β cell. Cell Metab. 19, 122–134 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Moran, I. et al. Human β-cell transcriptome analysis uncovers lncRNAs that are tissue specific, dynamically regulated, and abnormally expressed in type 2 diabetes. Cell Metab. 16, 435–448 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Pasquali, L. et al. Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nat. Genet. 46, 136–143 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ku, G. M. et al. Research resource: RNAseq reveals unique features of the pancreatic β-cell transcriptome. Mol. Endocrinol. 26, 1783–1792 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Maute, R. L. et al. tRNA-derived microRNA modulates proliferation and the DNA damage response and is downregulated in B-cell lymphoma. Proc. Natl Acad. Sci. USA 110, 1404–1409 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Su, H. et al. Elevated snoRNA biogenesis is essential in breast cancer. Oncogene 33, 1348–1358 (2014).

    Article  CAS  PubMed  Google Scholar 

  151. Wang, W. & Lotze, M. T. Good things come in small packages: exosomes, immunity and cancer. Cancer Gene Ther. 21, 139–141 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Tchkonia, T., van Deursen, J. & Kirkland, J. L. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest. 123, 966–972 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Saltpeter, S. J. et al. Systemic regulation of the age-related decline of pancreatic β-cell replication. Diabetes 62, 2843–2848 (2013).

    Article  CAS  Google Scholar 

  154. Banito, A. & Lowe, S. W. A new development in senescence. Cell 155, 977–978 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Walpita, D. et al. A human islet cell culture system for high-throughput screening. J. Biomol. Screen. 17, 509–518 (2012).

    Article  CAS  PubMed  Google Scholar 

  156. Finan, B. et al. Targeted estrogen therapy reverses the metabolic syndrome. Nat. Med. 18, 1847–1856 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge H. Liu, K. K. Takane, A. Bender, J. C. Alvarez-Perez, H. Chen, N. G. Kondgowda, P. Zhang and A. Laxman for helpful discussions, and the NIDDK-supported Integrated Islet Distribution Program (IIDP), T. Kin (University of Alberta in Edmonton, AB, Canada), P. Witkowski (University of Chicago, IL, USA) and R. Bottino (University of Pittsburgh, PA, USA) for providing human islets. The authors acknowledge support from the NIH/NIDDK (grants R-01 DK55023, U-01 DK089538, R-01 DK067351, R-01 DK077096, R-01 DK078060 and R-01 DK072264), the JDRF (grants 17-2011-598, 1-2011-603, 47-2012-750 and 17-2012-37) and the American Diabetes Association (grants 1-14-BS-069 and 7-12-BS-046).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, provided substantial contributions to discussions of the content and reviewed and/or edited the manuscript before submission. P.W. and A.F.S. contributed equally to the writing of the article.

Corresponding author

Correspondence to Andrew F. Stewart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Fiaschi-Taesch, N., Vasavada, R. et al. Diabetes mellitus—advances and challenges in human β-cell proliferation. Nat Rev Endocrinol 11, 201–212 (2015). https://doi.org/10.1038/nrendo.2015.9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2015.9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research