Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The pathophysiology of hypertension in patients with obesity

Key Points

  • The incidence of hypertension is substantially increased in the population of people with obesity and affected individuals have increased morbidity and mortality from cardiovascular disease (CVD) and chronic kidney disease

  • Adipokine alterations, insulin resistance, sympathetic nervous system and renin–angiotensin–aldosterone system activation, obstructive sleep apnoea, renal abnormalities, maladaptive immunity and gut microbiome changes all link hypertension to obesity

  • Hyperuricaemia associated with a high-fructose diet is emerging as a key factor in the development of hypertension associated with diet-induced obesity

  • Dysregulation of the dipeptidyl peptidase 4–incretin system contributes to the development of maladaptive immunity and associated hypertension in obesity

  • Estrogen-mediated CVD protection is compromised in individuals with obesity, thereby underscoring the greater CVD risks associated with obesity in premenopausal women compared with those in age-matched men with obesity

  • Adjunctive therapy with mineralocorticoid receptor antagonists and renal denervation is emerging as an additional therapeutic measure for management of obesity-related hypertension

Abstract

The combination of obesity and hypertension is associated with high morbidity and mortality because it leads to cardiovascular and kidney disease. Potential mechanisms linking obesity to hypertension include dietary factors, metabolic, endothelial and vascular dysfunction, neuroendocrine imbalances, sodium retention, glomerular hyperfiltration, proteinuria, and maladaptive immune and inflammatory responses. Visceral adipose tissue also becomes resistant to insulin and leptin and is the site of altered secretion of molecules and hormones such as adiponectin, leptin, resistin, TNF and IL-6, which exacerbate obesity-associated cardiovascular disease. Accumulating evidence also suggests that the gut microbiome is important for modulating these mechanisms. Uric acid and altered incretin or dipeptidyl peptidase 4 activity further contribute to the development of hypertension in obesity. The pathophysiology of obesity-related hypertension is especially relevant to premenopausal women with obesity and type 2 diabetes mellitus who are at high risk of developing arterial stiffness and endothelial dysfunction. In this Review we discuss the relationship between obesity and hypertension with special emphasis on potential mechanisms and therapeutic targeting that might be used in a clinical setting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Obesity contributes to the development of hypertension via the interaction of dietary, genetic, epigenetic and environmental factors.
Figure 2: Possible mechanisms of obesity-associated hypertension and therapeutic strategies.

Similar content being viewed by others

References

  1. Malik, V. S., Willett, W. C. & Hu, F. B. Global obesity: trends, risk factors and policy implications. Nat. Rev. Endocrinol. 9, 13–27 (2013).

    PubMed  Google Scholar 

  2. Thomsen, B. L., Ekstrøm, C. T. & Sørensen, T. I. Development of the obesity epidemic in Denmark: cohort, time and age effects among boys born 1930–1975. Int. J. Obes. Relat. Metab. Disord. 23, 693–701 (1999).

    CAS  PubMed  Google Scholar 

  3. Heimburger, D. C. et al. A festschrift for Roland L. Weinsier: nutrition scientist, educator, and clinician. Obes. Res. 11, 1246–1262 (2003).

    PubMed  Google Scholar 

  4. Keith, S. W. et al. Putative contributors to the secular increase in obesity: exploring the roads less traveled. Int. J. Obes (Lond.) 30, 1585–1594 (2006).

    CAS  Google Scholar 

  5. McAllister, E. J. et al. Ten putative contributors to the obesity epidemic. Crit. Rev. Food Sci. Nutr. 49, 868–913 (2009).

    PubMed  PubMed Central  Google Scholar 

  6. Sørensen, T. I. Conference on “Multidisciplinary approaches to nutritional problems”. Symposium on “Diabetes and health”. Challenges in the study of causation of obesity. Proc. Nutr. Soc. 68, 43–54 (2009).

    PubMed  Google Scholar 

  7. Sowers, J. R. Diabetes mellitus and vascular disease. Hypertension 61, 943–947 (2013).

    CAS  PubMed  Google Scholar 

  8. Flegal, K. M., Carroll, M. D., Ogden, C. L. & Curtin, L. R. Prevalence and trends in obesity among US adults, 1999–2008. JAMA 303, 235–241 (2010).

    CAS  PubMed  Google Scholar 

  9. Ogden, C. L. et al. Prevalence of overweight and obesity in the United States, 1999–2004. JAMA 295, 1549–1555 (2006).

    CAS  PubMed  Google Scholar 

  10. Sowers, J. R., Whaley-Connel, A. T. & Hayden, M. R. The role of overweight and obesity in the cardiorenal syndrome. Cardiorenal Med. 1, 5–12 (2011).

    PubMed  PubMed Central  Google Scholar 

  11. Yach, D., Stuckler, D. & Brownell, K. D. Epidemiologic and economic consequences of the global epidemics of obesity and diabetes. Nat. Med. 12, 62–66 (2006).

    CAS  PubMed  Google Scholar 

  12. Kannel, W. B., Brand, N., Skinner, J. J. Jr, Dawber, T. R. & McNamara, P. M. The relation of adiposity to blood pressure and development of hypertension. The Framingham study. Ann. Intern. Med. 67, 48–59 (1967).

    CAS  PubMed  Google Scholar 

  13. Bramlage, P. et al. Hypertension in overweight and obese primary care patients is highly prevalent and poorly controlled. Am. J. Hypertens. 17, 904–910 (2004).

    PubMed  Google Scholar 

  14. Krauss, R. M., Winston, M., Fletcher, B. J. & Grundy, S. M. Obesity: impact on cardiovascular disease. Circulation 98, 1472–1476 (1998).

    PubMed  Google Scholar 

  15. Garrison, R. J., Kannel, W. B., Stokes, J. 3rd & Castelli, W. P. Incidence and precursors of hypertension in young adults: the Framingham Offspring Study. Prev. Med. 16, 235–251 (1987).

    CAS  PubMed  Google Scholar 

  16. Brown, C. D. et al. Body mass index and the prevalence of hypertension and dyslipidemia. Obes. Res. 8, 605–619 (2000).

    CAS  PubMed  Google Scholar 

  17. Shihab, H. M. et al. Body mass index and risk of incident hypertension over the life course: the Johns Hopkins Precursors Study. Circulation 126, 2983–2989 (2012).

    PubMed  PubMed Central  Google Scholar 

  18. Droyvold, W. B., Midthjell, K., Nilsen, T. I. & Holmen, J. Change in body mass index and its impact on blood pressure: a prospective population study. Int. J. Obes. (Lond.) 29, 650–655 (2005).

    CAS  Google Scholar 

  19. Vague, J. The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout, and uric calculous disease. Am. J. Clin. Nutr. 4, 20–34 (1956).

    CAS  PubMed  Google Scholar 

  20. Kissebah, A. H. et al. Relation of body fat distribution to metabolic complications of obesity. J. Clin. Endocrinol. Metab. 54, 254–260 (1982).

    CAS  PubMed  Google Scholar 

  21. Krotkiewski, M., Björntorp, P., Sjöström, L. & Smith, U. Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J. Clin. Invest. 72, 1150–1162 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cassano, P. A., Segal, M. R., Vokonas, P. S. & Weiss, S. T. Body fat distribution, blood pressure, and hypertension. A prospective cohort study of men in the normative aging study. Ann. Epidemiol. 1, 33–48 (1990).

    CAS  PubMed  Google Scholar 

  23. Lapidus, L. et al. Distribution of adipose tissue and risk of cardiovascular disease and death: a 12 year follow up of participants in the population study of women in Gothenburg, Sweden. Br. Med. J. (Clin. Res. Ed.) 289, 1257–1261 (1984).

    CAS  Google Scholar 

  24. Larsson, B. et al. Abdominal adipose tissue distribution, obesity, and risk of cardiovascular disease and death: 13 year follow up of participants in the study of men born in 1913. Br. Med. J. (Clin. Res. Ed.) 288, 1401–1404 (1984).

    CAS  Google Scholar 

  25. Alberti, K. G. & Zimmet, P. Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. 15, 539–553 (1998).

    CAS  PubMed  Google Scholar 

  26. Alberti, K. G. et al. Harmonizing the metabolic syndrome. A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120, 1640–1645 (2009).

    CAS  PubMed  Google Scholar 

  27. Neter, J. E., Stam, B. E., Kok, F. J., Grobbee, D. E. & Geleijnse, J. M. Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension 42, 878–884 (2003).

    CAS  PubMed  Google Scholar 

  28. Appel, L. J. et al. Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association. Hypertension 47, 296–308 (2006).

    CAS  PubMed  Google Scholar 

  29. Landsberg, L. et al. Obesity-related hypertension: pathogenesis, cardiovascular risk, and treatment—a position paper of the The Obesity Society and The American Society of Hypertension. Obesity (Silver Spring) 21, 8–24 (2013).

    Google Scholar 

  30. Kotchen, T. A. Obesity-related hypertension: epidemiology, pathophysiology, and clinical management. Am. J. Hypertens. 23, 1170–1178 (2010).

    CAS  PubMed  Google Scholar 

  31. Esler, M. et al. Mechanisms of sympathetic activation in obesity-related hypertension. Hypertension 48, 787–796 (2006).

    CAS  PubMed  Google Scholar 

  32. Henry, S. L. et al. Developmental origins of obesity-related hypertension. Clin. Exp. Pharmacol. Physiol. 39, 799–806 (2012).

    CAS  PubMed  Google Scholar 

  33. Rumantir, M. S. et al. Neural mechanisms in human obesity-related hypertension. J. Hypertens. 17, 1125–1133 (1999).

    CAS  PubMed  Google Scholar 

  34. Grassi, G. et al. Adrenergic and reflex abnormalities in obesity-related hypertension. Hypertension 36, 538–542 (2000).

    CAS  PubMed  Google Scholar 

  35. Zhao, D. et al. Dietary factors associated with hypertension. Nat. Rev. Cardiol. 8, 456–465 (2011).

    CAS  PubMed  Google Scholar 

  36. Aghamohammadzadeh, R. & Heagerty, A. M. Obesity-related hypertension: epidemiology, pathophysiology, treatments, and the contribution of perivascular adipose tissue. Ann. Med. 44 (Suppl. 1), S74–S84 (2012).

    CAS  PubMed  Google Scholar 

  37. Johnson, R. J. et al. Sugar, uric acid, and the etiology of diabetes and obesity. Diabetes 62, 3307–3315 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Jordan, J. et al. Joint statement of the European Association for the Study of Obesity and the European Society of Hypertension: obesity and difficult to treat arterial hypertension. J. Hypertens. 30, 1047–1055 (2012).

    CAS  PubMed  Google Scholar 

  39. Messerli, F. H. et al. Disparate cardiovascular findings in men and women with essential hypertension. Ann. Intern. Med. 107, 158–161 (1987).

    CAS  PubMed  Google Scholar 

  40. Aroor, A. R., McKarns, S., Demarco, V. G., Jia, G. & Sowers, J. R. Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance. Metabolism 62, 1543–1552 (2013).

    CAS  PubMed  Google Scholar 

  41. Huxley, R., Barzi, F. & Woodward, M. Excess risk of fatal coronary heart disease associated with diabetes in men and women: meta-analysis of 37 prospective cohort studies. BMJ 332, 73–78 (2006).

    PubMed  PubMed Central  Google Scholar 

  42. Barrett-Connor, E. et al. Women and heart disease: the role of diabetes and hyperglycemia. Arch. Intern. Med. 164, 934–942 (2004).

    PubMed  Google Scholar 

  43. Howard, B. V. et al. Adverse effects of diabetes on multiple cardiovascular disease risk factors in women. The Strong Heart Study. Diabetes Care 21, 1258–1265 (1998).

    CAS  PubMed  Google Scholar 

  44. Okosun, I. S., Prewitt, T. E. & Cooper, R. S. Abdominal obesity in the United States: prevalence and attributable risk of hypertension. J. Hum. Hypertens. 13, 425–430 (1999).

    CAS  PubMed  Google Scholar 

  45. Huang, Z. et al. Body weight, weight change, and risk for hypertension in women. Ann. Intern. Med. 128, 81–88 (1998).

    CAS  PubMed  Google Scholar 

  46. Engeli, S. et al. Weight loss and the renin-angiotensin-aldosterone system. Hypertension 45, 356–362 (2005).

    CAS  PubMed  Google Scholar 

  47. Li, M., Sloboda, D. M. & Vickers, M. H. Maternal obesity and developmental programming of metabolic disorders in offspring: evidence from animal models. Exp. Diabetes Res. 2011, 592408 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Fullston, T. et al. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 27, 4226–4243 (2013).

    CAS  PubMed  Google Scholar 

  49. Bray, G. A., Nielsen, S. J. & Popkin, B. M. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am. J. Clin. Nutr. 79, 537–543 (2004).

    CAS  PubMed  Google Scholar 

  50. Khitan, Z. & Kim, D. H. Fructose: a key factor in the development of metabolic syndrome and hypertension. J. Nutr. Metab. 2013, 682673 (2013).

    PubMed  PubMed Central  Google Scholar 

  51. Hallfrisch, J. Metabolic effects of dietary fructose. FASEB J. 4, 2652–2660 (1990).

    CAS  PubMed  Google Scholar 

  52. Nguyen, S., Choi, H. K., Lustig, R. H. & Hsu, C. Y. Sugar-sweetened beverages, serum uric acid, and blood pressure in adolescents. J. Pediatr. 154, 807–813 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. D'Angelo, G., Elmarakby, A. A., Pollock, D. M. & Stepp, D. W. Fructose feeding increases insulin resistance but not blood pressure in Sprague-Dawley rats. Hypertension 46, 806–811 (2005).

    CAS  PubMed  Google Scholar 

  54. Vasdev, S., Gill, V., Parai, S. & Gadag, V. Fructose-induced hypertension in Wistar-Kyoto rats: interaction with moderately high dietary salt. Can. J. Physiol. Pharmacol. 85, 413–421 (2007).

    CAS  PubMed  Google Scholar 

  55. Tapia, E. et al. Synergistic effect of uricase blockade plus physiological amounts of fructose-glucose on glomerular hypertension and oxidative stress in rats. Am. J. Physiol. Renal Physiol. 304, F727–F736 (2013).

    CAS  PubMed  Google Scholar 

  56. Weisbrod, R. M. et al. Arterial stiffening precedes systolic hypertension in diet-induced obesity. Hypertension 62, 1105–1110 (2013).

    CAS  PubMed  Google Scholar 

  57. Madero, M., Perez-Pozo, S. E., Jalal, D., Johnson, R. J. & Sanchez-Lozada, L. G. Dietary fructose and hypertension. Curr. Hypertens. Rep. 13, 29–35 (2011).

    CAS  PubMed  Google Scholar 

  58. He, F. J. & MacGregor, G. A. Effect of modest salt reduction on blood pressure: a meta-analysis of randomized trials. Implications for public health. J. Hum. Hypertens. 16, 761–770 (2002).

    CAS  PubMed  Google Scholar 

  59. [No authors listed] Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. Intersalt Cooperative Research Group. BMJ 297, 319–328 (1988).

  60. Simopoulos, A. P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 56, 365–379 (2002).

    CAS  PubMed  Google Scholar 

  61. Morris, M. C., Sacks, F. & Rosner, B. Does fish oil lower blood pressure? A meta-analysis of controlled trials. Circulation 88, 523–533 (1993).

    CAS  PubMed  Google Scholar 

  62. Appel, L. J., Miller, E. R. 3rd, Seidler, A. J. & Whelton, P. K. Does supplementation of diet with 'fish oil' reduce blood pressure? A meta-analysis of controlled clinical trials. Arch. Intern. Med. 153, 1429–1438 (1993).

    CAS  PubMed  Google Scholar 

  63. Hu, F. B. & Manson, J. E. Omega-3 fatty acids and secondary prevention of cardiovascular disease—is it just a fish tale?: comment on “Efficacy of omega-3 fatty acid supplements (eicosapentaenoic acid and docosahexaenoic acid) in the secondary prevention of cardiovascular disease”. Arch. Intern. Med. 172, 694–696 (2012).

    CAS  PubMed  Google Scholar 

  64. Appel, L. J. et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N. Engl. J. Med. 336, 1117–1124 (1997).

    CAS  PubMed  Google Scholar 

  65. Hord, N. G., Tang, Y. & Bryan, N. S. Food sources of nitrates and nitrites: the physiologic context for potential health benefits. Am. J. Clin. Nutr. 90, 1–10 (2009).

    CAS  PubMed  Google Scholar 

  66. Coles, L. T. & Clifton, P. M. Effect of beetroot juice on lowering blood pressure in free-living, disease-free adults: a randomized, placebo-controlled trial. Nutr. J. 11, 106 (2012).

    PubMed  PubMed Central  Google Scholar 

  67. Siervo, M., Lara, J., Ogbonmwan, I. & Mathers, J. C. Inorganic nitrate and beetroot juice supplementation reduces blood pressure in adults: a systematic review and meta-analysis. J. Nutr. 143, 818–826 (2013).

    CAS  PubMed  Google Scholar 

  68. Moncada, S., Palmer, R. M. & Higgs, E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109–142 (1991).

    CAS  PubMed  Google Scholar 

  69. Harris, K., Kassis, A., Major, G. & Chou, C. J. Is the gut microbiota a new factor contributing to obesity and its metabolic disorders? J. Obes. 2012, 879151 (2012).

    PubMed  PubMed Central  Google Scholar 

  70. Tilg, H. & Kaser, A. Gut microbiome, obesity, and metabolic dysfunction. J. Clin. Invest. 121, 2126–2132 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    PubMed  Google Scholar 

  72. Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl Acad. Sci. USA 102, 11070–11075 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Geurts, L. et al. Altered gut microbiota and endocannabinoid system tone in obese and diabetic leptin-resistant mice: impact on apelin regulation in adipose tissue. Front. Microbiol. 2, 149 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Murphy, E. F. et al. Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut 59, 1635–1642 (2010).

    CAS  PubMed  Google Scholar 

  75. Shen, J., Obin, M. S. & Zhao, L. The gut microbiota, obesity and insulin resistance. Mol. Aspects Med. 34, 39–58 (2013).

    CAS  PubMed  Google Scholar 

  76. Kootte, R. S. et al. The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus. Diabetes Obes. Metab. 14, 112–120 (2012).

    CAS  PubMed  Google Scholar 

  77. Delzenne, N. M., Neyrinck, A. M., Backhed, F. & Cani, P. D. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat. Rev. Endocrinol. 7, 639–646 (2011).

    CAS  PubMed  Google Scholar 

  78. Kurukulasuriya, L. R., Stas, S., Lastra, G., Manrique, C. & Sowers, J. R. Hypertension in obesity. Med. Clin. North Am. 95, 903–917 (2011).

    PubMed  Google Scholar 

  79. Slomko, H., Heo, H. J. & Einstein, F. H. Minireview: Epigenetics of obesity and diabetes in humans. Endocrinology 153, 1025–1030 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Sharma, A. M. Is there a rationale for angiotensin blockade in the management of obesity hypertension? Hypertension 44, 12–19 (2004).

    CAS  PubMed  Google Scholar 

  81. Messerli, F. H. et al. Obesity and essential hypertension. Hemodynamics, intravascular volume, sodium excretion, and plasma renin activity. Arch. Intern. Med. 141, 81–85 (1981).

    CAS  PubMed  Google Scholar 

  82. Strazzullo, P. et al. Altered renal sodium handling in men with abdominal adiposity: a link to hypertension. J. Hypertens. 19, 2157–2164 (2001).

    CAS  PubMed  Google Scholar 

  83. McCurley, A. et al. Direct regulation of blood pressure by smooth muscle cell mineralocorticoid receptors. Nat. Med. 18, 1429–1433 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Bender, S. B., McGraw, A. P., Jaffe, I. Z. & Sowers, J. R. Mineralocorticoid receptor-mediated vascular insulin resistance: an early contributor to diabetes-related vascular disease? Diabetes 62, 313–319 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hayden, M. R. & Tyagi, S. C. Uric acid: A new look at an old risk marker for cardiovascular disease, metabolic syndrome, and type 2 diabetes mellitus: The urate redox shuttle. Nutr. Metab. (Lond.) 1, 10 (2004).

    Google Scholar 

  86. Zhong, J., Rao, X. & Rajagopalan, S. An emerging role of dipeptidyl peptidase 4 (DPP4) beyond glucose control: potential implications in cardiovascular disease. Atherosclerosis 226, 305–314 (2013).

    CAS  PubMed  Google Scholar 

  87. Schleithoff, C., Voelter-Mahlknecht, S., Dahmke, I. N. & Mahlknecht, U. On the epigenetics of vascular regulation and disease. Clin. Epigenetics 4, 7 (2012).

    PubMed  PubMed Central  Google Scholar 

  88. Ordovas, J. M. & Smith, C. E. Epigenetics and cardiovascular disease. Nat. Rev. Cardiol. 7, 510–519 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Ortega, F. J. et al. Targeting the circulating microRNA signature of obesity. Clin. Chem. 59, 781–792 (2013).

    CAS  PubMed  Google Scholar 

  90. Williams, M. D. & Mitchell, G. M. MicroRNAs in insulin resistance and obesity. Exp. Diabetes Res. 2012, 484696 (2012).

    PubMed  PubMed Central  Google Scholar 

  91. Nistala, R. et al. Prenatal programming and epigenetics in the genesis of the cardiorenal syndrome. Cardiorenal Med. 1, 243–254 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Ganu, R. S., Harris, R. A., Collins, K. & Aagaard, K. M. Early origins of adult disease: approaches for investigating the programmable epigenome in humans, nonhuman primates, and rodents. ILAR J. 53, 306–321 (2012).

    PubMed  PubMed Central  Google Scholar 

  93. Barker, D. J. Intrauterine programming of adult disease. Mol. Med. Today 1, 418–423 (1995).

    CAS  PubMed  Google Scholar 

  94. Gillman, M. W. Developmental origins of health and disease. N. Engl. J. Med. 353, 1848–1850 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Femia, R. et al. Carotid intima-media thickness in confirmed prehypertensive subjects: predictors and progression. Arterioscler. Thromb. Vasc. Biol. 27, 2244–2249 (2007).

    CAS  PubMed  Google Scholar 

  96. Cavalcante, J. L., Lima, J. A., Redheuil, A. & Al-Mallah, M. H. Aortic stiffness: current understanding and future directions. J. Am. Coll. Cardiol. 57, 1511–1522 (2011).

    PubMed  Google Scholar 

  97. Liao, D. et al. Arterial stiffness and the development of hypertension. The ARIC study. Hypertension 34, 201–206 (1999).

    CAS  PubMed  Google Scholar 

  98. Aroor, A. R. et al. The role of tissue renin-angiotensin-aldosterone system in the development of endothelial dysfunction and arterial stiffness. Front. Endocrinol. 4, 161 (2013).

    Google Scholar 

  99. Stenmark, K. R. et al. The adventitia: essential regulator of vascular wall structure and function. Ann. Rev. Physiol. 75, 23–47 (2013).

    CAS  Google Scholar 

  100. Sehgel, N. L. et al. Increased vascular smooth muscle cell stiffness; a novel mechanism for aortic stiffness in hypertension. Am. J. Physiol. Heart Circ. Physiol. 305, H1281–H1287 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Sandoo, A., van Zanten, J. J., Metsios, G. S., Carroll, D. & Kitas, G. D. The endothelium and its role in regulating vascular tone. Open Cardiovasc. Med. J. 4, 302–312 (2010).

    PubMed  PubMed Central  Google Scholar 

  102. Li, R. et al. Vascular insulin resistance in prehypertensive rats: role of PI3-kinase/Akt/eNOS signaling. Eur. J. Pharmacol. 628, 140–147 (2010).

    CAS  PubMed  Google Scholar 

  103. Muniyappa, R. & Sowers, J. R. Role of insulin resistance in endothelial dysfunction. Rev. Endocr. Metab. Disord. 14, 5–12 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Aroor, A. R., Mandavia, C. H. & Sowers, J. R. Insulin resistance and heart failure: molecular mechanisms. Heart Fail. Clin. 8, 609–617 (2012).

    PubMed  PubMed Central  Google Scholar 

  105. Brillante, D. G., O'Sullivan, A. J. & Howes, L. G. Arterial stiffness in insulin resistance: the role of nitric oxide and angiotensin II receptors. Vasc. Health Risk Manag. 5, 73–78 (2009).

    PubMed  PubMed Central  Google Scholar 

  106. DeMarco, V. G., Johnson, M. S., Whaley-Connell, A. T. & Sowers, J. R. Cytokine abnormalities in the etiology of the cardiometabolic syndrome. Curr. Hypertens. Rep. 12, 93–98 (2010).

    CAS  PubMed  Google Scholar 

  107. Leal Vde, O. & Mafra, D. Adipokines in obesity. Clin. Chim. Acta 419, 87–94 (2013).

    PubMed  Google Scholar 

  108. Dorresteijn, J. A., Visseren, F. L. & Spiering, W. Mechanisms linking obesity to hypertension. Obes. Rev. 13, 17–26 (2012).

    CAS  PubMed  Google Scholar 

  109. Brown, N. J. Contribution of aldosterone to cardiovascular and renal inflammation and fibrosis. Nat. Rev. Nephrol. 9, 459–469 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Johnson, R. J., Rodriguez-Iturbe, B., Kang, D. H., Feig, D. I. & Herrera-Acosta, J. A unifying pathway for essential hypertension. Am. J. Hypertens. 18, 431–440 (2005).

    PubMed  Google Scholar 

  111. Montecucco, F., Pende, A., Quercioli, A. & Mach, F. Inflammation in the pathophysiology of essential hypertension. J. Nephrol. 24, 23–34 (2011).

    PubMed  Google Scholar 

  112. Harrison, D. G., Marvar, P. J. & Titze, J. M. Vascular inflammatory cells in hypertension. Front. Physiol. 3, 128 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. DeFronzo, R. A., Davidson, J. A. & Del Prato, S. The role of the kidneys in glucose homeostasis: a new path towards normalizing glycaemia. Diabetes Obes. Metab. 14, 5–14 (2012).

    CAS  PubMed  Google Scholar 

  114. Kanai, Y., Lee, W. S., You, G., Brown, D. & Hediger, M. A. The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose. J. Clin. Invest. 93, 397–404 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Rahmoune, H. et al. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes. Diabetes 54, 3427–3434 (2005).

    CAS  PubMed  Google Scholar 

  116. Tabatabai, N. M., Sharma, M., Blumenthal, S. S. & Petering, D. H. Enhanced expressions of sodium-glucose cotransporters in the kidneys of diabetic Zucker rats. Diabetes Res. Clin. Pract. 83, e27–e30 (2009).

    CAS  PubMed  Google Scholar 

  117. Vallon, V. et al. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am. J. Physiol. Renal Physiol. 304, F156–F167 (2013).

    CAS  PubMed  Google Scholar 

  118. Vallon, V., Richter, K., Blantz, R. C., Thomson, S. & Osswald, H. Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption. J. Am. Soc. Nephrol. 10, 2569–2576 (1999).

    CAS  PubMed  Google Scholar 

  119. Lee, Y. J., Lee, Y. J. & Han, H. J. Regulatory mechanisms of Na(+)/glucose cotransporters in renal proximal tubule cells. Kidney Int. Suppl. 106, S27–S35 (2007).

    CAS  Google Scholar 

  120. Bautista, R. et al. Angiotensin II-dependent increased expression of Na+-glucose cotransporter in hypertension. Am. J. Physiol. Renal Physiol. 286, F127–F133 (2004).

    CAS  PubMed  Google Scholar 

  121. Ghezzi, C. & Wright, E. M. Regulation of the human Na+-dependent glucose cotransporter hSGLT2. Am. J. Physiol. Cell Physiol. 303, C348–C354 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Ferrannini, E., Ramos, S. J., Salsali, A., Tang, W. & List, J. F. Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: a randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care 33, 2217–2224 (2010).

    PubMed  PubMed Central  Google Scholar 

  123. Bailey, C. J., Gross, J. L., Pieters, A., Bastien, A. & List, J. F. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial. Lancet 375, 2223–2233 (2010).

    CAS  PubMed  Google Scholar 

  124. Nauck, M. A. et al. Dapagliflozin versus glipizide as add-on therapy in patients with type 2 diabetes who have inadequate glycemic control with metformin: a randomized, 52-week, double-blind, active-controlled noninferiority trial. Diabetes Care 34, 2015–2022 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Hall, J. E. et al. Impact of the obesity epidemic on hypertension and renal disease. Curr. Hypertens. Rep. 5, 386–392 (2003).

    PubMed  Google Scholar 

  126. O'Dea, K., Esler, M., Leonard, P., Stockigt, J. R. & Nestel, P. Noradrenaline turnover during under- and over-eating in normal weight subjects. Metabolism 31, 896–899 (1982).

    CAS  PubMed  Google Scholar 

  127. Kassab, S. et al. Renal denervation attenuates the sodium retention and hypertension associated with obesity. Hypertension 25, 893–897 (1995).

    CAS  PubMed  Google Scholar 

  128. Egan, B. M., Schork, N. J. & Weder, A. B. Regional hemodynamic abnormalities in overweight men. Focus on alpha-adrenergic vascular responses. Am. J. Hypertens. 2, 428–434 (1989).

    CAS  PubMed  Google Scholar 

  129. Agapitov, A. V., Correia, M. L., Sinkey, C. A. & Haynes, W. G. Dissociation between sympathetic nerve traffic and sympathetically mediated vascular tone in normotensive human obesity. Hypertension 52, 687–695 (2008).

    CAS  PubMed  Google Scholar 

  130. Lambert, G. W., Straznicky, N. E., Lambert, E. A., Dixon, J. B. & Schlaich, M. P. Sympathetic nervous activation in obesity and the metabolic syndrome—causes, consequences and therapeutic implications. Pharmacol. Ther. 126, 159–172 (2010).

    CAS  PubMed  Google Scholar 

  131. Hall, J. E. et al. Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins. J. Biol. Chem. 285, 17271–17276 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Lohmeier, T. E. & Iliescu, R. The sympathetic nervous system in obesity hypertension. Curr. Hypertens. Rep. 15, 409–416 (2013).

    PubMed  PubMed Central  Google Scholar 

  133. Sawicki, P. T., Baba, T., Berger, M. & Starke, A. Normal blood pressure in patients with insulinoma despite hyperinsulinemia and insulin resistance. J. Am. Soc. Nephrol. 3, S64–S68 (1992).

    CAS  PubMed  Google Scholar 

  134. Anderson, E. A., Hoffman, R. P., Balon, T. W., Sinkey, C. A. & Mark, A. L. Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J. Clin. Invest. 87, 2246–2252 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Gao, Q. et al. Disruption of neural signal transducer and activator of transcription 3 causes obesity, diabetes, infertility, and thermal dysregulation. Proc. Natl Acad. Sci. USA 101, 4661–4666 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Smith, M. M. & Minson, C. T. Obesity and adipokines: effects on sympathetic overactivity. J. Physiol. 590, 1787–1801 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Lurbe, E. et al. Added impact of obesity and insulin resistance in nocturnal blood pressure elevation in children and adolescents. Hypertension 51, 635–641 (2008).

    CAS  PubMed  Google Scholar 

  138. Demarco, V. G. et al. Obesity-related alterations in cardiac lipid profile and nondipping blood pressure pattern during transition to diastolic dysfunction in male db/db mice. Endocrinology 154, 159–171 (2013).

    CAS  PubMed  Google Scholar 

  139. Ohkubo, T. et al. Prognostic significance of the nocturnal decline in blood pressure in individuals with and without high 24-h blood pressure: the Ohasama study. J. Hypertens. 20, 2183–2189 (2002).

    CAS  PubMed  Google Scholar 

  140. Dangardt, F. et al. Reduced cardiac vagal activity in obese children and adolescents. Clin. Physiol. Funct. Imaging 31, 108–113 (2011).

    PubMed  Google Scholar 

  141. Silverberg, D. S. & Oksenberg, A. Are sleep-related breathing disorders important contributing factors to the production of essential hypertension? Curr. Hypertens. Rep. 3, 209–215 (2001).

    CAS  PubMed  Google Scholar 

  142. Logan, A. G. et al. High prevalence of unrecognized sleep apnoea in drug-resistant hypertension. J. Hypertens. 19, 2271–2277 (2001).

    CAS  PubMed  Google Scholar 

  143. Lavie, P. & Hoffstein, V. Sleep apnea syndrome: a possible contributing factor to resistant. Sleep 24, 721–725 (2001).

    CAS  PubMed  Google Scholar 

  144. Grassi, G. et al. Obstructive sleep apnea-dependent and -independent adrenergic activation in obesity. Hypertension 46, 321–325 (2005).

    CAS  PubMed  Google Scholar 

  145. Narkiewicz, K., van de Borne, P. J., Cooley, R. L., Dyken, M. E. & Somers, V. K. Sympathetic activity in obese subjects with and without obstructive sleep apnea. Circulation 98, 772–776 (1998).

    CAS  PubMed  Google Scholar 

  146. Goodfriend, T. L. & Calhoun, D. A. Resistant hypertension, obesity, sleep apnea, and aldosterone: theory and therapy. Hypertension 43, 518–524 (2004).

    CAS  PubMed  Google Scholar 

  147. Witkowski, A. et al. Effects of renal sympathetic denervation on blood pressure, sleep apnea course, and glycemic control in patients with resistant hypertension and sleep apnea. Hypertension 58, 559–565 (2011).

    CAS  PubMed  Google Scholar 

  148. McCurley, A., McGraw, A., Pruthi, D. & Jaffe, I. Z. Smooth muscle cell mineralocorticoid receptors: role in vascular function and contribution to cardiovascular disease. Pflugers Arch. 465, 1661–1670 (2013).

    CAS  PubMed  Google Scholar 

  149. Ruster, C. & Wolf, G. The role of the renin-angiotensin-aldosterone system in obesity-related renal diseases. Semin. Nephrol. 33, 44–53 (2013).

    PubMed  Google Scholar 

  150. Hall, J. E. et al. Hypertension: physiology and pathophysiology. Compr. Physiol. 2, 2393–2442 (2012).

    PubMed  Google Scholar 

  151. Hayden, M. R. et al. Possible mechanisms of local tissue renin-angiotensin system activation in the cardiorenal metabolic syndrome and type 2 diabetes mellitus. Cardiorenal Med. 1, 193–210 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Engeli, S., Negrel, R. & Sharma, A. M. Physiology and pathophysiology of the adipose tissue renin-angiotensin system. Hypertension 35, 1270–1277 (2000).

    CAS  PubMed  Google Scholar 

  153. Kumar, R., Thomas, C. M., Yong, Q. C., Chen, W. & Baker, K. M. The intracrine renin-angiotensin system. Clin. Sci. (Lond.) 123, 273–284 (2012).

    CAS  Google Scholar 

  154. Szasz, T., Bomfim, G. F. & Webb, R. C. The influence of perivascular adipose tissue on vascular homeostasis. Vasc. Health Risk Manag. 9, 105–116 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Yiannikouris, F. et al. Adipocyte deficiency of angiotensinogen prevents obesity-induced hypertension in male mice. Hypertension 60, 1524–1530 (2012).

    CAS  PubMed  Google Scholar 

  156. Bentley-Lewis, R. et al. Body mass index predicts aldosterone production in normotensive adults on a high-salt diet. J. Clin. Endocrinol. Metab. 92, 4472–4475 (2007).

    CAS  PubMed  Google Scholar 

  157. Ehrhart-Bornstein, M., Arakelyan, K., Krug, A. W., Scherbaum, W. A. & Bornstein, S. R. Fat cells may be the obesity-hypertension link: human adipogenic factors stimulate aldosterone secretion from adrenocortical cells. Endocr. Res. 30, 865–870 (2004).

    CAS  PubMed  Google Scholar 

  158. Ehrhart-Bornstein, M. et al. Human adipocytes secrete mineralocorticoid-releasing factors. Proc. Natl Acad. Sci. USA 100, 14211–14216 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Jeon, J. H. et al. A novel adipokine CTRP1 stimulates aldosterone production. FASEB J. 22, 1502–1511 (2008).

    CAS  PubMed  Google Scholar 

  160. Blanco-Rivero, J. et al. Participation of prostacyclin in endothelial dysfunction induced by aldosterone in normotensive and hypertensive rats. Hypertension 46, 107–112 (2005).

    CAS  PubMed  Google Scholar 

  161. Garg, R., Hurwitz, S., Williams, G. H., Hopkins, P. N. & Adler, G. K. Aldosterone production and insulin resistance in healthy adults. J. Clin. Endocrinol. Metab. 95, 1986–1990 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Kithas, P. A. & Supiano, M. A. Spironolactone and hydrochlorothiazide decrease vascular stiffness and blood pressure in geriatric hypertension. J. Am. Geriatr. Soc. 58, 1327–1332 (2010).

    PubMed  PubMed Central  Google Scholar 

  163. Druppel, V. et al. Long-term application of the aldosterone antagonist spironolactone prevents stiff endothelial cell syndrome. FASEB J. 27, 3652–3659 (2013).

    PubMed  Google Scholar 

  164. Garg, R., Kneen, L., Williams, G. H. & Adler, G. K. Effect of mineralocorticoid receptor antagonist on insulin resistance and endothelial function in obese subjects. Diabetes Obes. Metab. 165, 268–272 (2014).

    Google Scholar 

  165. Pulakat, L. et al. Adaptive mechanisms to compensate for overnutrition-induced cardiovascular abnormalities. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R885–R895 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Hwang, M. H. et al. Mineralocorticoid receptors modulate vascular endothelial function in human obesity. Clin. Sci. (Lond.) 125, 513–520 (2013).

    CAS  Google Scholar 

  167. Schafer, N. et al. Endothelial mineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity. Eur. Heart J. 34, 3515–3524 (2013).

    PubMed  PubMed Central  Google Scholar 

  168. Byrd, J. B. & Brook, R. D. A critical review of the evidence supporting aldosterone in the etiology and its blockade in the treatment of obesity-associated hypertension. J. Hum. Hypertens. 28, 3–9 (2014).

    CAS  PubMed  Google Scholar 

  169. Tomaschitz, A., Pilz, S., Ritz, E., Obermayer-Pietsch, B. & Pieber, T. R. Aldosterone and arterial hypertension. Nat. Rev. Endocrinol. 6, 83–93 (2010).

    CAS  PubMed  Google Scholar 

  170. Ryan, M. J. An update on immune system activation in the pathogenesis of hypertension. Hypertension 62, 226–230 (2013).

    CAS  PubMed  Google Scholar 

  171. Schiffrin, E. L. Immune mechanisms in hypertension and vascular injury. Clin. Sci. (Lond.) 126, 267–274 (2014).

    CAS  Google Scholar 

  172. Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Britton, K. A. & Fox, C. S. Perivascular adipose tissue and vascular disease. Clin. Lipidol. 6, 79–91 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Kalupahana, N. S., Moustaid-Moussa, N. & Claycombe, K. J. Immunity as a link between obesity and insulin resistance. Mol. Aspects Med. 33, 26–34 (2012).

    CAS  PubMed  Google Scholar 

  175. Zhong, J. et al. T cell costimulation protects obesity-induced adipose inflammation and insulin resistance. Diabetes http://dx.doi.org/10.2337/db13-1094.

  176. Liu, G. et al. Phenotypic and functional switch of macrophages induced by regulatory CD4+CD25+ T cells in mice. Immunol. Cell Biol. 89, 130–142 (2011).

    CAS  PubMed  Google Scholar 

  177. Kassan, M., Galan, M., Partyka, M., Trebak, M. & Matrougui, K. Interleukin-10 released by CD4(+)CD25(+) natural regulatory T cells improves microvascular endothelial function through inhibition of NADPH oxidase activity in hypertensive mice. Arterioscler. Thromb. Vasc. Biol. 31, 2534–2542 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Ohshima, K. et al. Roles of interleukin 17 in angiotensin II type 1 receptor-mediated insulin resistance. Hypertension 59, 493–499 (2012).

    CAS  PubMed  Google Scholar 

  179. Stienstra, R., Tack, C. J., Kanneganti, T. D., Joosten, L. A. & Netea, M. G. The inflammasome puts obesity in the danger zone. Cell Metab. 15, 10–18 (2012).

    CAS  PubMed  Google Scholar 

  180. Akasheh, R. T., Pang, J., York, J. M. & Fantuzzi, G. New pathways to control inflammatory responses in adipose tissue. Curr. Opin. Pharmacol. 13, 613–617 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Rathinam, V. A., Vanaja, S. K. & Fitzgerald, K. A. Regulation of inflammasome signaling. Nat. Immunol. 13, 333–332 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Conforti-Andreoni, C. et al. Uric acid-driven Th17 differentiation requires inflammasome-derived IL-1 and IL-18. J. Immunol. 187, 5842–5850 (2011).

    CAS  PubMed  Google Scholar 

  183. Guzik, T. J. et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J. Exp. Med. 204, 2449–2460 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Kasal, D. A. et al. T regulatory lymphocytes prevent aldosterone-induced vascular injury. Hypertension 59, 324–330 (2012).

    CAS  PubMed  Google Scholar 

  185. de Kloet, A. D. et al. Neuroimmune communication in hypertension and obesity: a new therapeutic angle? Pharmacol. Ther. 138, 428–440 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Harrison, D. G. et al. Inflammation, immunity, and hypertension. Hypertension 57, 132–140 (2011).

    CAS  PubMed  Google Scholar 

  187. Abboud, F. M., Harwani, S. C. & Chapleau, M. W. Autonomic neural regulation of the immune system: implications for hypertension and cardiovascular disease. Hypertension 59, 755–762 (2012).

    CAS  PubMed  Google Scholar 

  188. Dias da Silva, V. J. & Paton, J. F. Introduction: the interplay between the autonomic and immune systems. Exp. Physiol. 97, 1143–1145 (2012).

    PubMed  Google Scholar 

  189. Ganta, C. K. et al. Central angiotensin II-enhanced splenic cytokine gene expression is mediated by the sympathetic nervous system. Am. J. Physiol. Heart Circ. Physiol. 289, H1683–H1691 (2005).

    CAS  PubMed  Google Scholar 

  190. Turak, O. et al. Serum uric acid, inflammation, and nondipping circadian pattern in essential hypertension. J. Clin. Hypertens. (Greenwich) 15, 7–13 (2013).

    CAS  Google Scholar 

  191. Perez-Pozo, S. E. et al. Excessive fructose intake induces the features of metabolic syndrome in healthy adult men: role of uric acid in the hypertensive response. Int. J. Obes. (Lond.) 34, 454–461 (2010).

    CAS  Google Scholar 

  192. Chaudhary, K., Kunal, M., Sowers, J. & Aroor, A. Uric acid—key ingredient in the recipe for cardiorenal metabolic syndrome. Cardiorenal Med. 3, 208–220 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Baldwin, W. et al. Hyperuricemia as a mediator of the proinflammatory endocrine imbalance in the adipose tissue in a murine model of the metabolic syndrome. Diabetes 60, 1258–1269 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Mazzali, M. et al. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension 38, 1101–1106 (2001).

    CAS  PubMed  Google Scholar 

  195. Tran, L. T., Yuen, V. G. & McNeill, J. H. The fructose-fed rat: a review on the mechanisms of fructose-induced insulin resistance and hypertension. Mol. Cell. Biochem. 332, 145–159 (2009).

    CAS  PubMed  Google Scholar 

  196. Aroor, A. et al. DPP-4 inhibitors as therapeutic modulators of immune cell function and associated cardiovascular and renal insulin resistance in obesity and diabetes. Cardiorenal Med. 3, 48–56 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Ussher, J. R. & Drucker, D. J. Cardiovascular biology of the incretin system. Endocr. Rev. 33, 187–215 (2012).

    CAS  PubMed  Google Scholar 

  198. Lamers, D. et al. Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes 60, 1917–1925 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Wang, B. et al. Blood pressure-lowering effects of GLP-1 receptor agonists exenatide and liraglutide: a meta-analysis of clinical trials. Diabetes Obes. Metab. 15, 737–749 (2013).

    CAS  PubMed  Google Scholar 

  200. Aroor, A. R. et al. Dipeptidylpeptidase inhibition is associated with improvement in blood pressure and diastolic function in insulin resistant male Zucker obese rats. Endocrinology 154, 2501–2513 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Kroller-Schon, S. et al. Glucose-independent improvement of vascular dysfunction in experimental sepsis by dipeptidyl-peptidase 4 inhibition. Cardiovasc. Res. 96, 140–149 (2012).

    PubMed  Google Scholar 

  202. Hocher, B., Reichetzeder, C. & Alter, M. L. Renal and cardiac effects of DPP4 inhibitors—from preclinical development to clinical research. Kidney Blood Press. Res. 36, 65–84 (2012).

    CAS  PubMed  Google Scholar 

  203. Asferg, C. L. et al. Relative atrial natriuretic peptide deficiency and inadequate renin and angiotensin II suppression in obese hypertensive men. Hypertension 62, 147–153 (2013).

    CAS  PubMed  Google Scholar 

  204. Yazbeck, R., Howarth, G. S. & Abbott, C. A. Dipeptidyl peptidase inhibitors, an emerging drug class for inflammatory disease? Trends Pharmacol. Sci. 30, 600–607 (2009).

    CAS  PubMed  Google Scholar 

  205. Shirakawa, J. et al. Diet-induced adipose tissue inflammation and liver steatosis are prevented by DPP-4 inhibition in diabetic mice. Diabetes 60, 1246–1257 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Shah, Z. et al. Long-term dipeptidyl-peptidase 4 inhibition reduces atherosclerosis and inflammation via effects on monocyte recruitment and chemotaxis. Circulation 124, 2338–2349 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Hadjiyanni, I., Siminovitch, K. A., Danska, J. S. & Drucker, D. J. Glucagon-like peptide-1 receptor signalling selectively regulates murine lymphocyte proliferation and maintenance of peripheral regulatory T cells. Diabetologia 53, 730–740 (2010).

    CAS  PubMed  Google Scholar 

  208. McGill, J. B. et al. Potentiation of abnormalities in myocardial metabolism with the development of diabetes in women with obesity and insulin resistance. J. Nucl. Cardiol. 18, 421–429 (2011).

    PubMed  Google Scholar 

  209. Peterson, L. R. et al. Alterations in left ventricular structure and function in young healthy obese women: assessment by echocardiography and tissue Doppler imaging. J. Am. Coll. Cardiol. 43, 1399–1404 (2004).

    PubMed  Google Scholar 

  210. Manrique, C. et al. Obesity and insulin resistance induce early development of diastolic dysfunction in young female mice fed a western diet. Endocrinology 154, 3632–3642 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Hinojosa-Laborde, C., Chapa, I., Lange, D. & Haywood, J. R. Gender differences in sympathetic nervous system regulation. Clin. Exp. Pharmacol. Physiol. 26, 122–126 (1999).

    CAS  PubMed  Google Scholar 

  212. Johnson, M. S. et al. Sex differences in baroreflex sensitivity, heart rate variability, and end organ damage in the TGR(mRen2)27 rat. Am. J. Physiol. Heart Circ. Physiol. 301, H1540–H1550 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Denton, K. M., Hilliard, L. M. & Tare, M. Sex-related differences in hypertension: seek and ye shall find. Hypertension 62, 674–677 (2013).

    CAS  PubMed  Google Scholar 

  214. Pal, S. & Radavelli-Bagatini, S. Association of arterial stiffness with obesity in Australian women: a pilot study. J. Clin. Hypertens. (Greenwich) 15, 118–123 (2013).

    CAS  Google Scholar 

  215. Berry, K. L. et al. Large-artery stiffness contributes to the greater prevalence of systolic hypertension in elderly women. J. Am. Geriatr. Soc. 52, 368–373 (2004).

    PubMed  Google Scholar 

  216. Scuteri, A. et al. Associations of large artery structure and function with adiposity: effects of age, gender, and hypertension. The SardiNIA Study. Atherosclerosis 221, 189–197 (2012).

    CAS  PubMed  Google Scholar 

  217. Meyer, M. R., Clegg, D. J., Prossnitz, E. R. & Barton, M. Obesity, insulin resistance and diabetes: sex differences and role of oestrogen receptors. Acta Physiol. (Oxf.) 203, 259–269 (2011).

    CAS  Google Scholar 

  218. Ribas, V. et al. Myeloid-specific estrogen receptor alpha deficiency impairs metabolic homeostasis and accelerates atherosclerotic lesion development. Proc. Natl Acad. Sci. USA 108, 16457–16462 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Maric-Bilkan, C. & Manigrasso, M. B. Sex differences in hypertension: contribution of the renin-angiotensin system. Gend. Med. 9, 287–291 (2012).

    PubMed  Google Scholar 

  220. Lindsey, S. H., Yamaleyeva, L. M., Brosnihan, K. B., Gallagher, P. E. & Chappell, M. C. Estrogen receptor GPR30 reduces oxidative stress and proteinuria in the salt-sensitive female mRen2.Lewis rat. Hypertension 58, 665–671 (2011).

    CAS  PubMed  Google Scholar 

  221. Ricchiuti, V. et al. Estradiol increases angiotensin II type 1 receptor in hearts of ovariectomized rats. J. Endocrinol. 200, 75–84 (2009).

    CAS  PubMed  Google Scholar 

  222. Lindsey, S. H. & Chappell, M. C. Evidence that the G protein-coupled membrane receptor GPR30 contributes to the cardiovascular actions of estrogen. Gend. Med. 8, 343–354 (2011).

    PubMed  PubMed Central  Google Scholar 

  223. Zhang, R. & Reisin, E. Obesity-hypertension: the effects on cardiovascular and renal systems. Am. J. Hypertens. 13, 1308–1314 (2000).

    CAS  PubMed  Google Scholar 

  224. Smink, P. A. et al. An initial reduction in serum uric acid during angiotensin receptor blocker treatment is associated with cardiovascular protection: a post-hoc analysis of the RENAAL and IDNT trials. J. Hypertens. 30, 1022–1028 (2012).

    CAS  PubMed  Google Scholar 

  225. Gupta, A. K. et al. Baseline predictors of resistant hypertension in the Anglo-Scandinavian Cardiac Outcome Trial (ASCOT): a risk score to identify those at high-risk. J. Hypertens. 29, 2004–2013 (2011).

    CAS  PubMed  Google Scholar 

  226. Mancia, G. et al. 2013 Practice guidelines for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC): ESH/ESC Task Force for the Management of Arterial Hypertension. J. Hypertens. 31, 1925–1938 (2013).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIH (R01 HL73101-01A1 and R01 HL107910-01) and Veterans Affairs Merit System (0018) to J.R.S. and by an investigator-initiated grant from Boehringer Ingelheim Pharmaceuticals to V.G.D.

Author information

Authors and Affiliations

Authors

Contributions

V.G.D. and A.R.A. contributed equally in preparing all aspects of the manuscript. J.R.S. made substantial contributions to discussion of the content, and read and edited the manuscript before submission.

Corresponding author

Correspondence to James R. Sowers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeMarco, V., Aroor, A. & Sowers, J. The pathophysiology of hypertension in patients with obesity. Nat Rev Endocrinol 10, 364–376 (2014). https://doi.org/10.1038/nrendo.2014.44

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2014.44

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing