Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Thinking bedside at the bench: the NOD mouse model of T1DM

Abstract

Studies over the past 35 years in the nonobese diabetic (NOD) mouse have shown that a number of agents can prevent or even reverse type 1 diabetes mellitus (T1DM); however, these successes have not been replicated in human clinical trials. Although some of these interventions have delayed disease onset or progression in subsets of participants, none have resulted in a complete cure. Even in the most robust responders, the treatments do not permanently preserve insulin secretion or stimulate the proliferation of β cells, as has been observed in mice. The shortfalls of translating NOD mouse studies into the clinic questions the value of using this model in preclinical studies. In this Perspectives, we suggest how immunological and genetic differences between NOD mice and humans might contribute to the differential outcomes and suggest ways in which the mouse model might be modified or applied as a tool to develop treatments and improve understanding of clinical trial outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Herold, K. C., Montag, A. G & Fitch, F. W. Treatment with anti-T-lymphocyte antibodies prevents induction of insulitis in mice given multiple doses of streptozocin. Diabetes 36, 796–801 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Like, A. A. & Rossini, A. A. Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science 193, 415–417 (1976).

    Article  CAS  PubMed  Google Scholar 

  3. Like, A. A., Rossini, A. A., Guberski, D. L., Appel, M. C. & Williams, R. M. Spontaneous diabetes mellitus: reversal and prevention in the BB/W rat with antiserum to rat lymphocytes. Science 206, 1421–1423 (1979).

    Article  CAS  PubMed  Google Scholar 

  4. Shoda, L. K. et al. A comprehensive review of interventions in the NOD mouse and implications for translation. Immunity 23, 115–126 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Wicker, L. S. et al. Type 1 diabetes genes and pathways shared by humans and NOD mice. J. Autoimmun. 25 (Suppl.), 29–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Roep, B. O. Are insights gained from NOD mice sufficient to guide clinical translation? Another inconvenient truth. Ann. NY Acad. Sci. 1103, 1–10 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Chaparro, R. J. & Dilorenzo, T. P. An update on the use of NOD mice to study autoimmune (type 1) diabetes. Expert Rev. Clin. Immunol. 6, 939–955 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Thayer, T. C., Wilson, S. B. & Mathews, C. E. Use of nonobese diabetic mice to understand human type 1 diabetes. Endocrinol. Metab. Clin. North Am. 39, 541–561 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Driver, J. P., Serreze, D. V. & Chen, Y. G. Mouse models for the study of autoimmune type 1 diabetes: a NOD to similarities and differences to human disease. Semin. Immunopathol. 33, 67–87 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. van Belle, T. L., Coppieters, K. T. & von Herrath, M. G. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol. Rev. 91, 79–118 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Driver, J. P., Chen, Y. G. & Mathews, C. E. Comparative genetics: synergizing human and NOD mouse studies for identifying genetic causation of type 1 diabetes. Rev. Diabet. Stud. 9, 169–187 (2012).

    Article  PubMed  Google Scholar 

  12. King, A. J. The use of animal models in diabetes research. Br. J. Pharmacol. 166, 877–894 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. In't Veld, P. Insulitis in human type 1 diabetes: a comparison between patients and animal models. Semin. Immunopathol. 36, 569–579 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jayasimhan, A., Mansour, K. P. & Slattery, R. M. Advances in our understanding of the pathophysiology of type 1 diabetes: lessons from the NOD mouse. Clin. Sci. (Lond.) 126, 1–18 (2014).

    Article  CAS  Google Scholar 

  15. Makino, S. et al. Breeding of a non-obese, diabetic strain of mice. Jikken Dobutsu 29, 1–13 (1980).

    CAS  PubMed  Google Scholar 

  16. Assan, R. et al. Metabolic and immunological effects of cyclosporin in recently diagnosed type 1 diabetes mellitus. Lancet 1, 67–71 (1985).

    Article  CAS  PubMed  Google Scholar 

  17. Bougnères, P. F. et al. Limited duration of remission of insulin dependency in children with recent overt type I diabetes treated with low-dose cyclosporin. Diabetes 39, 1264–1272 (1990).

    Article  PubMed  Google Scholar 

  18. Jenner, M., Bradish, G., Stiller, C. & Atkison, P. Cyclosporin A treatment of young children with newly-diagnosed type 1 (insulin-dependent) diabetes mellitus. London Diabetes Study Group. Diabetologia 35, 884–888 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Harrison, L. C., Colman, P. G., Dean, B., Baxter, R. & Martin, F. I. Increase in remission rate in newly diagnosed type I diabetic subjects treated with azathioprine. Diabetes 34, 1306–1308 (1985).

    Article  CAS  PubMed  Google Scholar 

  20. Cook, J. J. et al. Double-blind controlled trial of azathioprine in children with newly diagnosed type I diabetes. Diabetes 38, 779–783 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Silverstein, J. et al. Immunosuppression with azathioprine and prednisone in recent-onset insulin-dependent diabetes mellitus. N. Engl. J. Med. 319, 599–604 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Herold, K. C. et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N. Engl. J. Med. 346, 1692–1698 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Herold, K. C. et al. A single course of anti-CD3 monoclonal antibody hOKT3γ1(Ala–Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes 54, 1763–1769 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Herold, K. C. et al. Teplizumab (anti-CD3 mAb) treatment preserves C-peptide responses in patients with new-onset type 1 diabetes in a randomized controlled trial: metabolic and immunologic features at baseline identify a subgroup of responders. Diabetes 62, 3766–3774 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pescovitz, M. D. et al. Rituximab, B-lymphocyte depletion, and preservation of β-cell function. N. Engl. J. Med. 361, 2143–2152 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rigby, M. R. et al. Targeting of memory T cells with alefacept in new-onset type 1 diabetes (T1DAL study): 12 month results of a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Diabetes Endocrinol. 1, 284–294 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Orban, T. et al. Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. Lancet 378, 412–419 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Orban, T. et al. Costimulation modulation with abatacept in patients with recent-onset type 1 diabetes: follow-up 1 year after cessation of treatment. Diabetes Care 37, 1069–1075 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Long, S. A. et al. Rapamycin/IL-2 combination therapy in patients with type 1 diabetes augments Tregs yet transiently impairs β-cell function. Diabetes 61, 2340–2348 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang, Z. J., Davidson, L., Eisenbarth, G. S. & Weiner, H. L. Suppression of diabetes in nonobese diabetic mice by oral administration of porcine insulin. Proc. Natl Acad. Sci. USA 88, 10252–10256 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Muir, A. et al. Insulin immunization of nonobese diabetic mice induces a protective insulitis characterized by diminished intraislet interferon-γ transcription. J. Clin. Invest. 95, 628–634 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tian, J. et al. Modulating autoimmune responses to GAD inhibits disease progression and prolongs islet graft survival in diabetes-prone mice. Nat. Med. 2, 1348–1353 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Tisch, R., Liblau, R. S., Yang, X. D., Liblau, P. & McDevitt, H. O. Induction of GAD65-specific regulatory T-cells inhibits ongoing autoimmune diabetes in nonobese diabetic mice. Diabetes 47, 894–899 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Boettler, T. et al. The clinical and immunological significance of GAD-specific autoantibody and T-cell responses in type 1 diabetes. J. Autoimmun. 44, 40–48 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Suarez-Pinzon, W. L., Cembrowski, G. S. & Rabinovitch, A. Combination therapy with a dipeptidyl peptidase-4 inhibitor and a proton pump inhibitor restores normoglycaemia in non-obese diabetic mice. Diabetologia 52, 1680–1682 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Drage, M. et al. Nondepleting anti-CD4 and soluble interleukin-1 receptor prevent autoimmune destruction of syngeneic islet grafts in diabetic NOD mice. Transplantation 74, 611–619 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Sandberg, J. O., Eizirik, D. L., Sandler, S., Tracey, D. E. & Andersson, A. Treatment with an interleukin-1 receptor antagonist protein prolongs mouse islet allograft survival. Diabetes 42, 1845–1851 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Sandberg, J. O., Eizirik, D. L. & Sandler, S. IL-1 receptor antagonist inhibits recurrence of disease after syngeneic pancreatic islet transplantation to spontaneously diabetic non-obese diabetic (NOD) mice. Clin. Exp. Immunol. 108, 314–317 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gysemans, C. et al. Prevention of primary non-function of islet xenografts in autoimmune diabetic NOD mice by anti-inflammatory agents. Diabetologia 46, 1115–1123 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Simon, G. et al. Murine antithymocyte globulin therapy alters disease progression in NOD mice by a time-dependent induction of immunoregulation. Diabetes 57, 405–414 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Pozzilli, P. et al. No effect of oral insulin on residual β-cell function in recent-onset type I diabetes (the IMDIAB VII). IMDIAB Group. Diabetologia 43, 1000–1004 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Diabetes Prevention Trial—Type 1 Diabetes Study Group. Effects of insulin in relatives of patients with type 1 diabetes mellitus. N. Engl. J. Med. 346, 1685–1691 (2002).

  43. Ludvigsson, J. et al. GAD65 antigen therapy in recently diagnosed type 1 diabetes mellitus. N. Engl. J. Med. 366, 433–442 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Griffin, K. J., Thompson, P. A., Gottschalk, M., Kyllo, J. H. & Rabinovitch, A. Combination therapy with sitagliptin and lansoprazole in patients with recent-onset type 1 diabetes (REPAIR-T1D): 12-month results of a multicentre, randomised, placebo-controlled, phase 2 trial. Lancet 2, 710–718 (2014).

    CAS  Google Scholar 

  45. Sumpter, K. M., Adhikari, S., Grishman, E. K. & White, P. C. Preliminary studies related to anti-interleukin-1β therapy in children with newly diagnosed type 1 diabetes. Pediatr. Diabetes 12, 656–667 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Moran, A. et al. Interleukin-1 antagonism in type 1 diabetes of recent onset: two multicentre, randomised, double-blind, placebo-controlled trials. Lancet 381, 1905–1915 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Gitelman, S. E. et al. Antithymocyte globulin treatment for patients with recent-onset type 1 diabetes: 12-month results of a randomised, placebo-controlled, phase 2 trial. Lancet Diabetes Endocrinol. 1, 306–316 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hayward, A. R. & Shreiber, M. Neonatal injection of CD3 antibody into nonobese diabetic mice reduces the incidence of insulitis and diabetes. J. Immunol. 143, 1555–1559 (1989).

    CAS  PubMed  Google Scholar 

  49. Herold, K. C. et al. Prevention of autoimmune diabetes with nonactivating anti-CD3 monoclonal antibody. Diabetes 41, 385–391 (1992).

    Article  CAS  PubMed  Google Scholar 

  50. Hayward, A. R. & Shreiber, M. Reduced incidence of insulitis in NOD mice following anti-CD3 injection: requirement for neonatal injection. J. Autoimmun. 5, 59–67 (1992).

    Article  CAS  PubMed  Google Scholar 

  51. Chatenoud, L., Thervet, E., Primo, J. & Bach, J. F. Anti-CD3 antibody induces long-term remission of overt autoimmunity in nonobese diabetic mice. Proc. Natl Acad. Sci. USA 91, 123–127 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chatenoud, L., Primo, J. & Bach, J. F. CD3 antibody-induced dominant self tolerance in overtly diabetic NOD mice. J. Immunol. 158, 2947–2954 (1997).

    CAS  PubMed  Google Scholar 

  53. Hu, C. Y. et al. Treatment with CD20-specific antibody prevents and reverses autoimmune diabetes in mice. J. Clin. Invest. 117, 3857–3867 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xiu, Y. et al. B lymphocyte depletion by CD20 monoclonal antibody prevents diabetes in nonobese diabetic mice despite isotype-specific differences in FcγR effector functions. J. Immunol. 180, 2863–2875 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Keymeulen, B. et al. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N. Engl. J. Med. 352, 2598–2608 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Aronson, R. et al. Low-dose otelixizumab anti-CD3 monoclonal antibody DEFEND-1 study: results of the randomized phase III study in recent-onset human type 1 diabetes. Diabetes Care 37, 2746–2754 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ambery, P. et al. Efficacy and safety of low-dose otelixizumab anti-CD3 monoclonal antibody in preserving C-peptide secretion in adolescent type 1 diabetes: DEFEND-2, a randomized, placebo-controlled, double-blind, multi-centre study. Diabet. Med. 31, 399–402 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Brady, J. L., Yamashita, K. & Lew, A. M. Enhanced survival of grafts genetically endowed with the ability to block CD2 and B7. Cell Transplant. 10, 175–181 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Kremer, J. M. et al. Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N. Engl. J. Med. 349, 1907–1915 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Kremer, J. M. et al. Treatment of rheumatoid arthritis with the selective costimulation modulator abatacept: twelve-month results of a phase iib, double-blind, randomized, placebo-controlled trial. Arthritis Rheum. 52, 2263–2271 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Lenschow, D. J. et al. CD28/B7 regulation of Th1 and Th2 subsets in the development of autoimmune diabetes. Immunity 5, 285–293 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Lenschow, D. J. et al. Differential effects of anti-B7-1 and anti-B7-2 monoclonal antibody treatment on the development of diabetes in the nonobese diabetic mouse. J. Exp. Med. 181, 1145–1155 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Rabinovitch, A., Suarez-Pinzon, W. L., Shapiro, A. M., Rajotte, R. V. & Power, R. Combination therapy with sirolimus and interleukin-2 prevents spontaneous and recurrent autoimmune diabetes in NOD mice. Diabetes 51, 638–645 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Mestas, J. & Hughes, C. C. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Mehta, G., Ferreira, V. P., Skerka, C., Zipfel, P. F. & Banda, N. K. New insights into disease-specific absence of complement factor H related protein C in mouse models of spontaneous autoimmune diseases. Mol. Immunol. 62, 235–248 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Neff, K. S., Richards, S. M., Williams, J. M., Garman, R. D. & Ruzek, M. C. Murine antithymocyte globulin T-cell depletion is mediated predominantly by macrophages, but the Fas/FasL pathway selectively targets regulatory T cells. Transplantation 92, 523–528 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Young, E. F., Hess, P. R., Arnold, L. W., Tisch, R. & Frelinger, J. A. Islet lymphocyte subsets in male and female NOD mice are qualitatively similar but quantitatively distinct. Autoimmunity 42, 678–691 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Taylor, J. A. et al. A spontaneous model for autoimmune myocarditis using the human MHC molecule HLA-DQ8. J. Immunol. 172, 2651–2658 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Mohan, J. F. et al. Unique autoreactive T cells recognize insulin peptides generated within the islets of Langerhans in autoimmune diabetes. Nat. Immunol. 11, 350–354 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yin, L. et al. Recognition of self and altered self by T cells in autoimmunity and allergy. Protein Cell 4, 8–16 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Collado, J. A., Guitart, C., Ciudad, M. T., Alvarez, I. & Jaraquemada, D. The repertoires of peptides presented by MHC-II in the thymus and in peripheral tissue: a clue for autoimmunity? Front. Immunol. 4, 442 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Homann, D., Dyrberg, T., Petersen, J., Oldstone, M. B. & von Herrath, M. G. Insulin in oral immune “tolerance”: a one-amino acid change in the B chain makes the difference. J. Immunol. 163, 1833–1838 (1999).

    CAS  PubMed  Google Scholar 

  73. Skyler, J. S. et al. Effects of oral insulin in relatives of patients with type 1 diabetes: The Diabetes Prevention Trial—Type 1. Diabetes Care 28, 1068–1076 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Lenschow, D. J., Walunas, T. L. & Bluestone, J. A. CD28/B7 system of T cell costimulation. Annu. Rev. Immunol. 14, 233–258 (1996).

    Article  CAS  PubMed  Google Scholar 

  75. Brauner, H. et al. Distinct phenotype and function of NK cells in the pancreas of nonobese diabetic mice. J. Immunol. 184, 2272–2280 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Coppieters, K. T. et al. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type 1 diabetes patients. J. Exp. Med. 209, 51–60 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Willcox, A., Richardson, S. J., Bone, A. J., Foulis, A. K. & Morgan, N. G. Analysis of islet inflammation in human type 1 diabetes. Clin. Exp. Immunol. 155, 173–181 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Greenbaum, C. J. et al. Fall in C-peptide during first 2 years from diagnosis: evidence of at least two distinct phases from composite Type 1 Diabetes TrialNet data. Diabetes 61, 2066–2073 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sherry, N. A. et al. Effects of autoimmunity and immune therapy on β-cell turnover in type 1 diabetes. Diabetes 55, 3238–3245 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Serreze, D. V. et al. Loss of intra-islet CD20 expression may complicate efficacy of B-cell-directed type 1 diabetes therapies. Diabetes 60, 2914–2921 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Koulmanda, M. et al. Curative and β cell regenerative effects of α1-antitrypsin treatment in autoimmune diabetic NOD mice. Proc. Natl Acad. Sci. USA 105, 16242–16247 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ogawa, N., List, J. F., Habener, J. F. & Maki, T., Cure of overt diabetes in NOD mice by transient treatment with anti-lymphocyte serum and exendin-4. Diabetes 53, 1700–1705 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Suarez-Pinzon, W. L. & Rabinovitch, A. Combination therapy with a dipeptidyl peptidase-4 inhibitor and a proton pump inhibitor induces β-cell neogenesis from adult human pancreatic duct cells implanted in immunodeficient mice. Cell Transplant. 20, 1343–1349 (2011).

    Article  PubMed  Google Scholar 

  84. Akirav, E., Kushner, J. A. & Herold, K. C. β-cell mass and type 1 diabetes: going, going, gone? Diabetes 57, 2883–2888 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang, N. et al. Sirolimus is associated with reduced islet engraftment and impaired β-cell function. Diabetes 55, 2429–2436 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Keenan, H. A. et al. Residual insulin production and pancreatic β-cell turnover after 50 years of diabetes: Joslin Medalist Study. Diabetes 59, 2846–2853 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Palmer, J. P. et al. C-peptide is the appropriate outcome measure for type 1 diabetes clinical trials to preserve β-cell function: report of an ADA workshop, 21–22 October 2001. Diabetes 53, 250–264 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Yu, L. et al. Rituximab selectively suppresses specific islet antibodies. Diabetes 60, 2560–2565 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Reagan-Shaw, S., Nihal, M. & Ahmad, N. Dose translation from animal to human studies revisited. FASEB J. 22, 659–661 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Akirav, E. M. et al. Detection of β cell death in diabetes using differentially methylated circulating DNA. Proc. Natl Acad. Sci. USA 108, 19018–19023 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kuhn, C. et al. Human CD3 transgenic mice: preclinical testing of antibodies promoting immune tolerance. Sci. Transl Med. 3, 68ra10 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Brehm, M. A. et al. Human immune system development and rejection of human islet allografts in spontaneously diabetic NOD-Rag1null IL2rγ null Ins2Akita mice. Diabetes 59, 2265–2270 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Waldron-Lynch, F. et al. Teplizumab induces human gut-tropic regulatory cells in humanized mice and patients. Sci. Transl Med. 4, 118ra12 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vudattu, N. K. et al. Humanized mice as a model for aberrant responses in human T cell immunotherapy. J. Immunol. 193, 587–596 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Viehmann Milam, A. A. et al. A humanized mouse model of autoimmune insulitis. Diabetes 63, 1712–1724 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bergerot, I., Fabien, N., Mayer, A. & Thivolet, C. Active suppression of diabetes after oral administration of insulin is determined by antigen dosage. Ann. NY Acad. Sci. 13, 362–367 (1996).

    Article  Google Scholar 

  97. Chaillous, L. et al. Oral insulin administration and residual (β-cell function in recent-onset type 1 diabetes: a multicentre randomised controlled trial. Lancet 356, 545–549 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Hartmann, B., Bellmann, K., Ghiea, I., Kleemann, R. & Kolb, H. Oral insulin for diabetes prevention in NOD mice: potentiation by enhancing Th2 cytokine expression in the gut through bacterial adjuvant. Diabetologia 40, 902–909 (1997).

    Article  CAS  PubMed  Google Scholar 

  99. Grinberg-Bleyer, Y. et al. IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells. J. Exp. Med. 207, 1871–1878 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Koulmanda, M. et al. Modification of adverse inflammation is required to cure new-onset type 1 diabetic hosts. Proc. Natl Acad. Sci. USA 104, 13074–13079 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tang, Q. et al. Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity 28, 687–697 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Suarez-Pinzon, W. L. et al. Combination therapy with glucagon-like peptide-1 and gastrin restores normoglycemia in diabetic NOD mice. Diabetes 57, 3281–3288 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Kevan C. Herold.

Ethics declarations

Competing interests

K.C.H. has a patent application regarding the measurement of unmethylated INS DNA in serum. J.C.R. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reed, J., Herold, K. Thinking bedside at the bench: the NOD mouse model of T1DM. Nat Rev Endocrinol 11, 308–314 (2015). https://doi.org/10.1038/nrendo.2014.236

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2014.236

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing