Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Timeline
  • Published:

The Framingham Heart Study — 67 years of discovery in metabolic disease

Abstract

The Framingham Heart Study (FHS), initiated in 1948, is the longest running prospective cohort study in the USA. Through >65 years of discovery, the FHS has contributed to our understanding of obesity, type 2 diabetes mellitus and prediabetes mellitus, the metabolic syndrome and nonalcoholic fatty liver disease (NAFLD), and to how these conditions relate to our overall and cardiovascular-related mortality. This Timeline gives an overview of the substantial role the FHS has played in advancing the understanding of obesity, diabetes mellitus and NAFLD, and considers the direction the FHS will take in the years to come.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cohorts of the Framingham Heart Study.
Figure 2: Selected milestones from the first 67 years of the FHS.

References

  1. Kannel, W. B., LeBauer, E. J., Dawber, T. R. & McNamara, P. M. Relation of body weight to development of coronary heart disease. The Framingham study. Circulation 35, 734–744 (1967).

    Article  CAS  Google Scholar 

  2. Wilson, P. W., McGee, D. L. & Kannel, W. B. Obesity, very low density lipoproteins, and glucose intolerance over fourteen years: the Framingham Study. Am. J. Epidemiol. 114, 697–704 (1981).

    Article  CAS  Google Scholar 

  3. Wilson, P. W., D'Agostino, R. B., Sullivan, L., Parise, H. & Kannel, W. B. Overweight and obesity as determinants of cardiovascular risk: the Framingham experience. Arch. Intern. Med. 162, 1867–1872 (2002).

    Article  Google Scholar 

  4. Kenchaiah, S. et al. Obesity and the risk of heart failure. N. Engl. J. Med. 347, 305–313 (2002).

    Article  Google Scholar 

  5. Wang, T. J. et al. Obesity and the risk of new-onset atrial fibrillation. JAMA 292, 2471–2477 (2004).

    Article  CAS  Google Scholar 

  6. Kissebah, A. H. et al. Relation of body fat distribution to metabolic complications of obesity. J. Clin. Endocrinol. Metab. 54, 254–260 (1982).

    Article  CAS  Google Scholar 

  7. Kannel, W. B. et al. Regional obesity and risk of cardiovascular disease; the Framingham Study. J. Clin. Epidemiol. 44, 183–190 (1991).

    Article  CAS  Google Scholar 

  8. Larsson, B. et al. Abdominal adipose tissue distribution, obesity, and risk of cardiovascular disease and death: 13 year follow up of participants in the study of men born in 1913. Br. Med. J. (Clin. Res. Ed.) 288, 1401–1404 (1984).

    Article  CAS  Google Scholar 

  9. Britton, K. A. & Fox, C. S. Ectopic fat depots and cardiovascular disease. Circulation 124, e837–e841 (2011).

    Article  Google Scholar 

  10. Fox, C. S. et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 116, 39–48 (2007).

    Article  Google Scholar 

  11. Britton, K. A. et al. Body fat distribution, incident cardiovascular disease, cancer, and all-cause mortality. J. Am. Coll. Cardiol. 62, 921–925 (2013).

    Article  Google Scholar 

  12. Rosito, G. A. et al. Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study. Circulation 117, 605–613 (2008).

    Article  Google Scholar 

  13. Salans, L. B., Knittle, J. L. & Hirsch, J. The role of adipose cell size and adipose tissue insulin sensitivity in the carbohydrate intolerance of human obesity. J. Clin. Invest. 47, 153–165 (1968).

    Article  CAS  Google Scholar 

  14. Gealekman, O. et al. Depot-specific differences and insufficient subcutaneous adipose tissue angiogenesis in human obesity. Circulation 123, 186–194 (2011).

    Article  Google Scholar 

  15. Hu, H. H., Chung, S. A., Nayak, K. S., Jackson, H. A. & Gilsanz, V. Differential computed tomographic attenuation of metabolically active and inactive adipose tissues: preliminary findings. J. Comput. Assist. Tomogr. 35, 65–71 (2011).

    Article  Google Scholar 

  16. Rosenquist, K. J. et al. Visceral and subcutaneous fat quality and cardiometabolic risk. JACC Cardiovasc. Imaging 6, 762–771 (2013).

    Article  Google Scholar 

  17. Rosenquist, K. J. et al. Fat quality and incident cardiovascular disease, all-cause mortality, and cancer mortality. J. Clin. Endocrinol. Metab. 100, 227–234 (2015).

    Article  CAS  Google Scholar 

  18. Spencer, M. et al. Adipose tissue extracellular matrix and vascular abnormalities in obesity and insulin resistance. J. Clin. Endocrinol. Metab. 96, E1990–E1998 (2011).

    Article  CAS  Google Scholar 

  19. Parikh, N. I. et al. Increasing trends in incidence of overweight and obesity over 5 decades. Am. J. Med. 120, 242–250 (2007).

    Article  Google Scholar 

  20. Flegal, K. M., Carroll, M. D., Ogden, C. L. & Johnson, C. L. Prevalence and trends in obesity among US adults, 1999–2000. JAMA 288, 1723–1727 (2002).

    Article  Google Scholar 

  21. Fox, C. S. et al. Genome-wide association for abdominal subcutaneous and visceral adipose reveals a novel locus for visceral fat in women. PLoS Genet. 8, e1002695 (2012).

    Article  CAS  Google Scholar 

  22. Fox, C. S. et al. Genome-wide association of pericardial fat identifies a unique locus for ectopic fat. PLoS Genet. 8, e1002705 (2012).

    Article  CAS  Google Scholar 

  23. Speliotes, E. K. et al. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet. 7, e1001324 (2011).

    Article  CAS  Google Scholar 

  24. Foster, M. C., Yang, Q., Hwang, S. J., Hoffmann, U. & Fox, C. S. Heritability and genome-wide association analysis of renal sinus fat accumulation in the Framingham Heart Study. BMC Med. Genet. 12, 148 (2011).

    Article  CAS  Google Scholar 

  25. Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).

    Article  CAS  Google Scholar 

  26. Berndt, S. I. et al. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat. Genet. 45, 501–512 (2013).

    Article  CAS  Google Scholar 

  27. Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196 (2015).

    Article  CAS  Google Scholar 

  28. Kannel, W. B. & McGee, D. L. Diabetes and cardiovascular disease. The Framingham Study. JAMA 241, 2035–2038 (1979).

    Article  CAS  Google Scholar 

  29. Kannel, W. B., Hjortland, M. & Castelli, W. P. Role of diabetes in congestive heart failure: the Framingham study. Am. J. Cardiol. 34, 29–34 (1974).

    Article  CAS  Google Scholar 

  30. Brand, F. N., Abbott, R. D. & Kannel, W. B. Diabetes, intermittent claudication, and risk of cardiovascular events: the Framingham Study. Diabetes 38, 504–509 (1989).

    Article  CAS  Google Scholar 

  31. Levitzky, Y. S. et al. Impact of impaired fasting glucose on cardiovascular disease: the Framingham Heart Study. J. Am. Coll. Cardiol. 51, 264–270 (2008).

    Article  CAS  Google Scholar 

  32. Huxley, R., Barzi, F. & Woodward, M. Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ 332, 73–78 (2006).

    Article  Google Scholar 

  33. Fox, C. S. et al. Trends in the incidence of type 2 diabetes mellitus from the 1970s to the 1990s: the Framingham Heart Study. Circulation 113, 2914–2918 (2006).

    Article  Google Scholar 

  34. Abraham, T. M., Pencina, K. M., Pencina, M. J. & Fox, C. S. Trends in diabetes incidence: the Framingham Heart Study. Diabetes Care 38, 482–487 (2015).

    Article  Google Scholar 

  35. Fox, C. S. et al. Trends in cardiovascular complications of diabetes. JAMA 292, 2495–2499 (2004).

    Article  CAS  Google Scholar 

  36. Fox, C. S. et al. Increasing cardiovascular disease burden due to diabetes mellitus: the Framingham Heart Study. Circulation 115, 1544–1550 (2007).

    Article  Google Scholar 

  37. Preis, S. R. et al. Trends in all-cause and cardiovascular disease mortality among women and men with and without diabetes mellitus in the Framingham Heart Study, 1950 to 2005. Circulation 119, 1728–1735 (2009).

    Article  Google Scholar 

  38. Preis, S. R. et al. Trends in cardiovascular disease risk factors in individuals with and without diabetes mellitus in the Framingham Heart Study. Circulation 120, 212–220 (2009).

    Article  Google Scholar 

  39. Wong, N. D. et al. Trends in control of cardiovascular risk factors among US adults with type 2 diabetes from 1999 to 2010: comparison by prevalent cardiovascular disease status. Diab. Vasc. Dis. Res. 10, 505–513 (2013).

    Article  Google Scholar 

  40. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 285, 2486–2497 (2001).

  41. Wilson, P. W., D'Agostino, R. B., Parise, H., Sullivan, L. & Meigs, J. B. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation 112, 3066–3072 (2005).

    Article  CAS  Google Scholar 

  42. Wilson, P. W. et al. Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study. Arch. Intern. Med. 167, 1068–1074 (2007).

    Article  Google Scholar 

  43. Elias, P. K. et al. NIDDM and blood pressure as risk factors for poor cognitive performance: the Framingham Study. Diabetes Care 20, 1388–1395 (1997).

    Article  CAS  Google Scholar 

  44. Tuligenga, R. H. et al. Midlife type 2 diabetes and poor glycaemic control as risk factors for cognitive decline in early old age: a post-hoc analysis of the Whitehall II cohort study. Lancet Diabetes Endocrinol. 2, 228–235 (2014).

    Article  Google Scholar 

  45. Tan, Z. S. et al. Association of metabolic dysregulation with volumetric brain magnetic resonance imaging and cognitive markers of subclinical brain aging in middle-aged adults: the Framingham Offspring Study. Diabetes Care 34, 1766–1770 (2011).

    Article  Google Scholar 

  46. Meigs, J. B., Panhuysen, C. I., Myers, R. H., Wilson, P. W. & Cupples, L. A. A genome-wide scan for loci linked to plasma levels of glucose and HbA1c in a community-based sample of Caucasian pedigrees: the Framingham Offspring Study. Diabetes 51, 833–840 (2002).

    Article  CAS  Google Scholar 

  47. Dupuis, J. et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet. 42, 105–116 (2010).

    Article  CAS  Google Scholar 

  48. Meigs, J. B. et al. Genome-wide association with diabetes-related traits in the Framingham Heart Study. BMC Med. Genet. 8, S16 (2007).

    Article  Google Scholar 

  49. Prokopenko, I. et al. Variants in MTNR1B influence fasting glucose levels. Nat. Genet. 41, 77–81 (2009).

    Article  CAS  Google Scholar 

  50. Meigs, J. B. et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N. Engl. J. Med. 359, 2208–2219 (2008).

    Article  CAS  Google Scholar 

  51. Vassy, J. L. et al. Polygenic type 2 diabetes prediction at the limit of common variant detection. Diabetes 63, 2172–2182 (2014).

    Article  CAS  Google Scholar 

  52. Wang, T. J. et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17, 448–453 (2011).

    Article  Google Scholar 

  53. Floegel, A. et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes 62, 639–648 (2013).

    Article  CAS  Google Scholar 

  54. Walford, G. A. et al. Metabolite traits and genetic risk provide complementary information for the prediction of future type 2 diabetes. Diabetes Care 37, 2508–2514 (2014).

    Article  CAS  Google Scholar 

  55. Vernon, G., Baranova, A. & Younossi, Z. M. Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment. Pharmacol. Ther. 34, 274–285 (2011).

    Article  CAS  Google Scholar 

  56. Loomba, R. et al. Parental obesity and offspring serum alanine and aspartate aminotransferase levels: the Framingham Heart Study. Gastroenterology 134, 953–959 (2008).

    Article  CAS  Google Scholar 

  57. Goessling, W. et al. Aminotransferase levels and 20-year risk of metabolic syndrome, diabetes, and cardiovascular disease. Gastroenterology 135, 1935–1944 (2008).

    Article  CAS  Google Scholar 

  58. Porter, S. A. et al. Aminotransferase levels are associated with cardiometabolic risk above and beyond visceral fat and insulin resistance: the Framingham Heart Study. Arterioscler. Thromb. Vasc. Biol. 33, 139–146 (2013).

    Article  CAS  Google Scholar 

  59. Speliotes, E. K. et al. Fatty liver is associated with dyslipidemia and dysglycemia independent of visceral fat: the Framingham Heart Study. Hepatology 51, 1979–1987 (2010).

    Article  CAS  Google Scholar 

  60. Long, M. T. et al. Nonalcoholic fatty liver disease and vascular function: cross-sectional analysis in the Framingham Heart Study. Arterioscler. Thromb. Vasc. Biol. 35, 1284–1291 (2015).

    Article  CAS  Google Scholar 

  61. Long, M. T. et al. Hepatic steatosis is associated with lower levels of physical activity measured via accelerometry. Obesity (Silver Spring) 23, 1259–1266 (2015).

    Article  Google Scholar 

  62. Mellinger, J. L. et al. Hepatic steatosis and cardiovascular disease outcomes: an analysis of the Framingham Heart Study. J. Hepatol. 63, 470–476 (2015).

    Article  Google Scholar 

  63. Christakis, N. A. & Fowler, J. H. The spread of obesity in a large social network over 32 years. N. Engl. J. Med. 357, 370–379 (2007).

    Article  CAS  Google Scholar 

  64. Dawber, T. R., Moore, F. E. & Mann, G. V. Coronary heart disease in the Framingham study. Am. J. Publ. Health Nat. Health 47, 4–24 (1957).

    Article  CAS  Google Scholar 

  65. Kannel, W. B., Dawber, T. R., Kagan, A., Revotskie, N. & Stokes, J. 3rd Factors of risk in the development of coronary heart disease—six year follow-up experience: the Framingham Study. Ann. Intern. Med. 55, 33–50 (1961).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding by the Boston University School of Medicine and the National Heart, Lung, and Blood Institute's Framingham Heart Study (contract HHSN268201500001I) and the Division of Intramural Research of the National Heart, Lung, and Blood Institute.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, contributed substantially to discussion of the content and to writing the article, and to reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Michelle T. Long.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, M., Fox, C. The Framingham Heart Study — 67 years of discovery in metabolic disease. Nat Rev Endocrinol 12, 177–183 (2016). https://doi.org/10.1038/nrendo.2015.226

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2015.226

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing