Fetal signalling initiates parturition

Parturition is thought to be initiated by an increased inflammatory response and expression of contractile proteins in the uterine tissues, but the underlying mechanism is unclear. Pulmonary surfactant-associated protein-A (SP-A), which is secreted from the fetal lungs is thought to initiate this process. Now, new data indicate that nuclear receptor coactivators 1 and 2 (also known as steroid receptor coactivators; SRC-1 and SRC-2), regulates transcription of SP-A and consequently induction of labour.

In mice with heterozygous mutations in both SRC-1 and SRC-2 (*SRC-1/-2 dhet*), which avoids the lethality seen in double knockout mice, parturition was delayed by ~38 h compared with wild-type mice. Interestingly, this delay was also seen in wild-type mice with *SRC-1/-2* deficient embryos, which suggests that the signal to initiate labour is derived from the fetus.

Both *SRC-1/-2 dhet* and wild-type mothers carrying *SRC-1/-2* deficient embryos had fewer markers of

inflammation in the myometrium, reduced expression of genes associated with uterine contraction and higher circulating levels of progesterone than wild-type mothers carrying wild-type embryos. Similarly, levels of SP-A and lysophosphatidylcholine acyltransfersase-1, an enzyme that produces proinflammatory glycerophospholipid platelet-activating factor (PAF), which might induce labour, were reduced in the lungs of SRC-1/-2 deficient fetuses. Importantly, the delay in parturition was rescued by injection of SP-A or PAF into amniotic fluid of *SRC-1/-2 dhet* mice carrying *SRC-1/-2* deficient embryos. Taken together, these results suggest that signals from the lungs of fetuses can initiate labour.

Tim Geach

Original article Gao, L. et al. Steroid receptor coactivators 1 and 2 mediate fetal-to-maternal signaling that initiates parturition. J. Clin. Invest. doi:10.1172/ JCI78544