Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular insights into the aetiology of female reproductive ageing

Key Points

  • The genetic architecture of pubertal timing and age at menopause involves hundreds of rare, low frequency and common variants, with allelic heterogeneity often apparent at the same loci

  • Progress in localizing these variants has shed light on the wide range of biological mechanisms that regulate these traits, including energy homeostasis, gene silencing and DNA repair

  • Population variability in age at menarche and menopause is associated with altered health outcomes in later life, notably earlier timings increase the risk of type 2 diabetes mellitus and cardiovascular disease

  • Mechanisms that link reproductive ageing to metabolic diseases involve both obesity-related pathways and pathways independent of BMI

  • Exposure to sex hormones is probably the overwhelming mechanism linking reproductive ageing to the risk of breast cancer and other hormone-sensitive cancers

Abstract

As age at pubertal onset declines and age at first pregnancy increases, the mechanisms that regulate female reproductive lifespan become increasingly relevant to population health. The timing of menarche and menopause can have profound effects not only on fertility but also on the risk of diseases such as type 2 diabetes mellitus, cardiovascular disease and breast cancer. Genetic studies have identified dozens of highly penetrant rare mutations associated with reproductive disorders, and also 175 common genetic variants associated with the timing of puberty or menopause. These findings, alongside other functional studies, have highlighted a diverse range of mechanisms involved in reproductive ageing, implicating core biological processes such as cell cycle regulation and energy homeostasis. The aim of this article is to review the contribution of such genetic findings to our understanding of the molecular regulation of reproductive timing, as well as the biological basis of the epidemiological links between reproductive ageing and disease risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genetic architecture of the female reproductive lifespan.
Figure 2: Genetic overlaps within and between menarche and menopause.
Figure 3: Aetiological mechanisms governing reproductive ageing in women.
Figure 4: Ovarian germ cell numbers throughout life and the mechanisms that influence the oocyte pool.

Similar content being viewed by others

References

  1. Chumlea, W. C. et al. Age at menarche and racial comparisons in US girls. Pediatrics 111, 110–113 (2003).

    Article  PubMed  Google Scholar 

  2. Parent, A.-S. et al. The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration. Endocr. Rev. 24, 668–693 (2003).

    Article  PubMed  Google Scholar 

  3. Remsberg, K. E. et al. Early menarche and the development of cardiovascular disease risk factors in adolescent girls: the Fels Longitudinal Study. J. Clin. Endocrinol. Metab. 90, 2718–2724 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Hartge, P. Genetics of reproductive lifespan. Nat. Genet. 41, 637–638 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Palmert, M. R. & Boepple, P. A. Variation in the timing of puberty: clinical spectrum and genetic investigation. J. Clin. Endocrinol. Metab. 86, 2364–2368 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Morris, D. H. et al. Body mass index, exercise, and other lifestyle factors in relation to age at natural menopause: analyses from the breakthrough generations study. Am. J. Epidemiol. 175, 998–1005 (2012).

    Article  PubMed  Google Scholar 

  7. Coulam, C. B., Adamson, S. C. & Annegers, J. F. Incidence of premature ovarian failure. Obstet. Gynecol. 67, 604–606 (1986).

    CAS  PubMed  Google Scholar 

  8. Lambalk, C. B., van Disseldorp, J., de Koning, C. H. & Broekmans, F. J. Testing ovarian reserve to predict age at menopause. Maturitas 63, 280–291 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Carolan, M. The graying of the obstetric population: implications for the older mother. J. Obstet. Gynecol. Neonatal Nurs. 32, 19–27 (2003).

    Article  PubMed  Google Scholar 

  10. Fuqua, J. S. Treatment and outcomes of precocious puberty: an update. J. Clin. Endocrinol. Metab. 98, 2198–2207 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Baams, L., Dubas, J. S., Overbeek, G. & van Aken, M. A. G. Transitions in body and behavior: a meta-analytic study on the relationship between pubertal development and adolescent sexual behavior. J. Adolesc. Health 56, 586–598 (2015).

    Article  PubMed  Google Scholar 

  12. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. bioRxiv http://dx.doi.org/10.1101/014498.

  13. Day, F. R. et al. Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Nat. Genet. http://dx.doi.org/10.1038/ng.3412.

  14. Day, F. R., Elks, C. E., Murray, A., Ong, K. K. & Perry, J. R. B. Puberty timing associated with diabetes, cardiovascular disease and also diverse health outcomes in men and women: the UK Biobank study. Sci. Rep. 5, 11208 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Silveira, L. F. G. & Latronico, A. C. Approach to the patient with hypogonadotropic hypogonadism. J. Clin. Endocrinol. Metab. 98, 1781–1788 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Bianco, S. D. C. & Kaiser, U. B. The genetic and molecular basis of idiopathic hypogonadotropic hypogonadism. Nat. Rev. Endocrinol. 5, 569–576 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Di Pasquale, E. et al. Identification of new variants of human BMP15 gene in a large cohort of women with premature ovarian failure. J. Clin. Endocrinol. Metab. 91, 1976–1979 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Bione, S. et al. A human homologue of the Drosophila melanogaster diaphanous gene is disrupted in a patient with premature ovarian failure: evidence for conserved function in oogenesis and implications for human sterility. Am. J. Hum. Genet. 62, 533–541 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pittman, D. L. et al. Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmc1, a germline-specific RecA homolog. Mol. Cell 1, 697–705 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Mandon-Pépin, B. et al. Genetic investigation of four meiotic genes in women with premature ovarian failure. Eur. J. Endocrinol. 158, 107–115 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Fogli, A. et al. Ovarian failure related to eukaryotic initiation factor 2B mutations. Am. J. Hum. Genet. 72, 1544–50 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pangas, S. A. et al. Oogenesis requires germ cell-specific transcriptional regulators Sohlh1 and Lhx8. Proc. Natl Acad. Sci. USA 103, 8090–8095 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao, H. et al. Transcription factor FIGLA is mutated in patients with premature ovarian failure. Am. J. Hum. Genet. 82, 1342–1348 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nallathambi, J. et al. A novel polyalanine expansion in FOXL2: the first evidence for a recessive form of the blepharophimosis syndrome (BPES) associated with ovarian dysfunction. Hum. Genet. 121, 107–112 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Ghadami, M. et al. Toward gene therapy of premature ovarian failure: intraovarian injection of adenovirus expressing human FSH receptor restores folliculogenesis in FSHR−/− FORKO mice. Mol. Hum. Reprod. 16, 241–250 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, J., Zhang, W., Jiang, H. & Wu, B.-L. Mutations in HFM1 in recessive primary ovarian insufficiency. N. Engl. J. Med. 370, 972–974 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Latronico, A. C. et al. Brief report: testicular and ovarian resistance to luteinizing hormone caused by inactivating mutations of the luteinizing hormone-receptor gene. N. Engl. J. Med. 334, 507–512 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. De Vries, S. S. et al. Mouse MutS-like protein Msh5 is required for proper chromosome synapsis in male and female meiosis. Genes Dev. 13, 523–531 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qin, Y. et al. NOBOX homeobox mutation causes premature ovarian failure. Am. J. Hum. Genet. 81, 576–581 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lourenço, D. et al. Mutations in NR5A1 associated with ovarian insufficiency. N. Engl. J. Med. 360, 1200–1210 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Mansouri, M. R. et al. Alterations in the expression, structure and function of progesterone receptor membrane component-1 (PGRMC1) in premature ovarian failure. Hum. Mol. Genet. 17, 3776–3783 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lacombe, A. et al. Disruption of POF1B binding to nonmuscle actin filaments is associated with premature ovarian failure. Am. J. Hum. Genet. 79, 113–119 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Luoma, P. et al. Parkinsonism, premature menopause, and mitochondrial DNA polymerase γ mutations: clinical and molecular genetic study. Lancet 364, 875–882 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Caburet, S. et al. Mutant cohesin in premature ovarian failure. N. Engl. J. Med. 370, 943–949 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. AlAsiri, S. et al. Exome sequencing reveals MCM8 mutation underlies ovarian failure and chromosomal instability. J. Clin. Invest. 125, 258–262 (2015).

    Article  PubMed  Google Scholar 

  36. Wood-Trageser, M. A. et al. MCM9 mutations are associated with ovarian failure, short stature, and chromosomal instability. Am. J. Hum. Genet. 95, 754–762 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Murray, A. et al. Population-based estimates of the prevalence of FMR1 expansion mutations in women with early menopause and primary ovarian insufficiency. Genet. Med. 16, 19–24 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Abreu, A. P. et al. Central precocious puberty caused by mutations in the imprinted gene MKRN3. N. Engl. J. Med. 368, 2467–2475 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Teles, M. G. et al. A GPR54-activating mutation in a patient with central precocious puberty. N. Engl. J. Med. 358, 709–715 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhu, J. et al. A shared genetic basis for self-limited delayed puberty and idiopathic hypogonadotropic hypogonadism. J. Clin. Endocrinol. Metab. 100, E646–E654 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Perry, J. R. B. et al. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature 514, 92–97 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cousminer, D. L. et al. Genome-wide association study of sexual maturation in males and females highlights a role for body mass and menarche loci in male puberty. Hum. Mol. Genet. 23, 4452–4464 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lunetta, K. L. et al. Rare coding variants and X-linked loci associated with age at menarche. Nat. Commun. http://dx.doi.org/10.1038/ncomms8756.

  44. Topaloglu, A. K. et al. TAC3 and TACR3 mutations in familial hypogonadotropic hypogonadism reveal a key role for Neurokinin B in the central control of reproduction. Nat. Genet. 41, 354–358 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Joustra, S. D. et al. The IGSF1 deficiency syndrome: characteristics of male and female patients. J. Clin. Endocrinol. Metab. 98, 4942–4952 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Zhu, X. et al. Disruption of PC1/3 expression in mice causes dwarfism and multiple neuroendocrine peptide processing defects. Proc. Natl Acad. Sci. USA 99, 10293–10298 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Prentice, P. & Viner, R. M. Pubertal timing and adult obesity and cardiometabolic risk in women and men: a systematic review and meta-analysis. Int. J. Obes. (Lond.) 37, 1036–1043 (2013).

    Article  CAS  Google Scholar 

  49. Strobel, A., Issad, T., Camoin, L., Ozata, M. & Strosberg, A. D. A leptin missense mutation associated with hypogonadism and morbid obesity. Nat. Genet. 18, 213–215 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Farooqi, I. S. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N. Engl. J. Med. 341, 879–884 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Garrel, G. et al. Unsaturated fatty acids disrupt Smad signaling in gonadotrope cells leading to inhibition of FSHβ gene expression. Endocrinology 155, 592–604 (2014).

    Article  PubMed  CAS  Google Scholar 

  52. Elks, C. E. et al. Genetic markers of adult obesity risk are associated with greater early infancy weight gain and growth. PLoS Med. 7, e1000284 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Schoenaker, D. A., Jackson, C. A., Rowlands, J. V & Mishra, G. D. Socioeconomic position, lifestyle factors and age at natural menopause: a systematic review and meta-analyses of studies across six continents. Int. J. Epidemiol. 43, 1542–1562 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tao, X. et al. Body mass index and age at natural menopause: a meta-analysis. Menopause 22, 469–474 (2015).

    Article  PubMed  Google Scholar 

  55. Layman, L. C. et al. Delayed puberty and hypogonadism caused by mutations in the follicle-stimulating hormone β-subunit gene. N. Engl. J. Med. 337, 607–611 (1997).

    Article  CAS  PubMed  Google Scholar 

  56. Aittomäki, K. et al. Mutation in the follicle-stimulating hormone receptor gene causes hereditary hypergonadotropic ovarian failure. Cell 82, 959–968 (1995).

    Article  PubMed  Google Scholar 

  57. Sun, Y. et al. Loss-of-function mutations in IGSF1 cause an X-linked syndrome of central hypothyroidism and testicular enlargement. Nat. Genet. 44, 1375–1381 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cho, S. et al. 9-cis-retinoic acid represses transcription of the gonadotropin-releasing hormone (GnRH) gene via proximal promoter region that is distinct from all-trans-retinoic acid response element. Mol. Brain Res. 87, 214–222 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Rance, N. E. Menopause and the human hypothalamus: evidence for the role of kisspeptin/neurokinin B neurons in the regulation of estrogen negative feedback. Peptides 30, 111–122 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Gaytan, F. et al. Kisspeptin receptor haplo-insufficiency causes premature ovarian failure despite preserved gonadotropin secretion. Endocrinology 155, 3088–3097 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Hughes, I. A. Releasing the brake on puberty. N. Engl. J. Med. 368, 2513–2515 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Ong, K. K. et al. Genetic variation in LIN28B is associated with the timing of puberty. Nat. Genet. 41, 729–733 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. He, C. et al. Genome-wide association studies identify loci associated with age at menarche and age at natural menopause. Nat. Genet. 41, 724–728 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Perry, J. R. et al. Meta-analysis of genome-wide association data identifies two loci influencing age at menarche. Nat. Genet. 41, 648–650 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sulem, P. et al. Genome-wide association study identifies sequence variants on 6q21 associated with age at menarche. Nat. Genet. 41, 734–738 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Kumar, R. M. et al. Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature 516, 56–61 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shyh-Chang, N. & Daley, G. Q. Lin28: primal regulator of growth and metabolism in stem cells. Cell Stem Cell 12, 395–406 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Nishi, K., Nishi, A., Nagasawa, T. & Ui-Tei, K. Human TNRC6A is an Argonaute-navigator protein for microRNA-mediated gene silencing in the nucleus. RNA 19, 17–35 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lomniczi, A. et al. Epigenetic control of female puberty. Nat. Neurosci. 16, 281–289 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Johnson, J., Canning, J., Kaneko, T., Pru, J. K. & Tilly, J. L. Germline stem cells and follicular renewal in the postnatal mammalian ovary. Nature 428, 145–150 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Zou, K. et al. Production of offspring from a germline stem cell line derived from neonatal ovaries. Nat. Cell Biol. 11, 631–636 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. White, Y. A. R. et al. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat. Med. 18, 413–421 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hu, Y.-C. et al. Licensing of primordial germ cells for gametogenesis depends on genital ridge signaling. PLoS Genet. 11, e1005019 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Tripathi, A., Kumar, K. V. P. & Chaube, S. K. Meiotic cell cycle arrest in mammalian oocytes. J. Cell. Physiol. 223, 592–600 (2010).

    CAS  PubMed  Google Scholar 

  75. Dunlop, C. E., Telfer, E. E. & Anderson, R. A. Ovarian germline stem cells. Stem Cell Res. Ther. 5, 98 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Nagaoka, S. I., Hassold, T. J. & Hunt, P. A. Human aneuploidy: mechanisms and new insights into an age-old problem. Nat. Rev. Genet. 13, 493–504 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Henderson, S. A. & Edwards, R. G. Chiasma frequency and maternal age in mammals. Nature 218, 22–28 (1968).

    Article  CAS  PubMed  Google Scholar 

  78. Polani, P. E. & Crolla, J. A. A test of the production line hypothesis of mammalian oogenesis. Hum. Genet. 88, 64–70 (1991).

    Article  CAS  PubMed  Google Scholar 

  79. Koehler, K. E., Hawley, R. S., Sherman, S. & Hassold, T. Recombination and nondisjunction in humans and flies. Hum. Mol. Genet. 5, 1495–1504 (1996).

    Article  CAS  PubMed  Google Scholar 

  80. Rowsey, R., Gruhn, J., Broman, K. W., Hunt, P. A. & Hassold, T. Examining variation in recombination levels in the human female: a test of the production-line hypothesis. Am. J. Hum. Genet. 95, 108–112 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. De Vries, L. et al. Exome sequencing reveals SYCE1 mutation associated with autosomal recessive primary ovarian insufficiency. J. Clin. Endocrinol. Metab. 99, E2129–E2132 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Stolk, L. et al. Meta-analyses identify 13 loci associated with age at menopause and highlight DNA repair and immune pathways. Nat. Genet. 44, 260–268 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Titus, S. et al. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci. Transl. Med. 5, 172ra21 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Levy-Lahad, E. & Friedman, E. Cancer risks among BRCA1 and BRCA2 mutation carriers. Br. J. Cancer 96, 11–15 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Oktay, K., Kim, J. Y., Barad, D. & Babayev, S. N. Association of BRCA1 mutations with occult primary ovarian insufficiency: a possible explanation for the link between infertility and breast/ovarian cancer risks. J. Clin. Oncol. 28, 240–244 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Park, J. et al. The MCM8–MCM9 complex promotes RAD51 recruitment at DNA damage sites to facilitate homologous recombination. Mol. Cell. Biol. 33, 1632–1644 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lutzmann, M. et al. MCM8- and MCM9-deficient mice reveal gametogenesis defects and genome instability due to impaired homologous recombination. Mol. Cell 47, 523–534 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Pierce, S. B. et al. Mutations in LARS2, encoding mitochondrial leucyl-tRNA synthetase, lead to premature ovarian failure and hearing loss in Perrault syndrome. Am. J. Hum. Genet. 92, 614–620 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jenkinson, E. M. et al. Perrault syndrome is caused by recessive mutations in CLPP, encoding a mitochondrial ATP-dependent chambered protease. Am. J. Hum. Genet. 92, 605–613 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pierce, S. B. et al. Mutations in mitochondrial histidyl tRNA synthetase HARS2 cause ovarian dysgenesis and sensorineural hearing loss of Perrault syndrome. Proc. Natl Acad. Sci. USA 108, 6543–6548 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lu, C. et al. Fragile X premutation RNA is sufficient to cause primary ovarian insufficiency in mice. Hum. Mol. Genet. 21, 5039–5047 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hoffman, G. E. et al. Ovarian abnormalities in a mouse model of fragile X primary ovarian insufficiency. J. Histochem. Cytochem. 60, 439–456 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Oshima, J., Martin, G. & Hisama, F. Werner syndrome. GeneReviews®[online], (2002).

    Google Scholar 

  94. Silva, C. A. et al. Autoimmune primary ovarian insufficiency. Autoimmun. Rev. 13, 427–430 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Anasti, J. N. et al. Karyotypically normal spontaneous premature ovarian failure: evaluation of association with the class II major histocompatibility complex. J. Clin. Endocrinol. Metab. 78, 722–723 (1994).

    CAS  PubMed  Google Scholar 

  96. Jaroudi, K. A., Arora, M., Sheth, K. V., Sieck, U. V. & Willemsen, W. N. Human leukocyte antigen typing and associated abnormalities in premature ovarian failure. Hum. Reprod. 9, 2006–2009 (1994).

    Article  CAS  PubMed  Google Scholar 

  97. Robb, L. et al. Infertility in female mice lacking the receptor for interleukin 11 is due to a defective uterine response to implantation. Nat. Med. 4, 303–308 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Northup, J., Griffis, K., Hawkins, J., Lockhart, L. & Velagaleti, G. Unusual pseudo dicentric, psu dic (1;19)(q10;q13.42), in a female with premature ovarian failure. Fertil. Steril. 87, 697.e5–697.e8 (2007).

    Article  Google Scholar 

  99. Tong, Z. B. & Nelson, L. M. A mouse gene encoding an oocyte antigen associated with autoimmune premature ovarian failure. Endocrinology 140, 3720–3726 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Onland-Moret, N. C. et al. Age at menarche in relation to adult height: the EPIC study. Am. J. Epidemiol. 162, 623–632 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Xie, H. et al. Homeodomain proteins SIX3 and SIX6 regulate gonadotrope-specific genes during pituitary development. Mol. Endocrinol. 29, 842–855 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Horikoshi, M. et al. New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism. Nat. Genet. 45, 76–82 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. D'Aloisio, A. A., DeRoo, L. A., Baird, D. D., Weinberg, C. R. & Sandler, D. P. Prenatal and infant exposures and age at menarche. Epidemiology 24, 277–284 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Andersson, E. A. et al. The birth weight lowering C-allele of rs900400 near LEKR1 and CCNL1 associates with elevated insulin release following an oral glucose challenge. PLoS ONE 6, e27096 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Elks, C. E. et al. Age at menarche and type 2 diabetes risk: the EPIC-InterAct study. Diabetes Care 36, 3526–3534 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Canoy, D. et al. Age at menarche and risks of coronary heart and other vascular diseases in a large UK cohort. Circulation 131, 237–244 (2015).

    Article  PubMed  Google Scholar 

  108. Shuster, L. T., Rhodes, D. J., Gostout, B. S., Grossardt, B. R. & Rocca, W. A. Premature menopause or early menopause: long-term health consequences. Maturitas 65, 161–166 (2010).

    Article  PubMed  Google Scholar 

  109. Brand, J. S. et al. Age at menopause, reproductive life span, and type 2 diabetes risk: results from the EPIC-InterAct study. Diabetes Care 36, 1012–1019 (2012).

    Article  PubMed  Google Scholar 

  110. Zhu, H. et al. The Lin28/let-7 axis regulates glucose metabolism. Cell 147, 81–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Purwana, I. et al. GABA promotes human β-cell proliferation and modulates glucose homeostasis. Diabetes 63, 4197–4205 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Dupuis, J. et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42, 105–116 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Anderson, K. N., Schwab, R. B. & Martinez, M. E. Reproductive risk factors and breast cancer subtypes: a review of the literature. Breast Cancer Res. Treat. 144, 1–10 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to all aspects of the manuscript.

Corresponding author

Correspondence to John R. B. Perry.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perry, J., Murray, A., Day, F. et al. Molecular insights into the aetiology of female reproductive ageing. Nat Rev Endocrinol 11, 725–734 (2015). https://doi.org/10.1038/nrendo.2015.167

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2015.167

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing